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1. Introduction

A channel version of the adiabatic part of the ECMWF
gridpoint model has been developed for the purpose of
examining the development of barotropically and
baroclinically unstable waves in simple zonal flows.
The model itself is described by Burridge & Haseler
(1977) and Haseler & Burridge (1977), and the reader is
referred to these reports for details. JThe present
report describes the modifications for the channel
(Section 2), the generation of initial flows (Section 3)
and some integrations with low vertical resolution
(Section 4).

All notations and symbols used here are those found

in the global model descriptions. However, for simpli-
city, the spherical coordinates, (1,6) have been
replaced by Cartesian (x,y).

2, Modifications for the'channel

The global, latitude-longitude grid, model has been
converted to channel geometry by replacing the poles
with fixed, impermeable walls. The walls are placed
at v-points in the Arakawa C grid (see Figure 2.1).

In the east-west the cyclic boundaries of the global
model are retained. Apart from changes necessitated
by the walls, the global code remains unchanged. The
channel model can thus be run with spherical geometry,.
if one so wishes with a Fourier filter to increase the
maximum CFL-stable timestep. R-plane geometry is
obtained by changing some "map-factors', i.e. some
latitude dependent constants. This means that some
unnecessary multiplications are performed, but the
advanti:ge is that we can use exactly the same numerical

formulations as in the spherical model.




The boundary conditions at the lateral walls are zero

normal winds and zero normal mass fluxes

v =0 _{ NROW=1, NROW=MAXROW (2.1)
v =0 (2.2)

An additional boundary condition is needed for the

potential vorticity

at the wall-points ( Fig. 2.1). Obviously (%%]
is zero here, but the computationof 5% requires an

assumption. The natural choice would be

3y - (3], -5 |
9Y) 4 oV)o \2¥)3 (2.3)

with a corresponding expression at the southern wall,
With the present I/O configuration of the global model,
%% 3 is however not available when needed, and we have

used the simpler condition

{%%}1 ) [%%}2 (2.4
This formulation generates noise near the walls, which
in the form of small scale divergence waves slowly moves
perpendicularly towards the centre of the channel. After
a few days they contaminate the whole area. At present
the problem is suppressed with a moderate linear
diffusion everywhere, the diffusion coefficient set to
K = 10°m?s” 'when Ay = 100 km. A final elimination of
the bcundary induced noise would probably require a

reformulation of the boundary condition (2.4).
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Figure 2.1 The grid of the channel version.
The walls are marked with thick

lines.




-4-

Alternatively a simpler formulation of the rotational
terms [ZV]2 and [2U]y in the momentum equations,
that does not require Z at the walls, could be tried.

3. Initial data

For the channel experiments we intended to prescribe‘the
windfield exactly and compute a balanced mass field
dimctly from the balance equation in O-coordinates. This
procedure would allow us to choose simple, analytically
generated basic flows of the types that are used in
theoretical studies of barotropic or baroclinic
instability. Hoskins & Simmons (1975) describe a
procedure whereby this is achieved in their spectral
model. They solve the reverse balance equation at

each level, using predefined winds, giving NLEV
equations for NLEV temperatures, one at each level.

An extra equation is however required to close the
system since there are NLEV+1 unknowns, the NLEV
temperatures Tk’ (k=1, NLEV) and the surface pressure
pg. Hoskins and Simmons tried extrapolation from the
lowest temperature level down to the surface, but with
this method they obtained vertical 2-A0-waves in the
balanced temperatures. Instead they used an artificial
smoothing equation to eliminate the noise and at the
same time close the system. This technique was also

tried in our gridpoint model.

The procedure 1is the following

Q

Ju 30 dlnpg _

5T + A, + . + RT i 0 , (3.1)
e d1

3V LR 0bs _

st PAV gy PRI 5y = O

A, and Ay contain the advective and rotational terms.



Forming the balance equation we get

d1n 31n
+RTv21npS + R{.BE ..__.I.)._S. + 3?. .__—..};)_S.z_Vo A

2
Voo 5% 39X 3y 3y

Here A = Au i+ Ay j is calculated directly by
the forecast code by putting Ty = 0, lnpg =0 and
making a one timestep forecast. The advantage is that
the balance equation uses the same finite difference

expressions as the forecast model.

