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Background

As we have seen during these days the modelling and
simulation of the structure and evoluticn of the atmos-
pherirc boundary layer(ABL) is a formidable task. However,
we have also seen great progress in our understanding of
primarily turbulence mechanisms in controlling the boun-
dary layer structure. For obvious reasons meteorologists
are keen on taking advantage of all these new results
and apply them to their forecast problems. My two lec-
tures will deal with the problems involved in trying to
formulate more or less operational ABL-models. In some
areas very efficient parameterization schemes have been
developed while in others we are just at the beginning.
As far as I know at the present time no ABL-model is
operational. Of course two important-problems in this
connection are: 1) How do we couple our ABL-model to a
large-scale synoptic numerical prediction model? 2) What
kind of input data do we need to get reasonably good
forecasts over let say 24 h? Most simulations of the ABL
have been run from data with fairly high resolution in
the vertical. That same resolution is hardly possible in
an operational context and analysis and initialization
become problems of great importance.
I would like to discuss some of the models that exist
today and try to show how they have set out to solve
some of the problems involved.
Numerical ABL-models are timeconsuming because of their
great complexity. The following list gives a feeling for
what the computer-times are for some different kinds of
ABL-models.
1. Deardorff”s model (1974) 350 h for a 24 h forecast.
Lt=6s. 64.000 gridpoints.

CDC-7600
2. Pielkes model (1973) 6 h/24h forecast.
No physics.CDC-6600
3. White & Tapp (1976) 52 min/24h IBM 360/195
No physics.
4. Long & Shaffer (1975) 10-15m/24h IBM 360/195
"All" physics included.
5. l1-dimensional models ~20s/24h IBM 360/195

physics included.

2,3 and 4 have about the same number of gridpoints, i.e.
8400 (35 x 30 x 8). The one-dimensional models have of
the order 30 - 50 gridpoints in the vertical, i.e. more
vertical resolution than the 3-dimensional models listed
(except Deardorffs). It is obvious that only the last
two mode.s meet operational reauirements at the present
time. The design of efficient finite difference schemes
and parameterizations of the physical processes in the
ABL is therefore an urgent need in ABL-modelling. It
must also be noted that these times do not include ini-
tial data processing and analysis.

Physical and computational reguirements.

What are the phvsical processes we need to model in a
numerical ABL-model? Of course they are not much diffe-
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rent from what we need in a large-scale numerical pre-
diction model. However, since the ABL is governed and
forced by both the large-scale, non-stationary, synop-

tic flow as well as being controlled by local processes,
e.g. radiation, turbulence, topography, condensation

and exchanges through the surface the problem becomes

very complicated. The boundary layer depends locally on

a number of rather badly known external physical parame-
ters like the type of underlying surface giving varia-
tions in albedo, heat capacity and thermal diffusivity in
the soil. Soil water content is essential and must be pre-
dicted in some way. Figure 1 illustrates this schematical~
ly. Many of these processes are neglected in the otherwise
sophisticated simulation models of atmospheric turbulence
but must be included in an operational model.

How sensitive is a model to different assumptions and
parameterizations of various processes and physical
characteristics? Some experiments performed with mainly
1-d models give some answers. Of course these are defi-
netly not conclusive.

1. Turbulence is of course what generally defines the
boundary layer. All kinds of formulations from simple
K-theory to the "higher order closure" schemes are being
used today. A constant flux layer for lowest 50 m based

on Monin-Obukhov™s similarity theory is often introduced.
It seems that most of the problems arise either in very
stable conditions when turbulence is weak and patchy or in
very unstable conditions. K-theory is based on an assump-
tion of a stationary, horizontally homogenous ABL, condi-
tions which are practically never met in real life. Among
the "low-order schemes" it scems that the use of the tur-
bulent energy equation gives the best results with little
extra computational time as compared with K-theory (Clarke,
Yu (1975)).

2. Radiation is guite important especially, of course,

in the nocturnal boundary layer. Fairly fast routines
exist today based on emissivity functions for the whole
infrared spectral range. When condensation is present
(e.g. fog) the radiative properties of fog droplets should
be taken into account (Zdunkowski & Barr(1972) and Brown

& Roach(1976)).

3. Condensation is-also very important for the real life
Foundary layer. Clouds and fog often form in the ABL
changing the properties and structure considerably. Con-
densation also affects the turbulence. When condensation
is present account must also be taken of the settling of
fog or cloud drops (Brown & Roach (1976)). The different
effects of condensation have not been investigated in

the more sophisticated simulation ABL-models.

4., Soil heat and soll water

This must be included in order to be able to calculate

the lower boundary condition for temperature and moistu-
re. The physical constants, thermal conductivity and
diffusivity, vary with soil wmoisture content ard frem
place tc place. Initial temperature profiles in the

ground are almost never known. Fig. 2 and 3 show the
importance of knowing evaporation and soil constants in
predicting temperature. The model used is Shaffer & Long”s
1-d model described below.

5. Topography is strongly forcing the ABL. That is also
true for variations in roughness, Z _, as many theoretical
and experimental investigations have shown.{ And where is
the limit between cffecctive 24 and individual topographic
elements? )

6. Most models employ assumptions concerning the surface
layer or a K-formulation which are based on a stationary,
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Fig.2 Temperature at 2 m as a function of time for
different values of the ratio actual evaporation
to potential evaporation, predicted by the
one-dimensional version of Shaffer&Long”s model.

