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1. High-order-closure models

In a turbulent layer, instantaneous velocity and temparature are
rapidly ;arying functions of position and time. It is then necessary, for
practical and theoretical reasqns, to average these parameters, that is to
consider the equations for the mean parameters. But theories of turbulence
constructed by means of these equations give rise to the closure problem. In
these equations the advection terms are nonlinear in the second order and
consequently the evolution of an ith order correlation will involve (i+1)th
order correlations. For example, second order terms such as the HReynolds stresses
will appear in the equation for the rate of change of the mean velocity, and the
turbulent kinematic heat flux will appear in the equation for the rate of change
of the mean temperature. An attempt to derive the equations governing double
correlations would lead to the introduction of new unknowns, chiefly third
order correlations, and so on. As a result the exact system describing turbulent
flows is an infinite hierarchy and it is then necessary to introduce a further

hypothesis called a closure assumption..

In the case of vertically inhomogeneous turbulence, which is relevant
for planetary boundary layer problems, different kinds of closure assumptions
are now available. Cne usually distinguishes two kinds of closure approximations
which lead to different turbulence theories: the semi-empirical approach which
is based on phenomenclogical relations between double correlations and the mean
flow, on the one hand; and the high-order-closure approach where the closure

assumption is made on nigher order correlaticn terms, on the other hand.

The semi-empirical theories often postulate that the local turbulent
flux ;z:T of a parameter o is related to the corresponding mean gradient
3;9§xi in the sume way as in viscous flow theory. This proportionality thea leads
to the introduction of unknown eddy viscosities K, . Furthermore, a simplse
physical argument shows that K, should be generally positive. An important
consequence of this assumption is that the vertical heat flux W'T' and the
temperature gradient -35762 always have the same sign. Unfortunately this is
not true in convective situations ( see e.g. Deardorff, 1966; Turner, 1973).
Improved semi- mpirical theories like the mixing length approach ( Prandtl, 1925)
or Smagorinsky's formulation ( Smagorinsky, 1963) suffer from the same basic

deficiency as shown by ionim and Yaglom ( 1971).

The high-order-closure method consists in closing the hierarchy of
dynamic equations at & higher order. One then has to aerive the exact dynamic
equations for second | or possibly higher) order correlations and the closure

approximation affects only the next nigher order correlations. One can consequently
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hope that the resulting theory will be more accurate for double correlaticns

and mean values. First exsmples of such methods are the closure schemes

developed by Daly and Harlow ( 1970), Donaldson ( 1973), Wyngaard et al. ( 1974),
Lumley and Khajeh-Nouri ( 1974) and Launder, Reece and Rodi ( 1975), among

others. In these studies the triple correlations are modeled with the use of an
ad hoc gradient-diffusion hypothesis or a functional expsnsion technique. A sscond
example of such methods is the quasi-normal approximation ( Millionmshchikov,

1941) in which the fourth order correlations are related to second order omes by
assuming that velocity is a Gaussian random variable.

An alternative method which partieally avoids the use of high-order-
closure techniques is the so-called subgrid-scale theory ( see e.g. Deardorff,
1972) in which the closure assumption is less crucial since the grid size is
then sufficiently small to allow explicit description of most of the turbulent
structures. But this requires & three~dimensionsl simulation, contrary to the
preceding approaches, and the memory capacity of the computer restricts
considerably the size of the domain which can thus be simulated.

Several models are no¥ avallable for the descriptiom of conveetive
planetary boundary layers ( PBL). Clarke ( 1974) has rewieved the models based
on semi-empirical theories and his conclusion is thet these models can describe
the overall thermsl behavior but not many wind characteristics of the PBL. Among
the models based on high-order-closure approach, the models of Lewellen and
Teske ( 1973), Wyngeard and Coté ( 1974) and Yamada and Mellor { 1975) simulate
fairly well the diurnal course of mean wind and mean temperature but we shall
see in the following section that they suffer from ancther deficiency. Finally
the three-dimensional subgrid-scale models of Deardorff ( 1974e and 1974b) and
Souméria ( 1976) are the best tools for a precise description of the turbulent
PBL but the price to pay for them is very high ( it takes about 10 hours of

computer time with a CDC 7600 machine to simulate a one hour evolution).