In equation (3.3) the temperature is divided into two

parts
T(x,y,0) = T(o) + T'"(x,v,0)

where T(o) is the ICAO-atmosphere.
By moving all terms containing T' to the right hand
side (r.h.s.), we get a Poisson equation at each level,k.

2,70 T =
V2o, + RTklnpS) = r.h.s. (3.4)

This equation needs lateral boundary conditions, and
they may be obtained by assuming geostrophic winds close

to the walls, where we thus have the Neumann conditions

3 {+o

| 5
3y | %k 5

+ R%klnps = - fﬁiy -5 (RTélnps
(3.5).
NROW=2
NROW=MAXROW-1
Assumi: g an initial guess for Té in (3.4) and (3.5)
the Poisson equation can be solved. This is done by a
direct FFT Poisson solver supplied by C.Temperton at

ECMWF .




In the centre of the channel the temperature

structure is defined as

T, =Ty
and the deviations from this basic state at other
latitudes are obtained from the solutions of the

balance eguation.

-0 - ™2
¢, + BT 1lnp_ =V (r.h.s.) (3.6)

together with the hydrostatic equations

Ao
[thln07}= - BTy (3.7
o k

and the smoothing equation
Zyka = 0 (3.8)

In equation (3.8) the Yy are numerical coefficients,
chosen by Hoskins and Simmons as the binominal
coefficients with alternating signs. Thus for a

5-1level model Yy is given by

Yk = (19"4,67"4’1)

(3.6), (3.7) and (3.8) give an approximate solution of

Tk and ps. The procedure is iterated with (Tk - Tk)

as a new guess of Tg to put in (r.h.s.). The convergence

is very rapid, only a few iterations are needed to

‘obtain temperature deviations less than 0.01 Kelvin,



In low vertical resolution, NLEV=5, the procedure is
fairly successful, see Figures(3.1la) and (3.1b). In
Figure (3.1a) the balanced temperature profiles close
to the two lateral walls, as well as the predefined
temperatures at the centre of the channel, are shown.

The zonal wind profile in this case was determined by

du
dlno-

1

= ~ 19 ms~

which gives the zonal winds plotted in the figure. The
temperatures obtained are relatively smooth, however
the lowest, NLEV=5, temperature is a little colder than

expected.

With a somewhat more realistic zonal wind profile,
increasing up to the tropopause at 0=.3 and constant
thereafter, the balanced temperatures are those in
Figure (3.1b). Here the lowest level temperatures
differ considerably from those of an anticipated smooth
profile; thé northern being too cold and the southern
too warm. Indeed, with sharper tropopauses, the lowest
layer even becomes superadiabatic close to the southern
wall. These deviations from a smooth profile can be
interpreted as reflexions of the, real, temperature
"kink'" at the tropopause caused by the filtering
procedure. The filter (3.8) removes the 2Ac-component
" of the kink, leaving 3Ac and longer components to remain

visible as deviations.

In higher vertical resolutions, NLEV=20, the balancing
procedure is completely unsatisfactory. In Figure

(3.2a) the balancing is done in pressure coordinates,
where _he system of equations is closed and no artificial
equation of type (3.8) is needed. A large amplitude

2Ac wave is visible in the whole atmocsphere.
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This is a clear example of the kind of noise that
motivated the smoothing used by Hoskins and Simmons.
Its origin can be traced back to the particular choice
of vertical coordinate systems made. In our case the
winds and the temperatures are both defined at the same
levels, while the geopotentials are defined at inter-
mediate levels. This requires a vertical averaging in

the balance equation

5§ =V (r.h.s.) (3.6b)

Using the hydrostatic equation

A :
(-E——~}= - RT (3.7b)

the temperatures, Tk’ can in principle be determined.
This, however, turns out to be an algebraically ill-
conditioned problem, and an attempt to solve it gives
the result in Figure (3.2a). Hoskins and Simmons on the
other hand do define the geopotentials'and the winds at
the same levels, but since their temperatures are also
defined at these levels, they have to do a vertical
averaging in the hydrostatic equation, again leading to

an ill-conditioned problem.