(from Shaffer&aLong,1973)
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from this ideal state and similarity theory is of little
value. The ABL is often baroclinic in contrast to assu-
med barotropy. Particular to most ld-models and 3d-models
with large horizontal grid distances (~50-100 km) is the
introduction of false inertial - diffusive oscillations
due to non-stationarity in the geostrophic wind. (Ching &
Businger, 1968). They can, however, be eliminated by means
of Gutman”s approach also described below. This problem
is also clearly associated with the problem of coupling
the ABL-mocdel to a limited area fine mesh model (LFM) for
the synoptic flow.

Conclusions are that it cannot be stressed enough how im-~
portant it is for theoretical modelers to treat real
boundary layers to a larger extent in order to come up
with more efficient parameterizations of the physical
processes in the ABL.

There are minimum requirements to the degree of which
physical processes should be introduced in ABL-models.
The combination of a given computer capacity and nume-
rical efficiency set the limit for the resolution, or
griddistance, of a particular model. However, it can be
argued that unless you can go down to a horizontal grid-
distance of the order 10 km it is hardly meaningful to
run a 3d-model. Barr & Kreitzberg (1975) argues that in

a 3d-model with As~100 km each gridpoint will essentially
behave as an isolated 1d-model. The only advantage is the
recalculation of the synoptic advections with improved
accuracy. We can also see this from the following sim-
plified scale analysis.

Gutmans apprcocach and scale analysis of the momentum
equation.

Gutman (1969) has suggested a method of treating the
equations of motion as applied to meso-scale problems.
What he does is to start from the Reynold”s stress equa-
tions and split up the mean motion into two components
i.e.

U=u+u', vVav+v', w=w+w' (1)
This kind of dividing the solution in a linear combi-
nation of two or more parts is often done in the solu-
tion of partial differential equations.
The advantage is that U and u' will satisfy different
boundary conditions, thereby simplifying the problem.
We will as an example treat the equation for the u-
component of the wind.
The starting equation is

-
-
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Here we have only retained the vertical stress component
in the form

i U
- |.\,,’ :\(: ,(-;z (3)
The - and ' notation is admittedly confusing. However,
we will assume averaging in the Reynold”s sense only when
a bar is applied to a product or second or higher moments.
In (1), however the bar and prime only denotes the two
parts of the variable. We now want to distinguish between
a large scale flow predicted by a LFM and a boundary
layer part which will be predicted by our ABL-model. We

then define the 1 by
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where K 1is the exchange coefficient of the large scale
model (or an equivalent formulation), i.e. we also set

— /
K=K+XK (Sa)

and in addition

R
P=P*T pecP (5b)
e=8+¢ e« 8 (5¢)

We now introduce (1) and (5) into (2) and subtract
eg. (4). We then get formally
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Next we define the following scales for the boundary
layer varibles (subscript b) and the large scale variables
{(subscript o)c

Variable BL(primed gquantities) Large-scale flow
W Nﬁﬁw\gg “73 waﬁw§§Z%J5
u,v Wy ~ o -v = W, M\O -4 =
¥ Lo ~ \D# e Ly ™~ \D [

z Eb ~ 0% v g@ ~ \bﬂ'\bﬁ Lad
p P, ~ 10" W/ mt (ap, ~ BRYASD'
p Sy ~ \(;3 kﬁ/wf Ly v ~\‘.bi/M3

K Ky ™~ o ‘5*2’/5 K§N iw}/s

(K varies, however, considerably in the vertical in the
BL itself.)
-1

$~ \o ' S
Now non-dimensionalizing eq (6) gives
[ / — ; ’ !
f{?%”uié *’%(W-&V}V% «;—:z WV\A.,“%’ (w-ﬂ\ow)ﬁﬂ%{«?w?—i
/
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Here the horizcntal and vertical derivatives have been
non=dimensionalized with the scales bg Lo’ Eb and 5

over whi:ch the variables vary with the orders of maqniﬂ
tude given in the table.
We can define the following non-dimensional numbers

-
1. :LQLSS ~ 1p Large scale Rossby number

I
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2.IloL:.EE.AJ\&;\o Boundary layer Rossby number,

Ly depending upon the horizontal
scale Lb.
3.R Wo ° B tical R
. DbNe€t= ~ \o L, vertica o
ol ‘
4‘.E°L»mrt=;N; ~ 1D Vertical Ro
. ) S oox d d
5 Pb/é.Lb{-q°~\0~\D gi Eressure term, also depending
b‘
6. Y \ l Turbulence in the BL
ag 0 .
b
7. Wy o Turbulent interaction between
L&— ~ \p large scale flow and the ABL
b

8. Coriolis term ~10°=1

We see that terms 6. and 8. are the largest ones. Not
surprising of course. Term 1. and 4. are 2 orders of )
magnitude less than 6. and can be neglected in the first
approximation. 3. is estimated on the assumption that we
disregard organized convection. Still 3. and 7. might be
important. The two terms 2. and 5. are coupled in magni-
tudes to the horizontal scale Lp in the boundary layer.
Let us now look at this term from the point of view of
which smallest scale we actually can resolve in a model
instead of the scale expected for typical boundary layer
flows.