Our purpose is to show what could be a relatively cheap model which

could reproduce, with a good agreement, the turbulent structure of the FBL.
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2. Second-order-closure models

All the high-order-closure modeyls mentioned in the preceding séct;l.on
could be defined as second-order-closure models. Indeed, they use an equation
for the time rate of change of double correlations and the third order correlations
vhich appear in these equations are calculated from additional diagnostic
relations.

Triple correlations which appear in second-order-closure models can
always be expressed as a sum of terms like ?;I where ui is the turbulent
" and f 1is any product of two
turbulent fluctuations. All parametrizations for triple correlations which are

fluctuation of the velocity component u

presently used in second-order-closure models can be deduced from a simple

gradient relation of the form

ful = -K 31‘/311 (1)

where the so-called turbulent diffusivity K is calculated from various second
order correlations. For turbulent comvection we shall now show that K being a
80 complicated function of the flow structure, a relation like (1) cannot be
used to calculate triple correlations. For this purpose we shall restrict

ourselves to the case of the vertical flux vw'e of turbulent kinetic energy';

w'e = w' ( u'2+v'2+u'2 Y/ 2 (2)
and we shall use for our discussion the results obtained by Willis and Deardorff
( 1974) in the case of a laboratory experiment concerning penetrative convection,
i.e. turbulent convection created by a turbulent heat transfer through a
thermally stratified layer of fluid in the absence of mean velocity. In such
a case the various proposed parametrizations reduce to:

(i) "single-gradient" expression

e - -k, 2e/3: (3)

where K1 is given by
either K, = ¢ (e/e) w'? (4)
for Daly and Harlow's ( 1970) and Wyngaard and Coté's ( 1974) models ( with

, =0.25 or ¢, =0.5 ) where £ is the energy dissipation rate

respectively ¢
or K, = 1, e (5)

for Yamada und Mellor's ( 1975) model where 1, is a Prandtl's mixzing length.
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(ii) "double-gradient” expression

e = -k, 3(ew)/ds | (6)

where K2 is given by

either K, = ¢, (5/€) w2 (7)
for Leunder, Reece and Kodi's ( 1975) medel ( with c, = 0.11 )
or K. = 1 E% (8)

2 2

for Domaldson‘s ( 1973) and Lewellen and Teske's { 1973) models where 12 is
e mixing length { possibly different from 1, ).

e

Using the experimental values of e , w2 and £ obtained by Willis
and Deardorff ( 1974), it is possible:

(1) to compute the "theoretical®™ value of X1 ( resp. K2) from Eq@(é) ( Fe8p.
Eq.(7)), to use these values to calculate the "theoretical” kinetic energy fluxz
from Eq.(3) ( resp. Eq.(6)) and to compare it to the experimental values of w'e.
This comparison is shown in Fig.!. It cen be noticed that simgle- spnd double-
gradient expressions give almost the same results which do not agree, qualitatively
and quantitatively, with experimental values. The qualitative disagreement is
crucial since it implies that the divergence of the "theoretical™ u'e has the
wrong sign in most of the upper part of the convective layer. Furthermore, in

the lowest part of the convective layer where the divergsnce has the right sign,
its magnitude is too large. These two characteristics show that the upward
propagation of turbulence is considerabely underestimated. Fipally, the positiveness
of W'e in the whole convective layer, as compared to the theoretical values of

¥'e calculated with the aid of positive K's, shows that the turbulent diffusivity
should be negative at the bottom of the layer { a remark previously made by

Wyngaard ( 1973)) and positive in its upper part ( see (ii) for further evidence).

(ii) to compute the two mixing lengths 1, and 1, from Eqs.(5) and (8) with
the aid of the above calculated "experimental” values of K1 and Kz . The
results are shown in Fig.2 where we have not represented 11 for intermediate
heights since it has there & very large magnitude ( vanishing gradient of kinetic
energy). It can be seen that the mixing lengths vary very muich with height,
therefore reducing their practical usefulnesa. They are negative im the lower part
of the convective layer, and consequently the turbulent diffusivity is also

negative, as previously mentioned.
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It appears from the above considerations that:

(1) the results issued from double-gradient expression are not notably better
than those obtained from single-gradient expression, contrary to the hope of
many workers.

(11) the gradient-relation method is not suitable for the calculation of triple
correlations in convective situations and it even perturbs the evolution of
double correlations.