In o-coordinates, with the smoother (3.8) added, our
procedure gives the temperatures in Figure (3.2b). 1In
analogy with the filter used in the 5-level version in
Figure (3.1), the coefficients, Yx in (3.8) were
chosen as the binominal coefficients of order 20. These
coefficients are very large in the middle of the
atmosphere, but comparatively small elsewhere. In
Figure (3.2b) it can be seen that the 240 wave is
removed in the vicinity of 500 mb,leaving 3Ac and longer
components. Further up and down, however, the effect of

the smoother is minimal.



Fig.3.la Temperatures at north wall,centre
and south wall after balancing-
Zonal winds from du/dlno=-19

Fig.3.1b As 3.ia,but with constant
stratospheric winds.
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Figure 3.2 Balanced temperatures. Zonal wind du/dlno=-19 in troposphere,constant
in stratosphere. Curve a) p-system, Curve b) O-system, Curve c¢)o system
without vertical averaging of temperature, see text.
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It can be argued that some other smoother, for
instance of the Shapiro type, should be used, but since
this is still a somewhat artificial way of overcoming
the problem, we have instead chosen an initialisation
procedure where the problem never arises. By defining
the initial winds and geopotentials at the same so-
called "half'" levels, in the model atmosphere, and the
temperatures at the intermediate "full" levels, the
sigma~-system ﬁroblem is closed. The reverse balance
equation is solved at the half levels, including the
earth's surface, which has no orography. This gives
NLEV+1 balance equations for the NLEV+1 unknowns,
¢k,(k=1,NLEV) and pg.

The retrieval of the temperatures from the hydrostatic
equation (3.7) is now a trivial matter. The full level
winds are obtained from the same analytical expression

used for the half level winds.

Using this latter procedure the balanced temperatures

are perfectly smooth, see Figure (3.2c), and the fields
seem to be sufficiently balanced for our purposes
according to some preliminary 20-level integrations,

In the present report we will however only describe
results obtained from the 5-level initial states produced
by the method described in connection with TFigures

3.1.

4. Some integrations

Integrations of three different basic states will be
described here, all of them with the low vertical
resolution NLEV=5. The cases will be referred to as
"barotropic", "baroclinic" and "barotropic-baroclinic"
respectively. In the barotropic case the initial wind

varies only meridionally, and the initial temperature is
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isothermal, giving a barotropic initial mass field.

The baroclinic initial state is characterised by vertical
shear in the wind, and a highly baroclinic mass field,
Finally in the barotropic-baroclinic case there is both
vertical and latitudinal shear in the initial wind. In

all three cases a perturbation meridional wind, v'(x,y,0,0)
is added to the zonal wind, u. The perturbation is a
simple sinusoidal wave

vi(x,y,0,0) = Vg sin %E (x-8) (4.1)

X
where LX is the length of the channel. The initial
disturbance is thus confined to wave number 1. In all

! and the phase,

three cases the amplitude v, = ims
§ = OO, at all levels.

The balancing procedure in Section 3 was performed on the
total wind field u + v'. Table 4.1 summarises the

different runs.

Shear = |. Resolution Wavelength,LX
para-~ Ax =1
Case 1 dul,Jbolic x =100 Ikm
2= B
"barotropic" dy or by =200 km 4000 km
os
du _
a0
Case 2 du - g ix =100 km
"baroclinic” dy Ay =100 km 2000 km
du
=— %0
dz +
Case 3 au Ax =100 km or 2000 km or
du 1o 0
"barotropic- dy $ A 200 km 4000 km
e w y = 100 km
baroclinic
du 10
dz

Table 4.1



~13~

The channel width was 3200 km in all cases. The five
sigma-~-levels were equidistant with the "full" levels

at o = .1, .3, .5, .7 and .9 respectively.

