-30-

TREATMENT O F
THE ROUNDARY ILAYER IN GENERAL CIRCULATION

MODELS - THEORETICAL ASPECTS

F.WIPPERMANNIN

TECHNISCHE HOCHSCHULE DARMSTADT
INSTITUT F!JR METEOROLOGIE

FEDERAL REPUBLIC OF GERMANY



-40-

¢ O N T E N T S

1. Introductory remarks

2.. Generalities on the Planetary Boundary Layer (PBL)
The definition of the PBL

Kemarks on PRL-models, the closure problem
Coordinate systems used in the PBL

External and internal parameters

3 The structure of the PBL

NN
e e o o

DN N =
e L] L] L]

3.1, The PBL as boundary layer in a rotating system
3.2, Similarity in the PBL
3.3, Universal profiles in the PBL as obtained by a single -

-layer model

3.3.1, Universal profiles of the velocity defect an of the
Reynolds' stress

3.3 2. Universal profiles of the eddy diffusion coeffici-

ent
3.3.3. Universal profiles of the temperature defect
3.4, Remarks on the energy budget of the PBL

4. The problem of the treatment of the boundary layer in Ge-
neral Circulation Models (GCMs)

4.1. The icportance of the boundary layer effects for large
scale motions '

4.2. What means parameterization of the boundary layer effects?

4.3. The parameterization with respect to the vertical reso-
lution of the GCM

4.4, The necessary assumptions of stationarity an horizontal
homogeneity

5. Possible methods for the parameterization of the turbu-

lent fluxes at the surface

5.1. Parameterization by using empirical bulk transfer formu-
lae

5.2. The use of the resistance law and the transfer laws for
heat and moisture
5.2.1, The resistance law and the transfer laws for heat




and molsture
« The determination of the universal functions N , M_,
M, and M, ,
The determination of the effective roughness-length
The conversion of the given external parameters in
the needed intermal ones ’
Formulation for a practical application
Difficulties for a practical application
a) The proximity to the eguator _
b} The determination of the temperature 5 and
the moisture B, '
(c) The determination of the pick-up height 3.
5.3, The application of the Monin-Obukhov similarity theory
5.3.1. The permissible maximum height of the first interi-
or grid level of the GCH

2
[
a8

VIR Wi aOan
&

RN AN
2@

AT ey AV
& o

@
L]

@
@

@
@

5.3.2. The wind-, temperature- and moisiure profiles in
A the surface layer
5.5.%3. Formulation for a practical application
5.3.4, Difficulties for a practical application
5¢3.5. The determination of turbulent fluxzes at GCM grid
levels situated in the outer layer
6. Acknowledgement
Te Referencss
8. List of symbols
1. Introductory remarks

For an improvement of the current General Circulation Models
(GCMs) the effects in the boundary layer (besides several other
effects) have to be incorporated intsc the models in a much bet-
ter way as it is done up to now. Of course a successful parame-
terization of these effects can be achieved only, if the physi-
cal processes in the boundary layer are well understood.

For this reason it seems to be useful in these lecture notes
first to discuss some important features of the atmospheric boun-
dary layer, mainly its structure, which is studied by the results
©f a numerical model of the Planetary Boundary Layer (PBL). Most
interesting are special similarities in the PBL, which are the
basis for so-called resistance- and iransfer-laws, These laws are
very suitable iools in the parameterization procedure.

.ities on the Flanetary Boundarv Laver (PRL)

2.1. The definition of the PBL

The PBL is an abstraction; the real atmospheric boundary lay-
er (ABL) would be a PBL if certain conditions (defining the PBL§
are fulfilled. However these conditions are never satisfied si-
multaneously in the ABL. Therefore any results obtained for the
PBL can be only applied to the ABL,if the former is a tolerable
approximation 1o the ABL.
These are the conditions defining the PRL:
ga) the boundary layer flow is turbulent
\b; the mean flow as well as the turbulent characteristics are
horizontally homogeneous
(c}) the mean flow as well as the turbulent characteristice are
stationary
(d) the molecular transport of momentum, heat and moisture can
be neglected as being small compared with the corresponding
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turbulent transports

(e) no sources or sinks of water vapour by evaporation or conden-

sation do exist
(f) there is no divergence of radiative fluxes.