If the resolvable scale is

1

Lbjlooo km (106m) then term 2 & 5~10 ° (griddistance~300km)
Lb._ loo km (105) " " " 11 |l.‘,loo (ll . 1] ~ 30m)
Lb~ lo m (104) " ¥t n " l'~lol (ll ” -~ 3m)

We see that we have to go down to scales of the order of
10 km to get these terms of equal magnitude as the diffu-
sion term. This is true in the Ekman layer but even more
true of course in the surface layer. On the other hand

in a 3d-model with As~100 km this term must be at least
one order of magnitude less than the diffusion term. This
means that such a model probably will react as a series
of one-dimensional models. The conclusions can also be
formulated: If you can afford a griddistance of 10 _km go
3 dimensional, otherwise stay one-dimensional!
One-dimensional models of the "Gutman" kind

Carrying out the approximations based on the scale analysis
above in order to get a one-dimensional model gives in
its simpliest form

e O A ST L T
CC IR AR “02_3*'57:._\"?2 (8)

Assuming that the large-scale flow is basically nontur-
bulent and using u = 4 + u' we get

(9)

L N TV PP
A . & ' o c |
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Egq. (9) corresponds to the non-stationary, horizontally
homogenous Ekman equations. The thermodynamic equation
and a moisture conservation eguation can be derived
similarely The v‘ - equation takes the form

/

.__4,&\,&4_,..3,_@: 2 ’\(3" (10)
One striking property with (9)-(10) is that from this
system we have filtered out the class of inertial-diffu-
sive oscillations mentioned earlier. This is simply
because the geostrophic wind is now absent from the
equations. This is a very nice advantage of egs. (9)(10).
Finite difference schemes.

. Most problems in boundary layer meteorology reduce to
solving an equatlon of the type

dQ N

S5 (11)
where K 1is a diffusion coefficient and F represents
lower order terms. Long (1975) has given a very good
review of more and less wellknown finite difference
approximations to (11) in terms of a "computational®
diffusion coefficient . This was actually first pre-
sented in this room in 1573 In the same paper he also
discusses the properties of the finite difference approx-

imations used in Shaffer & Long s model for the horizontal
advection terms. Let us study (11} in the form

e \v<~9” < S (12)
where K' = %% and assume K and K° to be constant.

We define the amplification factor of (12) for a finite
difference approximation to be g, if (12) can be written
in the form

YH!
{ *r3<i {13}

Then the computahlonal diffusion coefficient will be
given by

-
-, bt
e = 17| (14)
or
| 5
Kem = 5o 72l (15)

Two finite difference schemes are of particular interest
since they have been widely used in recent years:
1. Dufort-rFrankel

el W |

G, - Q \‘< Mg - / wnel wne=l
—_-Hlbt e (@ c‘%—&g,‘” - L&E}; ,4?@: > (16)
with g= T COJ}'BZ«"“ N =H ’mz")\"“fb when K'=0
< Ak i+ 2q L
T = sy =Fourier number
Az ®
if o0>1/2 g has an imaginary part and (16) creates a
false computational "shear”, ok,

22
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2. Crank-Nicolson in its generalized form
vl

n
QT =BT o ity P
150 (e - (- OvR)) @n

is stable if >\/2 |
and stable for /4.,4‘/2 doTg L0 =20

Figure 4. shows the behavior of K_/K for several different
schemes as a function of wave lendgth. 0=0.25 means that
the corresponding explicit scheme is stable. Crank-~Nicolson
and Dufort & Frankel are about the same. Fig. 5 shows the
ratio when 0=1.0 and the difference between Dufort-Frankel
and Crank-Nicolson becomes more pronounced. 0=1.0 as
compared to 1=0.25 means a 4 times longer timestep if K
and Az are constant. Figure 6 finally shows a comparison
of RMSE for temperature from a simple integration of the
thermal diffusion equation with a diurnally varying lower
boundary condition. Level spacing is 50 m and an OBrien
K-profile has been used. Timestep is one hour! The com-
parison is made with a high-resolution run.

The comparison between Crank-Nicolson and Dufort-Frankel
shows that Crank-Nicolson is superior when increasing the
timestep (i.e. for larger Fourier numbers). The pushing

of the weight u~+1 prevents almost entirely non-linear
instability. For.many nodels the Crank-Nicolson scheme
seems to Le the natural choice. When u=1 it is also cal-
led Laasonens schere.

Horizontal finite differences,.

In the three-~dimensional models also horizontal finite
differences must be introduced for the advection terms.

No subject has been studied so well as this one in NWP.
However, there are other possibilities when coupling
advection toimplicit methods. The Galerkin approximation
method has led to slightly different formulations. An
example is the "Chapeau" functions, or functions of local
support, Suggested by Bradley and discussed in Long &
Shaffer (1975).

One-dimensional models.

In this section we will discuss the structure of some one-
dimensional models. Some results from computations will
also be shown. A special role in ABL-modeling has been
played by the Wangara-data collected by Clarke et. al.
(1971) . Since Deardorff”s simulation of pay 33 many
modelers have used data for that day and Deardorff-”s
results have become more or less a standard to compare
with. If you are "better" than Deardorff with less com-
putational time - good. But not all testing of models

is done on Day 33. One must also keep in mind that that day
has been chosen to eliminate as much as possible the
effect ¢f advection. The ABL is dry and no condensation
occurs. flayes is in a very flat area suggesting rather
homogeneous conditions. The simulation of Day 33 is a
check on the ability of a model to simulate the diurnal
course in the ABL, not its general capability in ABL
prediction. Of course a basic reguirement on any model
is the correct handling of the diurnal cycle under ideal
conditions. However, even Day 33 has shown unexpected
problems in a badly known geostrophic wind. Temperature
advections and large scale vertical motion important for
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for several diffusion schemes. (Long 1975)
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the development of the capping inversion of the ABL are
present. In the paper by Yamada and Mellor (1975) is
presented an extensive simulation of both Day 33 and 34
of the Wangara-data trying to take into account some of
these processes. The model is based on a simplification
of a "higher order scheme".