The area was 20 x 33 points. B-plane geometry with the
channel centre at the latitude 45° was used throughout. -
In some of the integrations a '"southern hemisphere"

B ~plane was used in order to check for possible coding
errors in connection with the boundary induced noise.
The explicit timestep, finally, was usually 75 seconds. .
In order to suppress the temporal computational mode
generated by the leap-frog scheme, a weak time filter of
the Asselin type was applied. In order to interpret the
integrations, a Fourier analysis was made of all the
forecast fields every second hour, and amplitudes and
phases of the wave numbers 0 to 8 were determined at all

levels,

Dt s v et S Soran 2 e e Y i TS S S e i SO e s v

Kuo (1951) showed that, in order for a zonal jet to be
barotropically unstable, a necessary requirement is that
the zonal wind, u, satisfies the condition

2
B- T2 = 0 (4.2)

at least once within the width of the jet.
A simple analytic shape of a Jjet that satisfies the
condition is
= 2Ty
u=u, - cos’(7-(y-y,)) . (4.3)
y

where y, i1s the centre of the channel. Wheng= 1.6-10"7’11
m 's”! and Ly = 2000 km this cos?-shaped jet is baro-—
tropical .y unstable already with ug = 4ms”. On the other
hand a parabolic jet-profile

u = ug - (1-{%;%%y]2) (4.4)




~-14-

does not satisfy (4.2) for any value of ugy, and should be
barotropically stable.

The two cases (4.3) and (4.4) were integrated up to
5 days. Linear diffusion with the diffusion coefficient
k = 10° mvzs‘1 was included,but in order to keep the
barotropy of the atmosphere, the surface friction in the

model was eliminated.

As expected, the parabolic jet, (4.4) was stable up to
day 5. Figure (4.1) shows the amplitude of wave number
1 of the v-component at level o=.5, Only small
amplitude gravity waves, originating from the small
remaining imbalance in the initialised mass and wind
fields, can be observed. The diffusion dampens these
waves, and at day 5 their amplitude is of the order of

a few tenths of a ms™!'.

The cos? -shaped jet (4.3) was on the other hand

highly unstable. As in the parabolic case,

Uo = 40ms !, which is a rather large value compared to
that necessary for instability according to the
condition (4.2). Figure (4.2) shows the growth of wave
number 1 of the v-component with time in a logarithmic
diagram. The amplitude grows almost exactly exponentially
from day 1 to day 4. From day 0 to day 1 there is an
adjustment period during which the most unstable baro-
tropic mode emerges from the initial perturbation. After
day 4 the slope of the growth rate curve flattens due to
non-linear effects.

The wave number 2 amplitude of the zonal wind component,
u, is still only a few tenths of a ms 'at day 3%, but
has grown to 2ms ' at day 5. The slope of the linear
part of the growth curve corresponds to a growth rate of
7.3 + 10 °s™ ', corresponding to an e-folding time of

1.6 days. Even if the initial state was barotropic, the
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model itself is of course fully baroclinic, and nothing
prevents baroclinic developments to take place, An
examination of the forecast wind fields at day 5 shows
that the flow is still barotropic to a very high degree,
No differences can be detected between the c=.1 and g =.9
wind fields. Neither does the Fourier analysis reveal

any non-barotropic features.

Yanai and Nitta (1968) studied instability in a
linearised barotropic model without divergence. Sub-
dividing the latitudinal dimension into finite
differences, they used the method of linear perturbations
to determine the stability properties of small amplitude
waves in the flow. The phase velocities and amplitudes
of the possible modes were obtained from the eigenvalues
and eigenvectors of a matrix, dependent on the flow
characteristics and the Rossby parameter, B .

With a latitudinal resolution of N=20, and the same zonal
wind profile and perturbation wavelength as in our case,
they obtained a growth rate of the most unstable mode of
7.10 Ssec-! ( ~1.7 days e-folding time). Yanai and Nitta
also determined the latitudinal structure of the unstable
mode as a function of, among other things, the horizontal
finite difference resolution. Further comparisons with
the gridpoint model are planned, but have not yet been
completed.

4.2 The baroclinic case

e s B e et M KSR G Yo s o R oty A SR o

The vertical shear in the baroclinic case was defined as

du

———n = — _1
d1ino 19 ms (4.5)

which gives the zonal winds shown in Figure (3.1a), which

also shows the temperature structure of the initial state.
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Linear diffusion (k=10%m?s~'), dry convective adjustment
(never called into action in the actual rhns) and surface
friction of the drag coefficient type, Cq = 0.02, were
the only '"physical'" effects included.