It appears then necessary to look for a third-order-closure model if
one likes to describe properly the turbulent structure of a convective FPBL.

3. A third-order—closure model

A possible third-order-closure model is the quasi-normal model
( Milliomshchikov, 1941) in which one considers the equations for the rate of
change of triple correlations. The equations are closed by assuming that the
fourth order correlations are related to the second order omes as in a Gaussian
flow. Unfortunately, it was found that the quasi-normal approximation leads to
the nonphysical development of negative energy ( O'Brien and Francis, 1962}
Ogura, 1963). This deficiency of the quasi-normal model can be traced to an
excessive growth of triple correlations ( Orszag, 1970) since one effect of
exact fourth order correlations is to limit the build-up of triple correlatioms.
This effect is obviously lost in the quasi-normal approximation and consequently
too large triple correlations can transport energy at a rate larger than the
production rate, therefore creating negative energy. One has then to introduce an
ad hoc damping mechanism in the equation for the rate of change of triple

correlations.

de shall introduce the clipping approximation ( André et al., 1976a)
which is an example of such a dam;ing mechanism. It is based on the fact that
triple correlations between fluctuations of turbulent quantities must verify
realizability conditions derived from generalized Schwarz' inequality ( Blanchet,
1970; du Vachat, 1976). Given the fluctuations of three turbulent quantities

o', @' and &', the triple correlation u'P'U' can be expressed as

LB =t (prE - pE) . (9)

Now applying Schwarz' inequality to the right-hand side of Eq.(9) we have

—2

a'P'K'Z < REN plel o) . (10)
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If we now use the quasi-normal approzimation

P82

F?2.5°2 +

2 p‘s’E

(11)

condition (10) for the realizability of the triple correlation reads, by symmetry
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But now, nothing in the quasi-normal approximation makes it necessary
that this inequality be satisfied. The clipping approximation consists in
enforcing inequality (12) at each time step and at each grid point by cutting off
the value of the triple correlation ;FFTE?’ whenever it exceeds the limit
imposed by the realizability condition. This indeed constitutes & damping effect
of triple correlations. The‘principal advantage of the quasi-normsl theory
modified by the clipping approximation is that it produces realizable turbulent
flows in the sense that the nonphysical development of negative emergy is made

impossible, as will be shown numerically.

extensively described im André et al. ( 1976a).

“mmwmm

Application of the clipping approximation to Boussinesq turbulence is

We shall just recall here thst,

with the aid of Launder's ( 1975) parametrization for pressure effects and
Kolmogorov's arguments for dissipative terms, the equations for mean parapsters
end double correlations read with usual notations ( in the case of horizontally
homogeneous flows under the action of gravity g and Coriolies force f )i
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where the Coriolis effect on double correlations has been neglected. £ is the
kinetic energy dissipation rate given by

/2 .

£ = ¢ b (18)

1 ' :

where 1 is the length of emergy containing eddies, that is the height of the
turbulent layer.

The system governing the evolution of triple correlations can be
deduced with a little algebra.>1n this system appear:
(1) fourth order correlations which will be expressed with the aid of quasi-
normal relations (11);
(11) terms expressing the action of molecular diffusion which, in the absence of
sufficient knowledge of their effects, will be neglected; _
(1ii) terms arising from Coriolis effect which are known to be negligeable
( Deardorff, 1974a) and which will be set equal to zeroj
(iv) terms expressing pressure effects. These terms will be calculated using

a generalization of return-to-isotropy concept:

p' (buiu' R wiu' , Bu.'].w' ) = - c8§_u3“3"
°

d2z ox . dx,
J i

. tat 1.t L ¥ -1 tat tat LY-U
p,(au.e +iu!e ) = p,(au.e , ouje _3 iJBiQ ) +£ 13 p* 56

bxi ij Bxi ij 3 Bxk 3 alk
- € Y ! Hintal E '
= -cg= (ujuie’ - _ 513 wue' ) =g = Sij uo®'
e 3 e
— »
pro8° - -t ule? ; (19)
Dx. e
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(v) realizability conditions obtained by specialization of inequality (12).