2.2, Remitks on PRl-models, the closure problem

Due to the turbulence one is unable to describe a PBL mathe-
matically as defined by the forementioned conditions (a) - (f),
unless one makes some additional assumptions; however that would
mean that one constructs mathematical m o d e 1 8 of the PBL,
which itself is a physical model of the ABL.

Additional assumptions are necessary because of the ¢ 1 o s u -
r e problem.

The PBL-equations are obtained from the momentum equations (ave-
raged for the mean flow) and the thermodgnamic energy equation

applying the forcmentioned conditioms (a) - (f)
d/dz(v./g) = - f{¥v - Gg} (2.1)
a/dz(7,/g) = f{u - 4, | (2.2)
d/dz(q/e_9) = 0 (2.3)
a/dz(j/9 = 0 (2.4)
and the appropriate boundary conditions. Q is assumed to be con-

stant; the geosirophic wind W ,in a baroclinic PBL varying with
height z, is considered to be given. Since for the 6 variables
(v.,v,, 4, v, q, Jj ) only 4 equations are available one has
to hypothesize two further relationships between these variables
in order to close the system.

The simplest closure method 18 to use the flux-gradient rela-

tions

/g = X du/dz (2.5)
5/§ = X, dv/dz (2.6)
Q/cp§ = Xk, d%/dz | (2.7)
3/§ = X ds/dz (2.8)
in the egs. (2.1)-(2.4) giving

d/dz { k, da/dz} = - £{ ¥ - Ve (2.9)
d/dz {ky dv/dz} = £{@ - @) (2.10)
d/dz { ky as/dz} = 0 (2.11)

= 0 (2.12)

d/dz (ks ds/dz }

and then to prescribe the Xk.(z) , k.(z) and kX, (z) by a hypothe-
sis. The most restrictive hypothesis would be km = const Kk, =
ks = O, leading with the appropriate boundary conditions to the
well-known Ekman wind spiral.

Another closure method makes use of Prandtl's relation bet-
ween the eddy diffusion coefficient X, and the mixing-length A

kK, = A*[dv/dz| (2.13)

™

One incerts (2.13) in (2.9),(2.10) and makes then a hypothesis
for the mixing-length profile £(z) and for k, /k,. and k,{kn ’
which both vary with z. Many different hypotheses for L (z) have
been made, of course most of them regard also the dependence omn
the stratification.

In recent years an increasing number of authors use tLe s0 -
called higher order closing. This means that additional egua-
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tions are derived for the cross-correlations v©/g = - u'w'.,
’G/E = =v'w' , g/c, g = ®w' and j/qg = s'w', in which of cour-
se triple-correlations and other correlations with the pressure

fluctuations appear. If one makes hypotheses for all these cor-
relations four additional equations (pussessing the additional
variables ~ and B ) are available and the set of equations (2.1)
- (2.4) is closed; a second-order-closing is made. In the same
way one can go one step further and derive additional equations
for the triple-correlations needed in the forementioned equations
In these equations then appear quadruple-correlations and some
other triple-correlations for which hypotheses have to be made;
that would be a third-order-closing.

At the prescnt time for most of the PBL-models the closing
is done by some kind of a mixing-length hypothesis. The more so-
phisticated models with a second-order-closing have not yet shown
up to now better results than models with a simpler closing pro-
cedure.

For PBL-models with a prescription of k.(z) or £(z) two
groups of medels can be distinguished: single-layer models or
two-layer models., Whereas in the first group k.(z) and [£(2z)
are prescribed for the whole PBL, these prescriptions are made
in the second group of models separately for the outer and the
inner (or surface-) layer, of course with taking care of the con-
tinuity at the interface.