A 2000-km wave was integrated up to 6 days. As in the
barotropic case, some time is needed for the most unstable
mode to emerge from the initial perturbation, defined by
equation (4.1), in this case almost two days. The wave
then grows exponentially to day 6, when the integration
was stopped. The slope of the growth rate curve
corresponds to an e-folding time of about 2.8 days, see
Figure (4.3). The vertical structure of the wave number
1 Fourier components of meridional wind and temperature
are shown in Figure (4.4). The most obvious feature

is the shallowness of the wave, already at o =.5 the
temperature wave is virtually absent. The v-wave tilts
westward with height, about 50° between ¢ =.9 and

o =.3, with most of the tilt in the lowest layer.

At o =.1 there is hardly any v-wave left. The
temperature wave, on the other hand, tilts eastward with
height within the lowest layer, and is virtually absent
higher up.

These features agree well with observed short wave

disturbances on the polar front.

Song (1971) among many others, has investigated the
stability properties of different 'baroclinic" and
"parotropic-baroclinic' basic states. He used a
balanced, linearised model and , using the same
technique as Yanai and Nitta, he divided the latitudinal
and ve.,tical coordinates into finite difference
increments. The characteristics of small amplitude

wave perturbations were then determined with the eigen-

mode method. For a wave with the same dimensions as
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ours and with 15 vertical levels, he obtained an e-
folding time of about 3 days. The basic zonal flow used
by Song differed from ours, he used a climatological
profile as opposed to our equation (4.5). The vertical
structrue of Song's 2000-km wave has been normalised

and plotted as a dotted line in Figure (4.3). We can
see that the agreement is good, the differences are
certainly attributable to the higher vertical resolution

in Song's case.

S T ey b s s St T i, S (s S (D s S e e kit Bt S S e Ty Pt S v o L . s e .t SR

Two runs, one with a 2000-km wave and the other with a
4000-km wave will be described here. In both of them,
the meridional profile of the initial jet-stream was of
the cos’- type, equation (4.3). In the vertical

du/dlnc = -19ms™! ( Figure 3.1a) for the 4000-km wave,
while u varied '"climatologically" with sigma (Figure
3.1b) for the 2000-km wave.

Judging from the results of Section 4.1, the 4000-km
wave should be highly barotropically unstable,
particularly at the top level, ¢ é.l, where up was

44ms~! . Indeed the top level Wavé moves almost independ-
ently of the lower levels, where baroclinic development
takes place. Figure (4.5) shows the growth rates in this
case at the two levels o =.1 and o =.7. We can note

that neither of the waves grows exponentially during

any prolonged time, but there seems to be some
interaction between the growth rates. When the top

level wave grows most rapidly around day 3 to 4 the low

level wave is only exhibiting minimal growth. Around
day 6, when the top level wave grows very slowly, the
low level wave starts growing. At day 8 the situation
is again reversed. In Figure (4.6) the vertical
structure is displayed for days 3,5,7 and 9. These
figures confirm that in the lower half of the atmosphere
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a typical baroclinic disturbance, with backward tilt

of the wind field and forward tilt of the temperature
field has developed. At the top level one can only

note that the phase of the, large amplitude, v-wave is
not locked to the low level wave, but moves

independently with a phase speed determined solely by
u(o=,1) and B. The temperature perturbation at level

o=.1 does not grow in proportion to the wind perturbation.
In conclusion there seem to be two processes going on
simultaneously, with a fairly complicated flow as the

result.

The 2000-km wave on the other hand should be barotropically
stable in spite of the cosz—profile. Yanai and Nitta
show in their paper that with our dimensions of the jet,
there is a short wave cut-off of barotropic instability
somewhere around 2500 km. This case is thus in most
respects identical to that of Section 4.2. Since the
baroclinicity and the zonal flow reached all the way from
the channel centre to the walls in that case, the
unsatisfactory lateral boundary conditions mentioned in
Section 2, caused noise generation close to the walls

in that case, and the maps produced were contaminated
with small scale noise. With the cos?-jet, on the other
hand, conditions close to the walls are calm and the
~linear diffusion can kill the noise with only a small
diffusion coefficient.