a) Yamada & Mellor”s model

In this model is used the "level 3 model” for turbulence

in the ABL from Mellor and Yamada (1974).The prognostic
equations are

Wt:%v~““é+-1\ wwi} (18)
ofurtnag VW (29)
R N A O~ R N )
= R lw (2

Here r is mixing ratio, %, potential virtual temperature
and ¢ the flux divergence of longwave radiation. In

the lével 3 model for turbulence the turbulent kinetic
energy, temperature variance, humidity variance and
correlatlons are forecast by means of

. — 3
P _2 A ACT ff?y 23
'57«[% ?z('s 5}51 )7 T 5y - VW Spepewey - ~  (22)
e 2 A
erel/1~'gm4w'+w’)
- 1 —-.3 —_ “'—’
& s 8. ok &
%(l w(\a z.(—;’:u’—“‘“gvs,—zf* = (23)
/\Z,
o r__f) N e L
e\ 2 7.2,'7%02_’.,_‘2:)1”“?53_“97’7\“& (24)
primed quantities are turbulent deviations from the mean,
unprimed variables. X1, 3, Ay and A are length scales
proportional to one length , %, defined by a"Blackadar"
relation < A
Quz;\%._im , Ly=o.1 e (25)
Ve Ofm 142

This seems to be the weakest point in the model. ! reaches
a maximum value of 80 m where it can be argued that 1 is

of the order 500 m instead in the middle part of the
unstable ABL.

From (22)-(24) plus the relation for (%' _r') (left out
here) one can derive diagnosi+%,relatl for the stress
tensor and the correlations Wegy,v 6, ;.uev,\&ri ...... oo

In Yamada & Mellor”s paper they are further simplified

to yield relations between an eddy exchange coefficient
and u'w' etc.

Finite dlfference approximations

The vertical coordinate 2z is transformed to a new one
by means of

(26)
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This is frequently done nowadays. 80 equidistant points

in ¢ are used between the ground and 2000 m. The time
integration is done by means of Laasonen”s scheme descri-
bed above. At is 60 s.

Boundary conditions and initial data

This model does not use an independent surface temperature
calculation but instead uses the Screen level (1l.2m)
temperature as a lower boundary condition. A logarithmic
profile is used for tge lcwer boundary condition for the

wind. At 2z=2000 m .'2- 0 and
vcﬁ .O\I - OQV -
2 3.!. =5 :)-2‘_ =z O.NMM K

Initial data are taken from Day 33 at 0900 LT.
Variation of geostrophic wind and vertical velocity
Y & M have taken a lot of pain in deducing vertical
profiles of the geostrophic wind and vertical velocity,
and their variation in time.
This is important since the wind profilesare sensitive to
the specification of W in Ekman type models of this
kind. The geostrophic wind, however, is badly known and
the wind at 2000 m is far from the derived geostrophic
one. The same is also true for w. Fig. 7 and 8 show the
derived time-cross sections of Ug and W. Fig. 9 through
11 show the results of the 48-h integration of T,6 and
the u-component of the wind. The diurnal cycle in T is
well depicted. However, the night inversion is toelow.
The daytime 6 -profiles show good agreement with the
observed ones. However, the inversion height seems to
be toelow in this case too, e.g. 12 o”"clock. The wind is
realistically predicted and partly the strong forcing by
the geostrophic wind causes a nocturnal jet to form around
0130. Fig. 12 shows the evolution of boundary layer height.
It is slightly toolow during the day. The upper inversion
is strongly affected by the imposed large scale vertical
velocities when turbulence is absent.
This very complete simulation raises many questions
concerning data requirements for ABL-models. In this
simulation we already know the result of the surface
energy balance by means of the screen level temperature.
The results are sensitive to two badly known variables
Vg and W. The nocturnal jet can be moved around practi-
cally at free will by changing the variation of the
geostrophic wind as pointed out by Paul Long.
Gutman”s model
In Speranskiy, Lykosov and Gutman (1975) is reported a
simulation of O0“Neill data by the latest version of
Gutman”s model, which is supposed to be going to be used
operationally in Novosibirsk in the USSR.
The model equations are derived in the way described
earlier with some modifications to include effects of a
sloping underlying surface and effects of advection of
large scale properties by the boundary layer wind, ¥V'.

/
duw > _oul

- 5,2 /
-k ) v (Eeeond) (27)

__._—2_" >_—- __." 7 ____/7 ’A’.,‘ 5
FDC-BLLK’()Z‘) ;"“'*'»«J(EE)*O.L@\%/ (28)
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where b 1is the turbulent energy, =%(G;2+;Tz+;12),ab=0°073

and a,=0.046. The notation is the same as above. 6 is
potengial temperature. § is a function of x and y, S(x,y),
describing the topography suitably smoothed. The vertical
coordinate z,; is transformed according to z=z,-§(X,y)

The underlined terms depend on background varidbles and
must be given.

For turbulence closugre the following assumptions are
made Z.

( Xz =,

W= [ A W e
) , (32)
Zo\\b \)\Oo

where k 1s Von Kermans constant.