2.3, Coordinate systems used in the PBL

In the PBL Cartesian coordinates are used generally, the ver-
tical direction of which is decnoted by z . Two directions are
~vailable to orientate the horizcntal coordinates, i.e. the di-

rection of the geostrophic wind
(in baroclinic cases that one at
Fig. 2.1 the surface) and the direction
of the surface stress. Both ori-
entations are useful, the choice
of them depends on the problem
to be treated.
The angle between these two di-
= %o rections is «, , the cross-isobar
o angle.

T,
\1A//,/f”//ﬁgf:‘rODmmAw* The coordinate system, the x-axis
\ &Dﬁ - _»‘&- X’ fa W Y

of which is orientated in the di-
= rection of the surface stress,

Ano ig
¥ called antitripticoe

Yo A7

2.4. External and intermnal parameters

In the PBL we have to distinguish external and int rmal para-
meters. The external ones are the large-scale parameters (denoted
by a bar) as for instance given by the GCM; these are V,. -and
{Ver = v 1/2, » 3% , 5 , 8, and 8, , In addition some local para-
meters as 2z, and f have to be considered as extermal parame-
ters, To a given set of external parameters belong the sought
turbulent fluxes at the surface 7./ , 9./c,§ and jo/Q or ex-
pressed in characteristic fluctuations -v, 1w, , -3,1%| and S,1¥%| 3
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these are the so-called internal parameters.(Occasionally inter-
nal parameters are combined with the local parameter f , for
which no clear distinction is made in external or internal). The
following combination of parameters can be listed

external internal

Charact. velocity | ¥ | A
Charact. temperature 5 - 3, J,
Charact, woisture 8. = 5, B,
Charact., dynamic T . v -
length-scale H = ‘“9’/f H, = Kl\G!/f
Charact. thermal T 2 & % : 2 BTy
length-scale - L = \530/{{5‘_5,7_3;)} Lo = ¥, /X"F&‘-l T
Stability parameter & = H/ L (= H,/ L,

= pL13-%3/(119,) = X3 /(51v))

= Le ‘. r'&a]/s
Parameter for EUETLE by — _ o(— -
barcelinicity Moo= Ve { Ve Yo} /2 e = ¥{Ver -Vl /2,

Ly = [k s Vg - W) /24 Y., = IR vge- v /2,

The ratios of internal to external velocities, temperatures and
moistures are denoted by

Cg = lwguﬂgaa\ Gecstrophic drag coefficient (2.13)
- = Transfer coefficient for

Cph = I/ {32 heat, a Stanton number (2.14)
— — Transfer coefficient for

Cg = 8./\8, - BJ‘ moisture, a Dalton number (2.15)

3, The structure of the PBL

Tn order to et on impression what deee the PBL look like
some rTemarks will be made in this chapter about the structure of
the P3L; mest of ihe pictures presented are resultls of a nuaeri-
cal (single-layer) PiAl-model (section 3.3.).

Z.41. The PRL as boundary layer in a rotating system

The nmain Qifference beiween the ABL (or PBEL) and a boundary
layer on a flat plate in a win +urnel is the much larger lengtih -
_scale for the former and by this the necessity to consider the
PBL as a boundary layer in a rotating system. Whereas the boun-
dary layer thickness at the flat plate is 6 o< (v x/0)* , the
thickness of the BL is & o (k./f)™* ;i.e. at the flat plate the
thickness of a steady state boundary layer increases with increa-
sing distance x from the edge, but the thickness of the PBL is
independent of any distance.

Another consequence of the rotaticn of the earth is the over-
shooting in the upper part of the AFL, a phenomenon the physics
of which are difficult to understand. This is very much different
to boundary layers in non-rotating systems, where this overshoo-
ting does not exist,
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The amount of overshooting depends remarkably om the thermal
stratification; it is most pronounced in very stable cases, in
which it occure at lower levels than under neutral or unstable

> > conditions. This is
4 | ) A connected with the
T T S phenomenon of the
. T TR low level jet. How-
N Te— e ever a pronounced

T —— ———— low level jet oc-

' : curs,when the over-
shooting is streng-
thened by an appro-
priate baroclinici-
iy ty. Also the non -
> Stationarity has an

| effect on the low
3 level jet.
Of course the
phenomenon of low
Fig. 3.1 level jet can not
be simulated by a
GCM since its vertical resolution is not sufficient.