This case was then integrated to 10 days, with the wave
number 1 v-component reaching a maximum amplitude around
day 6, Figure (4.7). Non-linear effects become noticeable
around day 4, and the wave is dampened after day 7. The
amplitude of the surface pressure wave shows the same
picture, Figure (4.8), with a maximum low around day 6
which subsequently fills out. A run without diffusion

up to day 8 is also plotted in this figure. In that case

the wave grows faster and reaches a deeper minimum already
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at day 5, whereafter the filling process is also more
rapid. '

Figure (4.9) shows the vertical structure of the 2000-km
wave at days 0, 3, 6 and 9. Day 3 is during the most
rapid growth phase, day 6 at the maximum amplitude, and
day 9 during the decay phase. We can notice that the
westward tilt with height is largest, about 50° between
0=.9 and 0=.3, during the rapid growth at day 3. Already
at the mature state, day 6, the tilt has decreased, and
during the decay at day 9 the wind wave is virtually
vertical. The wind wave amplitude shows two maxima,

one at 0=.9 and the other at o=.5, The temperature wave
tilts forward with height in the lower atmosphere, and

is again virtually absent above o0=.5.

Finally, some illustrations of the disturbance at its
maximum amplitude around day 6 are shown. Figures (4.10a),
(4.10b) and (4.10c) show the surface pressure, the

lowest level (0=.9) winds and the lowest level temperatures
respectively. Figure (4.10d) is a superposition of the
three previous maps. The relative vorticity at o =.9

is shown in Figure (4.11) and the divergence at o=.7

in Figure (4.12). We can see that a realistically looking
middle latitude cyclone has developed. Due to the short
wavelength chosen for the initial disturbance it is very
shallow, as has already been discussed. There is a

closed surface low with an extended trough stretching
towards south and south-west. The "900-mb" winds are
relatively geostrophic, but a certain amount of frictional
cross-isobar flow can be observed. The highest wind

speeds are observed in the north-westerlies behind the

low and the southerlies ahead of it. The "800-mb"
temperatures show a distinct warm sector protruding from
the south towards the centre of the low. There is a

zone of large temperature gradient to the north and east
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of the warm sector, and another sharp temperature
gradient behind it in the south-west., These zones

of large temperature gradients are connected with zones
of maximum relative vorticity, and they are thus typical
warm and cold fronts respectively. By subjective measure
the warm front appears to be somewhat sharper than the
cold front, é feature that has been noted in previous
numerical simulations of mid-latitude cyclones., Behind
the cold front there is a broad outflow of cold air, with
low level divergence. Low level convergence is observed
ahead of the warm front and in a narrow zone just at the
cold front. At the upper levels, 0=.5 and 0=,3 the
divergence pattern is reversed with divergence above the
warm front and convergence above the cold outflow,

This is of course the divergence distribution necessary
for the observed distribution of vertical velocities in a
mid-latitude cyclone. Within the limitations of 5§ vertical
levels, and, in particular, no moisture or latent heat
release and a very crude horizontal diffusion, the

cyclone is reassuringly realistic.
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Figure 4.1 Amplitude of wavenumber 1, v-wave.
Barotropic case, parabolic jet
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Figure 4.2 Amplitude of wavenumber 1, v-wave.

Barotropic case, cos®-jet.




Figure 4.3

Amplitude of wavenumber 1,
v-wave.o =,7,

Baroclinic case

Lx=2000 km

Amplitude

S L ‘ N : el % ‘ O
0 1 2 3 4 5 m/s -180

Figure 4.4 Amplitude and phase of wavenumber 1, v-wave (full line)
and T-wave (dashed line). Baroclinic case. The dotted
lines show the corresponding curves from Song's work.
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o 1 2 3 4 5 6 7 8 days

Figure 4.5 Amplitudes of wavenumber 1, v-wave at
o=,1 and o=.7. Barotropic-Baroclinic case
LX=4OOO km.




Figure 4.6

Amplitudes and
phases of wave-
number 1, v-wave
(full line) and
T-wave (dahsed).
Barotropic-
Baroclinic case,
LX=4OOO km

0 900
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T

10 .days

Figure 4.7 Amplitude of wavenumber 1, v-wave o=.,7
Barotropic-Baroclinic LX=2000 km

Figure 4.8 Amplitude of wavenumber 1, surface pressure.
Barotropic-Baroclinic case. .
Diffusion coefficient, k=0. (daghed) and

k=105 (full line).