~ oy Y 34

2 R = = A, Al e_i {(33)

]~ 5 Tz Toely <“7;z.

s T

Boundary conditions

at z=0: u’=-u vi=ey Ke—=0

g=ndg where n 1is a specified relative
humidity.
A surface energy balance is used to calculate the surface
temperature based on a simplified treatment of incoming
and outgoing radiation at the surface (Albrecht”s and
Brunt”s relations). No radiation in the ABL is present.

Z=H: u' =v'=0'"=qg' =b=20

In order to calculate the energy balance the heat flux
from the ground is needed. Soil temperature is predicted
by 2

Xl s ol

2e S5y (35)

where KS is thermal diffusivity.

Eq. (32) can be written

e b (36)

. e ( ! ¥£.+-ZG
AN \;‘gﬁ‘) (37)

g



-354-~

where (36) is the usual closure assumption. This speci-
fication of £ 1is probably the weakest point of the
model because (37) relates turbulence at one level to
what has happened below, which is not the case in, for
example, stable conditions.

Simulation of O"Neill data 24-25 August 1953,

+Without going into all the details of specifying the
constants, parameters and initial data we will present
results from a 48 h simulation starting 1200 LT 24 August.
Only the second day is shown below. Gutman reports on 4
experiments where gradually topography and heat advection
are taken into account. Advective effects seem to be of
the greatest importance. Figure 13 shows observed and
predicted temperatures (a,b) and wind velocity (c,d). On
the whole this is a fairly good simulation even if the
pictures are rather small and difficult to compare. The
effect of permitting the background wind to vary in time
and possessing avertical shear is also evident from the
other reported experiments in this paper.

Bodin”s model

Bodin (1976) uses a flat surface in (27) and (28). How-
ever, the thermodynamic equation looks different because
of the inclusion of condensation processes. In this case
it is derived from the conservation of static energy and
takes on the form

?,I = RIRRS Ldys . | SA
+ +V] ul(KH(> +T, - upaL ‘.3) Crit Nt (38)
where is a counter gradient heat flux correction
given by eardorff (1973) /
— V2
' s .. )
g = telwe), UL (W, h) ) (39)

(w'O')s is the surface heat flux and h the height of
the ABL.
If (We') 20 ¥ cg=0
Mn:sture 1s predlcted by
N e
; 4
'tq.w% (3(,)2-')4—05 (40)
and turbulent energy by
g B L_‘\_‘}s v P :)__\.7
2o (s (3 52 T Eg)) T (k32 ) - “D
FA
o.,bgy
'y

-

V2.
K=~Q(&ZBB cup =) 38 qb:LZ
The bound iry conditions are similar to Gutman”s.
For the mixing length Deardorff has suggested the follow-

n

form for £ in unstable conditions,
(ﬂ( ')>0'

(1 + b 2?:‘%2 ) ‘

12y 2

_\_.::._L-——“L" ' l

X 2 h “a.nn YJEIE&)\ = Sofk3>

[\
N i (42)
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Fig.13

Observed and predicted

{(left to right) temperature

and windspeed time-height

cross sections from the O“Neill
data,24 August,1200 hours
through 25 August,1200 hours.
{(from Speranskiy,Lykosov

and Gutman,1975)

2000 -

Fig.l14 a) Determination of

boundary layer height in

Bodin“s model from the heat
P flux profile.

Fig.14 b) Predicted heat flux profiles
for Day 33 of the Wangara data
with Bodin”s model.
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I U .
where T Rmzzy Ak (43)

and where h 1is the height of the ABL determined as
shown in fig. 14 where also the form of £ 1is shown.

co——————

When (w'0')_ < 0 h is taken as 0.06.u,/|f| and
S—

£ = EN from (43).

This gives a smooth interpolation of 2 through Lo+w:
where LO is the surface Monin-Obukov length.

Numerical solution
A new coordinate ¢ is introduced by means of

I= A Qe 2o 40 LA, (44)
Z,
where A;,A; and A; are suitably chosen constants.
Laasonens scheme is used in time and centered second
order finite differences in the vertical coordinate z.
In the simulations 35 points have been used between the
surface and 2000 m. The timestep has been 2 minutes. The
vertical grid is staggered.

The surface temperature is going to be calculated from

a prognostic equation.

C*;;-<kahﬁgl~m53fng#§§+&;Zo _

_x\_ovno *-?:;“'WBZ:Q (45)

where C, is a mean value of the specific heat in the
ground and the air.

For the soil temperature eq. (35) is solved. The lower
boundary condition for humidity gq(z=0) will be computed
from the ratio of actual evaporation to potential eva-
poration

E/Ep = f(w) (46)

where f(w) is a function of soil water content, calcula-
ted with a special soil water model.

The present model has been used to simulate Day 33 of

the Wangara data with a prescribed surface temperature

and no radiative flux divergence. The background variables
have been varied in time but without vertical shears.
Figure 15 shows the evolution of the boundary layer height,
h, predicted by the model starting from initial data at
0900 LT. Fig. 16 shows vertical temperature profiles
during the day and the night with verification. The day-
time profiles seems to be about one degree to cold while
the nocturnal profiles are very good except above the
mixed layer where radiative and advective effects are
strong. Fig. 17 shows the predicted u-component of the
wind (compare fig. 11). A nocturnal jet develops, but
about 2 1/2 h later than observed. However, in this si-
mulation noshear in the background wind is present, The
model is now being tested with a complete radiation calcu-
lation and surface energy treatment. The different for-
mulation of ¢ and the use of the turbulent energy equation
allow the unstable boundary layer to grow in a realistic
way.
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ditions in Bodih”s model as suggested

by Deardorff.