ﬁrﬁ

Non-rotating Rotating
system system

The displacement-thickness for a boundary layer is defined as
that distance, up to which the surface must be elevated in order
to have i1he same mass transport by the flow, which is completely
uneffected by the surface,

With that definition for P S $ 4z .
the displacement thickness it L mm““% 9
can be written . a

i — e
65 = a( 1 - u/U ) dz ”m*"*‘*mﬁi g’
; (3@1}" W-—_—? : : b“g
However in the ABL (or PBL) T J° - %
one has due to the rotation S : o ]
of the earth a turning of L . ! ! Ny
the wind with height, the 1, J
hodograph is like a spiral, Fig. 3,2

see fig. 2.1 . Therefore we )
have two velocity components, by which two different displacement

Leights c?n be formed s
8- Va, -waera, , 6 = (3 -7 az/ 7, (3.2)
u o8 g v & 5

[+4
Inserting herein the velocity defects of eqs.(2.2) and (2.1) one
obtains

bp= 1o(6) - m/x 3y, b = (T - w(D(£77y)
1t can be seen that one of these two displacement-thicknesses

vanishes ,if one choses the antitriptic coordinate system; then
one has the boundary conditions

Z = 03 "EX{B) = ty(&) =0 , z=20: T = @ u, Tyo = 0
Using these conditions in the foregoing formulae one gets for the
displacementi-thickness of the PBL

6 = wS/(f ) (3.3)
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Since ?S = \¥,Isin(1%,1) the eq. (3.3) can be written

& = Cg u,/{f sin(te,1)} = H, Cg/\}( 8in(\a.|ﬂ
or with the abbreviation
2% sin(\a,,|)/cg = N (3.4)
§ = H./ N (3.5)

In a later chapter it will be shown, that N is a universal
function, i.e. it is independent of any external parameter. This
N appears in the resistance law, see section 5.2.1., which will
be used in the parametcrization procedure. With (3.SS one has
found out, that N 1is nothing else than the displacement thick-
ness of the PBL nendimensionalized with the internal scale height
N,e

3.2, Similarity in the PBRL

We speak about similarity in the PBL, if the vertical profi-
les of the considered variables (e.g. the Reynolds' stress, the
velocity defect, the eddy diffusion coefficient or others} non-
dimensionalized in the appropriate way will be independent on
any e r t e r nal parameter. .

The proof of an existing similarivy, i.e. of an appropriate
nondimensionalization, can be undertaken by considering the equa-
tions and ihe boundary conditions governing the processes in the
boundary layer.

The FBL-equations (2.1)-(2.3) rcad in a coordinate systen,
the orientation of which is not yet fixed, and for a baroclinic
PBL

a/az( v /3) = = £{¥ - ¥ )+ 2L 2 (3.6a)
a/2zlv /§) = £ {3 - 5.}~ 7 )z (2.6b)
d/ﬂ:(q/cp ?) =0 (3.6c)
The flux-gradient relaticns (2.5)-(2.7) have the form

vy e kg /320 ® - E Q) (3.72)
-(»y/? = k_ a/dz( v - -vgo) (3.7v)
ale s ky d/dad S- 5 (3.7c)
The closure hypothesis should be

km(z) = prescrided, kh(z) = prescribed (3.88),(3.8b)

Since the 6 equations (3.6a)-(3.7c) are coupled, 12 boundary con-
ditions are needed, 6 at the top (z = z,) and 6 at the bottom z,

2 = ZT: TJ\T/§ = ka f XX ’ tyT/§ = ka b ¢ ly (3.9 a,b)
(4 -, )p=f L, 2z, (¥ - VSO)T = £, zq (3.9 c,d)
qT/cp§ = qo/cp§ , (- S.T)T =0 (3.9 e,f)