The sysiem reads finallys
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The values of the constants c, to cg which are involved im Eqs.(15)
to (22) are given by
c, =16 ; e.=2.5 ; ¢,=4.5 3 ¢ =0.
‘ 2 > (24)

4.85 ; Cy = 0.394 ; ¢, =8. 3 c9 = c8/3 o

s

They are described with some details in André et al. ( 1976b). Ve
shall just say that we use a staggered grid and the Euler-backward time
integration scheme and that boundary conditions for double correlations are
expressed with the aid of Monin and Obukhov's ( 1954) similarity theory.

2 Acguracy_of tripl

iy G D GEm OGS G GLS Gme e ewis e

When applied to the Willis and Deardorff's penetrative convection
experiment ( ;: = 0 ), the model reduces to a set of 11 prognostic equations
and 6 realizability inequalities ( André et al., 1976b). In such a case the
numerical profile of w'e = 3 w'uiui is shown in Fig. 3. The particularly

good agreement between computed and experimental curves justifies the validity
and accuracy of the clipping approximation. Indeed it gives the right values
of the vertical flux of eddy kinetic energy, a physically important triple
correlation,

It is interesting to look at the overall frequency of enforcement of
realizability inequalities. This frequemcy is O % for v'3 , 11 % for

H'ZB' , 6% for u'9'2 , 85 % for 6'3 , 0% for u'zu' and u'ze' .

It is not surprising that 9'3 has to be frequently controlled since it is

the only parameter for which pressure fluctuations do not damp the evolution.
We shall finally indicate that if realizability conditions are not enforced,
i.e. if on- uses the quasi-normal approximation alone, some triple correlations
develop rapidly very large values, therefore inducing a blow-up of the quasi~

normal model.
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« C n with the W data

The above presented and discussed clipping appromimation will be now
applied to the description of the well-known Day 33 of the Wangara experiment
( Clarke et al., 1971). In this case the system (13)-(23) governs:

(1) 3 mean quantities: u, v and 8 ( Eqs.(13) and (14));

(ii) 9 double correlations: u'z u'v', v'z, viw' and w'2 ( Eq.(15)), u'®",

v'e' and w'@' ( Eq.(16)) and 9' ( Eq.(17));

(441) 14 triple correlations: u'zv', u'w'2, v'2w', viu'? and w'° ( Equation

and inequality (20)), u'ZG', u'u'd’, v'ze', T and w'%6 ( Bquation and

2

inequality (21)), u'@'2, v'6'% and w'e'? ( Equation and inequality (22)) and

3 ( Equ;tion and inequality (23)).

Boundary conditions for the 9 double correlations at their firast
level are expressed in terms of the kinematic heat flux at ground Q (¢) ,
the friction velocity u, and of the convective velocity w, = (d.gQ h )
according to the modified surface layer similarity theory for convective
situations ( see e.g. Wyngaard and Coté, 1974), i.e. ( in surface layer axes):

=4uf+0.2wf : v'2=1.75uf+0.2v;? : u'v' =0

w'z(z) = [1.75 + 2(-z/L)2/3] uf ; u'w'! = - u2 : v'w' =0

(25)
v'e'=Q u'8'(z) = =3.7 (1 = 152/L )-1/4 (1-9/L )-% Q
v'e' =0 ; ;-2-(2) =4 (1 - 8.32/1- )_2/3 Qi/“f

where L is the Monin-Obukhov length ( L = - uZ/kd.ng ; k = Von Karman
constant = 0.35 ). Qo(t) is given in order to reprocduce as exactly as possible
the observed surface temperature evolution

Q(+) = 0.18 sin (W(t-7.5)/10 ) =m sec”' K ( t in hours)

since u, 1is computed with the aid of the Paulson's ( 1970) formula from the
wind velocity at its first level and from & roughness-length which was taken to
be 1 cm; h=h(t), which appears in w, and also in Eq.(18), is computed
from the actual mean temperature profile.
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Initial conditioms for u, v and © are taken according te the
corresponding ezperimental profiles at t = 9 h , since the other 23 correlatioms
are intially set equal to zero ( the mamerical model will need approximatively
one hour to establish realistic profiles for these correlations). The pressuze
gradient is takem according to the estimated geostrophic wird ( ¥yngesrd
Coté, 1974):

gm‘s,s +2.9107 2 for z £ 1000 &

ug (msscmi) = _3
=2:6 + 1.4 10 " g for 1000 m &£ 2 £ 2000 m

v, = 0 . (26)

The simulation is atopped at t = 17 B 30 when the presecribed surface heat
fluz Q@ vanishes.