ghm Wengero date Day 33+34

- 140D

1 T\ <-observed beundary loyer helght
]

la~predicted boundery toyer haight

&

2% 03 08 03

R
=
@
=3
o

Fig.15 Predicted boundary layer height by Bodin’s

model.Surface temperature variation pre-
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t,3-dimensional models

T When saying there does not exist any operational ABL-
model that is not entirely true. The U.S.AF. at AFGWC
is running a 3-dimensional ABL-model operationally. That
model was developed by Joe Gerrity (1967) in a pioneering
attempt to predict low ceiling and cloudiness. That model
was implemented in the U.S.AF. by Hadeen (1970). The
model has also been run experimentally at NMC in order
to evaluate its prognostic potential as reported by
Poliger (1974).
However, even if the model has a positive skill in pre-
dicting for example type of precipitation its performance
was not regarded as good enough to motivate its running
operationally. In fact NMC finished the work with this
model in favor of the 3-dimensional ABL-model being
developed at TDL (Techniques development laboratory) by
Wilson Shaffer & Paul Long, the latter presently with
Du Pont in South Carolina.
It can be good to shortly review Gerrity”s model since
many features in his model have been used by others. One
prime requirement on a 3-dimensional model is of course
fast parameterization techniques of for example turbulence.
All of the above discussed methods, fast as they are, are
to slow to be able to be used in a 3-d model.
A natural way to go about is to eliminate the computations
in the lowest 50 m by the introduction of a constant flux
layer. For this end there exists the similarity theory
of Monin-Obukov under conditions of stationarity and
horizontal homogeneity. The basic part of the tgeory are
the non-dimensiocnal, universal functions Qm’¢n'¢c of the
argument z/L where L is the Monin-Obukov length. “The
surface layer relations can then be given by

Wl ol = 4 lwy 47
A A ?V"'v " l/:'“ / ( )
- ?6 f z
I O 7 dDh -~ T (48)
pl' ar - e
,4*.2—‘4‘2 $ y e ) (49)
L= T Monin-Obukov length.
R 91— ——— T
Hoy = "-;/7—3 l Se- ~ wa [0, e T WE /[ re

The functions ¢, (z/L) have been determined in several
observational programs. The ones mostly accepted nowadays
are by Businger et. al., (1971) from the Kansas field
program in 1968. (47)-(49) can be integrated through the
surface Tayer and the fluxes depend on the boundary values
at the surface and the top of the surface layer. They

form a very fast and expedient way of calculating surface
fluxes and they also give a corresponding eddy exchange
coefficient for matching with the overlaying Ekman layer.
Gerrity did not have these functions available in 1967

but used instead a semi-empirical formulation of K which
also makes it possible to integrate the surface layer
relations. On top of the surface layer he used an Ekman
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layer for the wind, which was calculated diagnostically
from a constant K being the same as at the top of the
surface layer.

T and q are predicted by rate equations including non-
adiabatic effects and turbulence. The forecast equations
were descretized over an area containing 29 x 27 grid-
points with a separation of 190.5 km, the griddistance of
NMC”s LFM. Vertically the ABL is divided into 7 layers
from the ground to 1600 m where the upper boundary con-=
dition on Vg,T and g are supplied from the LFM.

For finite differences Gerrity used Crank-Nicolson for
the diffusion and vertical advection terms. For the hori-
zontal advection terms upstream differences were used.
This allowed a time step of At=15 minutes, longer than
in any of the earlier models described. A weak point in
Gerritys model was the very simple treatment of surface
temperature and moisture at the lower boundary. Radiation
was also simulated in a simple climatological way to keep
down the time of integration.

Shaffer & Long”s work means a considerable extension of
Gerrity”s model with a more refined and complete treat-
ment of the physics in the ABL. But before we start the
discussion about Shaffer & Long” s model it should be
mentioned another model by Padro (1974) developed in
Canada. His model is something half way between Gerrity
and Shaffer & Long. He uses Businger”s surface relations
and extends the corresponding K through the Ekman layer
by means of a third order O"Brien interpolation polyno-
mial. The winds in the Ekman layer are calculated diagnos-
tically from steady state Ekman equations with a variable
K{z). As is 127 km and At=30 minutes. Both Gerrity”s and
Padro”™s models utilize a terrain following height coordi-
nate.

Shaffer & Long s model (1973, 1975a, 1975b).

We will discuss this model at some length to study the
way parameterization problems can be solved. The objec-
tive is to forecast mesoscale processes in the ABL to
serve as guidance for local severe weather forecasting

as well as regional air pollution dispersion prediction.
Maybe it wouldn”t be necessary to repeat again the
equation of motions used by Shaffer & Long. However, for
the sake of completeness we write them down . In this
case they are written in complex form in order to make
use of the complex arithmetic on IBM 360/195,

—~
27T ~ D ( TT N ~
i w\y"‘;—r:‘.“ K" T e 1
Te o\ "1z - (50)
O\ N SW cr T
2 T A S S RV AW (51)
_ . -~ . ~1 .
where \:3-‘:“'-{,‘\.\3:'be A SR VAR 35 VAN

-~

Wr=q F, =G Sy

Fig. 18 shows schematically the vertical structure of

the model. In the 50 m thick surface or Prandtl layer

the relations (47)-(49) are used. The ¢:s5 due to Businger
et. al. have been used, i.e.
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Unstable case:

Cb(}: ¢T= o_-m(p-‘\-' ) (52)
-y
— .-'__Z__\~ )
. z
Mildly stable: _$%=w¢%_= 0.4 +4.% = (54)
2z
b=\ T (55)

The advantage with the Businger relations is that they
can easily be integrated. From the integrated form and
the boundary condition u,v,0 and g u,,0,.q9, and L
can be calculated. With the fluxes given Km and KT in
the surface layer may be computed from

W= ru,z/4_(Z/0) (56)
Wn= Ri2/ :\;M(z/L\) . (57)
with the aid of K X and —2 an O”Brien (1970)

cubic diffusion coeff?cient profgfe is used. It gives
a maximum of K in the Ekman layer but is independent
of local stability.