—ld T

Z2 = 250 ?xa/é = “E o Y§@/§~= Vf | (3.10 a,b)
{v - ug@)@ = - g, . (v - Vgo}o == Vo (3.10 ¢,d)
Qchp§ = g‘%’ﬁ!&@f k4 ( & - ﬁ:r )0 = fs;m's; (3910 eef)

The prescription (3.8 a,b) of k,_.(z) and k,(z) cannot be complete-
ly arbitrary, it muet regard the well-known behaviour in the sur-
face layer

k (z) ERL AN @f;{z/Ls) 2o8 2 < 2 (3.11a)
k,(2) = xiyiz §(2/1,) 5 (3.11b)

The eqs, (3.6-a-c),(3.7 a-c) with the boundary conditions (3.9 a
-f},(3.10 a-f) and the closure hypotheses (3.8 a,b), which have
to regard (3,11 a,b), form a closed system; it is suitable to
iry if a nondimensionalization could bte found, which makes the
whgle systcecm free of external parameters. In that context it is
irrelevant which kind of closure is chosen; the prescription of
k.(z) and k,(z) has been chosen for the sake of simplicity. The
neglection of the moisture 1s likewise unimportant in this con-
text.

For the nondimensjonalization a length-scale A , a velocity
-scale w and a temperature-scale .5 1is used:

]

83
7N
&
VS
)

- 2 - s
.%ng = W ?@ ‘ryj% = wo F_
q/cp% = W 3; F, (3.12 a-c)
u - ﬁp@ = D, v - %g@ = w D
S~ 85 = % D, (3.13 a-c)
k = WJA,Km ky = w A Ky (3.14 a,b)
z = N % (3.15)

With this scaling the eqgs.(3.6 a-c),(3.7 a~c) and the boundary
conditions (3.9 a-f),(3.10 a-f) read

- 2 7 .
dF, /4% = = I D_ + I° X_ 2 . dp, /a2 =.F /K (3.16 a,b)
dP_/dz = 1D -1I°L_Z | aD_/az = F_/K (3.16 c,&)

v! m y & v& v! m % ¥

dFy /4% = © , aDy /d% = F /K, (3.16 e,T)
Z = 2q: Fup=1EK.. A , Dop=132g X, (3.17 a,b)
Fop =1 K Lo , Dop = I g ky (3.17 c,d)
Fop = Fy, ) Dyqp = O (3.17 e, 1)

. _ 2,2 _ =
Z=32: F _ =ulfw , Dyo = = Ugo/¥ (3.17 g,b)

2, 2 = oo

Foo = Vo /¥ ) D_, = ng/w (3.17 1,3)
Fy o z%%;%ﬁ;f(W‘&CE . b= {go“ §T}f:§e (3.17 Xk,1)
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i

Prescribved: Km(Z) with X ® hz|Z<b;( ( 2)/w (3.18a)

K (2) with K = s 2G( 2 (3.18b)

both for 2 ¢ 2 < 2

0 p

I is an abbreviation for

I = ftA/ w (3.19)

Similarity exists, if A and w can be chosen in such a way
that I = 1 and also the boundary conditions will be free of any
parameter. We will try to reach that by scaling (a) with internal
and (b) with external parameters:

(a) with w = |v,|,where (¥,\ = u, ,i.e. in an antitriptic coor-
dinate system (v, = 0 , X.= Y., Xy = Xa ), the scale -
height becomes according to I = 1 in (3.19) A = ug/f; fur-
thermore with 2 = 3 every thing beccmes free of any para-
zeter, except the boundary ccnditions (3.17 h and j), which
will read Dy, = - sin(l«)1)/Cy and D., = cos(ix1)/Cy.

(b) with w = 19, ,where 1% .= U,, ,i.e. in a coordinate system
orientated with the x-axis along the geostrophic wind (V,, = O

‘.= 1., Y, =1,), the scale-height becomes according to_ 1
=1 in (3.19) A = U.,./f ; furthermore with 8, = (% - %)
every thing becomes free of any parameter except the boundary
conditions (3.17 g,i,k), which will read F,, = c; sin*(1a,1),
F = C; cos‘(lan and Fy = C3 Co o

vo

‘This means that on no account similarity can exist for the flu-
xes F, , F, , Fs and for the defects D, , D, , Ds together.
It remains to examine if similarity can be found for the fluxes
alune or the defects alone.