Day 0

Day 3

Day 6

Figure 4.9 Amplitudes and
phases wavenumber 1,
v-wave (full line)
and T-wave (dashed)
Barotropic-Baro-
clinic LX=2000 km

Day 9




27~

9 £ep ‘=0 3®(D,) sanreroduwsy, oL % “Sta

o s miram e ¢

B L % S

"

-~
..\-.\\. IR e T T N

o - — 4 [
~— T e T o,
T s l..l.n\..\..lln e, S,

~
- - J.lnrr.: ™
g -

9 Aep

e (qu) sansssad eoevIang BOTL°vF 314

o
v“‘""

[ G

vy,

e s,

-,
,

e £ 83
Frmsnare s,

“C\‘ch&‘i

gy
hatd ﬁ...m%m@onv...

101 30 B,

~"”".‘*
P

el

...»f""".‘

N,



-28-

‘O 01y pu® q OL°¥

‘B QTP SoandIi IO coﬁpﬂwognmgzm POT°F °S1d

. . .
. . .
L
. . «
X
on.:r/..

\wx\ P, / .
NI <\
,,bf\Y\W\..N.PJ%\. AT

o N BT
- S
S N

4

I~

AN

9 Awep

6= 0 3B JO3D9A PUTM

P s o~ - - - a A A4 & P Id -« -
P P | Y A A N
& P 5. § H Y A R
#
& 3
'3 e e W Y N \. S e
;s .
A , b ) Vi J e
PR % ) 3 - —
& 3
J SRR T A A
P " % s
3

'.
._. s
e ™ N . A\ Yoo ol
g %o
y oo # %, =, 3, \ Q/. 3\.. 4 ’
» - N N \ \ % Y 4
ST e RS
o ¢ e Tl T ...#, LU N U U Y
A ot Y N N
o @ R N N S T Y W G
A e T
-ﬂr 4 h‘\ 4".( q~a-1-. ’ {-l -4 v’- -f J ",
.\ B N NN St NN N .,
L] / gskul\l -~ b3 R éﬂ ﬁ, L
;o F B N VL N N R Y
. T N T N L N N
go¥ s e o
A SN T Y W . A S
3 & . " “, ;/ O™ RN
ﬁ._ e o = e - x S & vm . 4 O ",
~” \ * U U Y S B,
& PO N U N\ T T U T N
e/ Vo ¥ w sw, &w L Y a
3 . TR TR S WU NN
A K Jf. - F ] LR Y
Y X P B O UL WA TENEN
N
RV YO P R
LIS A S S T
R
3y 'y 7Y .
. % . u o IR T S Nt
W N, . s )
P v
\ . ey ey e P 7 i A " X

-y e
S I N T S
" - - »

201°% "S81d

p
e e % 3 ]
~ N u s
o
IR U A
My
o

I

)

W e g e
oo Kot 000 e
.

""‘a
Ve By B, T Bl o g
B D, o,

4 %
A Yo
™~ R o e

1
[N

. . e g MMM
s ? A
L /w’*’e/’fr*’m%&\?\\



-29-

4

]

U7
i

1) at o=7,day 6

5
s

Pig.4.12 Divergence (10

og=59,day 6

ty (10_5s_1) at

ici

4,11 Vort

Fig.




-30-

5. Conclusions and further work

A channel version of the adiabatic part of the ECMWF
gridpoint model has been developed. A few test inte-
grations with low vertical resolution gave developments
very similar to those reported in theoretical works with
linearised model atmospheres. Both barotropically and
baroclinically unstable waves have been examined, and
they show many of the features observed in nature and
described in the literature. A simulation of a short
wavelength mid-latitude cyclone also produced realistic
results.

Two particular difficulties have appeared in connection

with the work. The method first chosen to produce initial
fields proved to be ill-conditioned and limited the initial
runs to low vertical resolution. This problem has now

been overcome by another method of initialisation. The
boundary conditions at the lateral walls in north and south
produce noise in the form of slow divergent waves,

generated close to the walls and moving perpendicularly into
the region. This problem is still not overcome,

The channel model is now being extended to include a physics
package, either the GFDL-package used in most of the
Centre's global integrations, or the package developed at
ECMWF. With the new version a series of high vertical
resolution experiments will be done. In addition to the
present monitoring of basic forecast parameters, energies

and energy conversions will also be studied.
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