= \(v..*‘L"“)(Kw Ky +(2- h\[ ) I(Kk-—\ﬂq)}) (58)

where H is the top of the boundary (or the height where
K takes on the specified value K1 see below), h is the
top of the surface layer.

Surface energy balance

The surface temperature depends on the sum of the fluxes
at the surface. Shaffer & Long make use of a surface
energy balance equation

- 657721}5 +Rajuer =D (59)
where the two first terms are the surface heat flux and
flux of latent energy respectively from the definition

of 0, and q,. In order to close the system some assumption
is needed for the surface value of q (z=0). In the model
the so called Halstead parameter

B/ _ Fm-Ptzs0
H= /L$>_ 'i;f_ﬁi'_géaturated) (60)

is set equal to a constant < 1. From that g, can easily
be calculated. (compare eq. (46) in which H=f(w) is
allowed to vary as a function of soil water content, w).
In (59) the soil heat flux must also be given. It is
usually calculated from a solution of soil temperature
in the upper 1 m of the ground by means of eq. (35).
However, initial profiles of Ts are hardly ever known

Fu 9 + PL‘JH*‘**

e
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and the thermal diffusivity is a badly known quantity.

In view of these difficulties Shaffer & Long have derived
a very fast method for the calculation of surface soil
heat fluxes. With the boundary conditions

T
s

TS = Tsfc z = 0

and a constant K_ the solution for surface temperature
T can be writgen (see for example Carslaw & Jaeger
(§§§9) for this standard solution of eq. (35)).

_ | T Gy

constant Z + @

xs%c:igﬁzzé’i—QCEXQ A
)f (‘E,—-—U-
L\ TlEow s, .
+ 7\S T N

where A_ is the thermal conductivity, T (z) the initial
soil temperature profile. F(t) is the surface heat flux
at time t. With a simple choice of T {(z), a linear pro-
file for example, the first integral can easily be inte-
grated. The second integral can be approximated by a sum
of fluxes by using the trapezoidal method for example.

Eg. (61} can then be solved for F(t) as a function of a
weighted sum of the previous fluxes and the actual surface
temperature. The next flux at time step F(t+At) is a
linear combination of the previous ones. Bodin (1974) has
compared this method with a numerical, high resolution
solution of eq. (35) with a varying surface temperature.
Eg. (61) is more than sufficient for most applications!
Radiation

The model has a complete treatment of long wave and short
wave radiation. This will not be discussed in detail here.
However, the long wave radiation subroutine uses emissi-
vity functions derived by Kuhn (1963), the same for the
whole water vapor, spectral range. Kondratyev (1969)
emissivities for CO; are used. The computation takes into
account the presence of clouds in the ABL. That is true
for the shortwave radiation computation as well. But also
high and middle high clouds are allowed to absorb and
reflect solar radiation. Fig. 19 shows this schematically.
Finite differences

Shaffer & Long also work with a terrain following co-
ordinate =z which is transformed to z' by

' ~ b -
z = Al (Ve 550kl (62)

where h 1is the top of the surface layer.

S & L then use 10 equidistant levels from the ground to
2000 m, the first one being at the top of the 50 m thick
surface layer. Centered differences are used in the
vertical and Laascnens scheme in time. For the horizontal
advection terms so called "chapeau"-functions suggested
by James Bradley, are used. In the x-direction they look

. s . .
e Q—._'.Ki ,*;_K/ Al £

-
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Fig.19 a) Treatment of solar radiation in Shaffer
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ej(x) is linearly increasing and decreasing if
¥'é[-*ﬂ—‘)xj%1]
e;(x) = 0 if ARy

For example if (63) is introduced in the advection
equation

" (63)

22 o _
_;‘E‘@-C‘Cx—-o
)

by means of fgcxwt\ — ff ‘&j[ﬁﬁ €?;Lﬁ)
* ~

Conotn
- g

and integrated over the domain we get

Lo 7 C iy
A R R R v~ L D R

Tt -] ] ]

This is a Galerkin approximation since

where R is the error of the finite difference approxi-
mation.

Eq. (64) can then be solved in different ways, for example
by Laasonen”s method as in this case. An analysis of this
scheme shows that phase and group velocity are very well
handled down to 3Ax. In the 3-dimensional case a split-
ting technique is used.

Simulations

Shaffer & Long have done one-dimensional simulations of
the Wangara data (Day 39,32) and the 0O“Neill data.

(5th period) and also the sensitivity tests shown above.
Furthermore Tsan Yu (1975) has tested the model with 13
different K-formulations with different stability depen-
dence and one case with the turbulent energy equation
above the surface layer. Fig. 20 shows an example of
predicted temperature ard wind fcr Day 39 of the wangara
data.