For this purpose the defects, respectively the fluxes are elimi-
nated from the eqs. (3.16 a-f); one obtains two sets of equations
with the appropriate boundary conditions, cne for the fluxes

a?F /az® + T B/ Ky - I° X = 0 (3.20a)
a®F_jaz’ - 1 P/ K + I° A.& -0 (3.20b)
dFy/dZ = 0O (3.20c)
2= Zp: Fuo=I1Kipdy , Fop=T1K Xy (3.20 d,e)
Z = 2,3 F, = u?/w2 y Foo = V?/W2 ’

Foo = IVl /(W 3) (3.20 f,g,h)

and the other for the defects

. . 2 _

d/az(k_ dp /ag) + I D - I A\, 2 =0 (3.21a)
r 2 —

d/dz(X_ ap_/dz) - 1 D + I Xy 2 =0 (3.21b)

d/dz(Ky ap /dz) = O (3.21¢)

Z = %p: Dyp=1 X, 25 , Dyp =1 Xy 2y (3.21 de)

Dyqp = O (3.21f)
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2 =12, Dy, = - ugo/w . D = -v__/w

Dy, = (o, = $)/ %, (3.21 g-1i)

Foreover to both sets (3.20),(3.21) belongs the closure hypothe-
8is in prescribing

K_(2) with K = X Iv1 3 ¢>m((Az) (3.22a)
K, (2)  with Ky = x 1y, 3 @fg((tz) (3.22b)
both for ZO £ Z <« Zp

The application of internal scaling parameters (w = v, , A =
lv,i/f , antitriptic coordinate system, 3 = &, ) allows to make the
system (3.20 a-h),(3.22 a,b) completely free of any parameter;
however in the system (3.21 a-i),(3.22 a,b) parameters would re-
main in the boundary conditions (3.21 g-i).

On ihe other hand applying external scaling parameters (w = ¥l
A = lv,J/f , geostrophic coordinate syetem, & = 3% -5, ) one isB
unable to make any of the two systems free of parameters; in the
system (3.20 a-h),(3.22 a,b) they will appear in the boundary
conditions (3.20 f,g,h) and in the prescription (3.22 a,b); in
the second system parameters will appear in the prescriptions
(3.22 a,b).

It can be concluded, that similarity in the PBL exist only
for the fluxes (not for the defects) and only in the case, in
which nondimensionalization 18 done by i n t e r m a 1 parame-
ters,

Since on may prescribe the profiles K _(2) and K,(2Z) as
obeying likewise the similarity, it can be concluded from the
flux~gradient reirations (3.16 b,d,f) that the profiles of the
vertical gradients of the defects must be universal, or - what
is the same - the profiles dU/dz , dv/dZ , d®/dZ are univer=-
sal. If these profiles are integrated over 2 starting at 2 = ZT
proceeding downwards one obtains Ug, - U(Z) , Ver = V(Z? s O
©(2); these are again three defect-profiles, which must be uni-
versal too (the nondimensionalization is done by intermnal para-
meters !). The universality, of course, is restricted to heights
Z , which are not to close to the lower boundary at Z = Z, .

It can be shown, that such a similarity exists for other va-
riables too, e.g. the nondimensional aixing-length Ly = L/H.
the nondimensional dissipation rate of turbulent kinetic energy
£ =.x*e /(f u*) or scme spectral properties,

One should realize, that the lower boundary is located at 2z
the nondimensional form of which is

-1
Zo = 2o/H. = (xC_ Ro ) (3.23)