We used a 40-level numerical model with a grid size fz equsl to

50 m , the time step [t being equal to 4 sec .

s g eee e e e OGS e emmm

In Fig. 4 the computed tempsrature profiles are compar
measured ones. The agreement is very good, qualitatively and quamtitatively,

sot”

in the adiabatic layer as well as im the unstable surface layer. The ®overt
region, l.e. the upper part of the convective layer where rising air overshoots
its equilibrium height and produces them & cooling of the overlying stable
layer, is also recovered and the height of the convective layer as well as the
lapse rate around the inversiom level are in rather good agreement with
experiment. This is an indirect verification of the validity of the c¢lippimg
approximation since it is kmown that the erosion of the overlying steble layer
depends strongly om the treatment of turbulent fluxes ( Deardorff, 1973:
Somméria, 1974).

Fige. 5a to 5d show the evolution of the mean wind during the comvective
regime. The initial mean wind profile is chosen from the measured wind profile
at t =9 h by smoothing out small vertical scale irregularities ( Fig. 5a).
The evolution is governmed by two distinct phenomens:

(1) en intense mixing of momentum in the adisbatic layer due to thermally
generated turtrilence. This can be seen if one comsiders the height of the cons
wind layer whi:h evolves from 1000 m at t =12h ( Pig. 5b) to 1200 2 at
t =14 h ( Fig, 5¢) and 1300 @ at ¢t =16 h ( Pig. 5d). These heights
correspond im fact to the convective layer thickmess { see Fig. 4).
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(11) & rotation of the mesn wind due to Coriolis effect since the u-component
remains almost comstant ( =3 msecai) while the ;;componsnt evolves from ,
- 0.5 msec”! at t=9h ( Fig. 5a) to 0.7 msec™' at ¢t =12 h ( Pig. 3b)9
1.0 msec™ at t =14 h ( Fig. Se) and 1.5 asec—! at t=16h ( Flg. 5d4).
The above features of the calculated mean wind compare favourably with these
of the observed wind.

I OXD UER GHID CHD ehm ey em GRS Gt GRTM eI EKD

The turbulent heat flux ;FEFYz,t) is shown in Pig. 6a. The evelution
consgists in a progressive development of a layer where the heat flux varies
linearly with height according to Eq.(14) and temperature gradient evolution
{ Fig. 4). The negative heat flux at the top of the convective layer is
related to the conversiom of kinetic energy into potential emergy due to the

above described overshoot effect. Simce turbulent heat fluxz wae not measured
during the Wangara experiment, we shall compare our rssulis with those
obtained by Deardorff ( 1974a) with the aid of his sophisticated subgrid-scale
model ( Fig. 6b): omce again the agreement is very good.

Since the mean pressure gredient vanishes im the f=direction and
varies linearly with height in the y-direction ( Eq.(26)) and since & and o
are almost constant in the comvective layer ( Figs. 5a to 5d), u'w’ should
vary lineerly with height while v'w' should have a psrabolic profile ( Eq.(13)}).
These features are recovered in Figs. 7a and 7b which show the eveluticn of
the calculated momentum fluz.

erm e mEm G am s o emn wm» amn omm GRS GEw s

From the preceding considerations ( vanishing mean wind gradient) it
results that the turbulence is generated mainly by buoyancy. In this case,
Willis and Deardorff ( 1974) have proposed for scales for velocity and
temperaturs in the PBL the conmvective velocity w, = (eAngh )i/3 and the
corresponding convective temperature T, = Qo/wg . Consequant;y the vertical
profile of eddy kimetic emergy, made dimensionless by h and w_, is shown in
Fig. 8. One can notice that Willis and Deardorff's hypothesis is verified with
& good accuracy and that the dimenmsionless eddy kinetic energy profile remains
almost constant with & maximum et around z = h/3 . The maz
88 well as th: height at which this meximum occurs ars in very good agresment
with Deardorff’s ( 1974b) results ( we shall indicate for comparison that the
two horizontal components of eddy kinetic energy are almost idemticel).

imum valus of e




FIGURE 6a -

Heat flux profile.
wime=, 10D} = = =, 11 h;
0 12 D3 va0eey 15 N,

FIGURE 6b -

Heat flux profile taken
from Deardorff (1974a).
wemem, 10 hy = = =, 11 h;
——n 120 _ees_, 16 N,
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The eddy kinetic emergy budget, represented by Bq.(15) with i=j, i.e.