3d-version

Plans are to run the model on a 35 x 30 horizontal grid
with 8 levels in the vertical. That would mean a Ax=
Ay=80 km which allows a time step of at=!, h. Jim Kemper
has been working on the initialization and analysis
package for the model. The region covered and the details
of the topography are shown in fig. 21. The initialization
problem has turned to be more difficult than expected. The
continuity equation is not carried as a prognostic
equation. Pressure is calculated diagnostically by means
of the hydrostatic balance from the upper boundary con-
dition from the LFM. The model doesn”t allow gravity wave
adjustment as a means for adjusting to "geostrophic!
balance. This means that most of the energy go into local
inertiai-diffusive oscillations discussed above. It

seems that some sort of variational technique & la Sasaki
must be utilized in analysing the wind field with the
equations of motion as a weak constraint. However, this
is still an unsolved problem.

Pielke”s and Tapp & White“ s models

These models are actually not intended to be operational
models, at least not in the nearest future. Both are
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models intended to be used in sea-breeze simulations.
There are, however, some interesting points in their
models and for the sake of completeness they should

be mentioned.

Pielkes model

The latest development of Pielkes model has been reported
on in Pielke and Mahrer (1975). The basic structure of
the model is essentially the same as Shaffer & Long~s
model. In the paper from 1975 they have made one important
improvement. In the O"Brien K-profile K 1is set to zero
at some upper level, for example 2000 m, the top of model.
This formulation is uncapable of describing the observed
and theoretically modelled growth of the undisturbed
convective boundary layer. In P & M they introduce a rate
equation for the height of the ABL suggested by Deardorff
(1974), neglecting the influences of clouds.

. 3 32 2
el 2005 : - -L
)--\-EL:—VV":/AOW\N*— 4 1\\1* L PR ._‘._3‘4,* yv} (65)
ro Ve s
e oWy
00" .
where 733 is the lapse rate above the capping inversion

Y
\’\J‘ 1/— rl"“ pgkhr/ 97 ; 3

Wy, = vertical velocity at the inversion level.

If we now instead apply the top of the O"Brien profile at
z=h this simple model is significantly improved as shown
in the simulation by P & M of the day 33 Wangara data.
Fig. 22 shows the predicted O-profiles for 12,15,18 o"clock
with a one-dimensional version of the model run with 31
levels in the vertical. As can be seen a simple turbulence
parameterization as this is then fully capable of depic-
ting the evolution of the unstable boundary layer. The
same procedure with a rate equation has now also been
adopted by Shaffer and collaborators. One must keep in
mind that this method is considerably faster than any
other method. The same equation can be extended to the
nocturnal ABL. However, the nocturnal ABL is much more
difficult to treat than the unstable ABL because of the
presence of patchy, breaking gravity wave induced tur-
bulence.

Tapp & White”s model

This is described in a recent paper, Tapp & White (1976).
The main difference from the other models is that T & W's
model is non-hydrostatic and allow sound waves as solu-
tions of the equations. T & W discuss at some length the
implications of the presence of the soundwaves and the
finite difference scheme developed for the model. In
order to allow a reasonably lona time step they treat

the equations semi-implicity. But even by doing so they
have to use a timestep as short as 60 seconds, which is
hardly long enough in an operational context where
additional physical parameterizations are needed. But as
a 3-dimensional simulation model it has certain advantages.
They have also compared the performance of the model with
Pielke s model, Pielke (1973). The differences between
the hydrostatic and non-hydrostatic model seem to be
small when the models are run with similar resolution.
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Fig.21 Topography in the region of the U.85.A.
used in Shafferé&lLong’s 3-dimensional model.
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Conclusions and remaining problems

™ We can clearly see that we are at the verge of a break-

through in numerical ABL-models. In the present review

I have showed you examples of some models people are
working with today. The 1list is not complete, however.
Other interesting modelling attempts are carried out by
for example Kaplan & Paine (1974) and Geleyn (1975) and
others. But I have wanted to concentrate on some charac-
teristic problems of "operational" models and how they
might be solved. We have seen that in a one-dimensional
model one can afford much more realistic parameterizations
of basic physical processes as turbulence in the ABL at
the expense of horizontal variation of topography, rough-
ness and heat and moisture properties of the underlying
surface. In the 3-dimensional models on the other hand
one has to sacrifice a more refined turbulence descrip-
tion in favor of a simplified one. We have seen that
there exist fast and fairly accurate methods for this end.
One drawback is that most of these methods, Monin-Obukhov
similarity, have been developed under rather strict premi-
ses of stationarity and horizontal homogeneity. Evidence
is available showing that similarity breaks down in a
number of situations in the''real life'"boundary layer. It
is therefore clear that a continued research effort by
theoreticians and "higher order scheme" modelers is needed
to provide improved methods for turbulence parameteriza-
tions, including physical processes in the real ABL and
especially under stable stratification.

The other, virtually untouched, problem is about data
requirements, analysis and initialization of operational
boundary layer models. We have already mentioned the
problems with the false inertial-diffusive oscillations.
But we have very little experience of what kind of data we
need for running an ABL-model with at least some skill.
Very practical problems concern the collecting of surface
characteristics data. We need Z_, thermal diffusivity

and thermal conductivity as well as moisture content of
the ground over fairly large areas. But we do not need
them as point values but as effective areal values over
grid squares where we can have a mixture of different
vegetations and soil types. The best thing to do is
probably to prepare magnetic tapes with land-use data.
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