= Dy
o
z, itself (or Ro_,) is an external parameter. It is true, the lower
boundary conditions are free of any parameter, however the height
%2., at which the lower boundary is located, depends on the exter-
nal parameter Ro,. Fortunately in the atmosphere Ro, is Very
large, it ranges from 1-10° to 1-10° ; therefore Z. in (3.23)
is very small. The similarity exiets only for 2 > Za where
roughly 3%, = 10-2, (see WIPIiEKMANK and YORDANOV, 19?259 For Z?
—+ O (i.e. Ro, —+ oo ) similarity would exist at any height Z in
the PBL; since Ro. is very large in the atmosphere and therefore
close to the condition Ro, —+ oo we call thie kind of a simila-
ri*y a Roscby-r ..ber similarity.
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To summarize: In the PBL exist a similarity (called Rossby num-
ber similarity) o n 1 y for variables, which are nondimensio-
nalized by i n t e rnal parameters. Similarity means, that
the vertical profiles of these variables are i nde pen -
dent o f any e x ternal parameter, they depend
only on an internal parameter for the stratification (( ) and

on two internal parameters for the baroclinicity ( X.<, \.y,). The
variables for which similarity exist are listed in the following
table (the nondimensionalization is elightly changed by inclu-
ding also the v.Karman's constant x )

Py= Y,/(ud) Ry = T /(gul) By = a/(c qua)
K_ = x_£/{ *u?) Ky = khf/(~x2uf)
du/dz = d{ xu/u,)/d(zf/u,) or D, = x (1 - ﬁgT)/u,

dv/dZz = d(wv/u,)/d(zf/x u,) or D. = (v = GgT)/u“
aG/daz = a(§/%)/a(zf/=u.)  or Dy = (& - S/

Similarity exists for 2 >> %2, and only by using the an t i -
triptic coordinates,

]

l

3.3, Universal profiles in the P2l as obtained by a single-layer

model

Universal profiles of the several variables are very suitab-
le to siudy the structure of the FRL. In this section some of .
such profiles are shown; they are obtained by a numerical PBL -
model (single-layer model, closure by a mixing-length hypothe-
sis), see WIPPERMANN (1971,1973 p. 95-110).

%2,3.1. Universal profiles of the velocity-defect and of the

Reynolds' stress

Fig. 3.3 shows the profiles for the two defect compunents
D.(2) and D.(%Z) in the neutral ( @ = 0) and barotropic (Xx= ;=
0) case. The dots are observations (icipzig wind profile) for a
comparison. For 2 < 0.001 (the lowest level in the figure) D.
remains constant ( = 4.6 , it is again the value of N in eq.3.4}
but D, decreases linearly (because of the logarithmic ordinate

in fig. 3.4 only the D,(2) profile is displayed, however for
three different stratifications., There are also the heights in-
dicated, where the profiles deviate for 10 %4 from the logarith-
mic profiles (broken lines). Note the overshooting, which is in-
creased with increasing stability.

Pig. 3.5 shows universal wind spirals in a barotropic PBL
for different stratificatiocns., The numbers give the nondimensio-
nal height 2. ¥For 2 < 1-10° the hodographs can be extended by
a straight line to the left with D, becing constant,

In order to get an impression how the baroclinicity effects
such wind spirals a figure by WIIN-NIELSEN (1974) is presented,
fig. 3.6 . It shows wpirals for the special case I¥%.|= 10 m/sec,
I%; -~ ¥.1/z, = 4-103 sec’, ka = const = 3.6 m*/sec; these hodo-
erarhs are not universal as those given in fige. 3.5; they are
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Fig. 3.3 3 ’

Fig® 3@@ !

D, ex %

o001 ~
S0 -6 G50 -40 X 20 W 0 I8 20 0 4 50 80

o T YT T T A presented for different surface
wind directions but for the sa-
me thermal wind; the degree -
numbers give the veering bet-
ween 150 m and 1000m.

2 ;!
’ The stress-spixrals corre-
77 DY W /4 sponding to the wind-spirals in
fa] extremely sloble 7 fig. 3.5 are shown in fig. 3.7;

(= e30)
slifcineutral (0= o )
fe) exirernely unsioble

{lf‘ = »"70)

the numbers give the nondimen-
sional height Z.