’ii . _ovu'e -mquiti _mvowqii + ugu'@ - £ . (27)
at dz de dz

is shown in Fig. 9a. The shear production terms are mot represented singce they
are negligeable as compared to the other terms of the budget. It appears that
eddy kinetic enmergy, gemerated essentially by bucyancy in the lower part of
the PBL, is exported upwards by turbulemt diffusion end converted inte poteatial
energy im the “overshoot® regiom. Dissipation takes place in the whole layer
and ite profile has the same form than the Z;prcfilee duve to our choice of

€ ( Eq.(18)). This last remark explains that our eddy kimetic energy budget
differs slightly from Deardorff’s ome ( 1974b), shown in Fig. 9b. This
difficulty could be tided over by comsidering an equation for the rate of
change of dissipation instead of ecur diagmostic estimstion with & constant
length h. We shall note that the budget is practically stationary simce the
mumerical similation shows that | 3e/3t | ~u 107 wi/h , in good agreement
with the above quoted scaling.

e

Dimensionless temperature variance 8“2/T§ is shown im Fig. 10. Opee
again the dimensionless profile is stationary in most of the PBL with twe

maxime corresponding to the umstable surface layer and to the inversion level,
which are the only twe regions where tempsrature gradient is significent. The
fact that the scaling by Ti seems not adequate around the imversion level shows
thdét the stratification of the overlying stable layer should be taken as
enother parameter to determine the scalimg quantities ( see Willis amd
Deardorff, 1974). The profiles reported in Fig. 10 are in good agreement with
those obtained by Deardorff ( 1974b).

We shall stop here the presentation of the model results but, as far
@s one disposes of & basis for the comparison, one cam say that the structure

of the other parameters is ( or seems) very raisonpable.

5. Possible developments apd perspectives

The clipping approzimation can be used to construect a model of
turbulent corvection in the PBL and in this case we have seen that it allows
& precise description of the turbulence structure. It would be of interest te
apply this model to cases where the shear driven turbulemce plays a significant
role: this seems possible since the clipping approximation can be used
successfully for the description of laboratory channel flows ( André, 1976).
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FIGURE 9a -~ Dimensionless eddy kinetic energy budget.
» buoyant production; ....., dissipation; - = ~, turbulent
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FIGURE 9b - Dimensionless eddy kinetic energy budget taken
from Deardorff (1974b). , buoyant production; .....,
dissipation; = = =, turbulent diffusion; -.-.-, pressure

transport.



4.5

4.0

Z/h

0.5

-231-

oo¢999°°°9g0

eco e @
ot T esesacee e
° @

e ®

FIGURE 10 - Dimensionless tempsraturs variazce profile.
o i1 h = = = 12 h% caseng 15 he



-232-

Another interesting development of the model would consiat in including

water vapor and radiative transfer; this would give the possibilify to describe
the behavior of nocturnal PBL since it is known that in this case turbulence
and radiative transfer have almost the same importance with respect to

- temperature evolution ( see e.g. Coantic 1975). A second step in the development
of the model could consist in including the parametrization of condensation

and evaporation in order to aliow for the description of cloudy PBL. Unfortunately
the horizontal homogeneity assumption, which is necessary if one wants to

avoid the complexity of three-dimensional modelling, will probably restrict

the application of the model to PBL with stratified clouds but this represents
anyway a significant percentage of PBL situations. ' ’

At any stage of its development the model can be considered as a
“"numerical laboratory” which can be used to:
(i) study some particular cases of PBL evolution when one does not dispose of
the corresﬁonding experimental studies;
(ii) test the accuracy of various PBL parametrizations ( particularly those
which are included in numerical wheather forecasting schemes).
In this respect the small computing time required by the model ( 100 sec of
CDC 6600 computing time for a one hour simulation for the case described in
section 4) is a very favourable characteristic which allows numerous numerical

case studies.

I would like to thank B.E. Launder for valuable suggestions in the
field of parﬁmétrization of pressure effect on triple correlation evolution.
Thanks are also due to P. Fouques Duparc for his participation to the

numerical experiments.
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