In the case that a constant
flux layer would exist (let say

2 ]
! up to height 2 ~ 0.02) such a
1o b J / number indicating the height
. should appear at F, = 1 , F, = 0.
s =5 A figure giving (Fl+ F})" as
/ depending on % would show more
// clearly that no comstant flux
2 layer exist in the lower part
/7 of the PBL. On the contrary
i a(F>+ F})"*/d7 is largest at the
surface. In this context it is
5 interesting to know, that
(ar /az), = =N (3.23)
2 D T
</ u . where N is known from the eq.
%% T (3.5) as being the reciprocal
o6 K o2 08 6 4 2 0 2 4 of the nondimensional displace-

ment thickness. N appears also
as a universal function in the resistance law of the PBL, which
will be considered in a later section.
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3.3.2. Universal profiles of the eddy diffusion coefficient

In figure 3.8

the profiles

K.{(2Z) are shown for 4 diffe-

rent thermal stratifications, all in a barotropic PBL (1, = 1, =0)
The broken lines give the resultis bei other authors (A0 = Apple-
by - Ohmstede, B = Blackadar, L = Lettau) using other hypotheses
for the mixing-length.

Baroclinicity effects the profile

K. {(2) too; in the figures %.9a

and 3.9b two examples are given for such profiles in baroclinic
conditions, they are compared with the evaluations of observa -

te iy

o

e

Y
Ky © g

8 u,/!

|

3

<Q“ LT o - - -1
TS REEE I SRS S T B NS I IR PT N A

RSP S,

MELCOLARD ]
A28 Ap 0
peo1

FBLU =DOFL
A.flka’)\vﬁﬁ

Ta

g 258 2 &

g

e £ e i .
o _ e o o]
RS RN I B B S L

Fig. 3.9a

e

tions.
These examples show, that a cer=-
tain baroclinicity chld air ad-
vection) may reduce the eddy vis-
cosity considerably within rather
thin layers; that occurs indepen-
dently of the thermal stratifi-
cation, i.e it is not cansed-by a
texperature inversion.
It should be mentioned, that also
these profiles in special baro=
clinie conditions are still wuni-
versal ones; they depend only on
the internal stratification para-
meter g and on two internal pa-
rameters for the baroclinicity
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3¢3+3. Universal profiles of the temperature defect

In figure 3.10 the universal profiles Dg(Z) are shown for
different thermal stratification parameters in a barotropic
PBL according to WIPPERMANN (1975). Since D, is the temperature
defect scaled by 3,, in the neutral case Dy equals O over O ,
the determination of which gives the curve (f* = 0) in the fig.
3.10 &

One notices that for increasing instability the profiles D, (Z)
converge to a limiting profile.
The broken lines show where 2, must be located for a given Ro, .

There is no doubt, that the profiles of the temperature de-
fect will be effected by baroclinicity. These effects seem to be
very sensitiv to the closure hypothesis, they will not be discus-~
sed here,
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3.4. Remarks on the energy budget of the PBL

FPigure 3.11 is a schematic picture chowing the vertical flu-
xes (double arrows) of three kinds of energy, the internal and
potential energy I , the kinetic energy of the mean flow b, and
the turbulent kinetic energy b, ; the flux of I is not indicated,
it is going upward for unstable stratification ( < 0) and down-
ward for a stable one ( #>0); it is constant with height accor-
ding to eq. (2.3). The transport - T-v has a maximum in the
lower part of the PBL, one of the definitions of the height ¢z,
of the surface layer ZKRAUS 1972). Notice that the turbulent flux
of turbulent kinetic energy b, is going upwards whereas the tur-
bulent flux of momentum is goin downward.

The usual arrows indicate energy transformations. That one bet-
ween I and b, depends on the stratification, for M <O the
transformation is I — b, and the opposite for > O, The mean
flow gains energy from the internal and potential one at a rate
given by - V.V or - f 9 k-[vx¥] ; the reservoir of I
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is assumed to have an infinite capacity, it is always able to

supply energy to b, and by or to t:ke in energy from other
kinds. The assumption of an infinite capacity of I 1is neces-
sary, since the PBL is steady state but looses permanently mo-
mentum,

4. The problem of the treatment of the boundary layer in GCMs

4.1, The importance of the boundary layer effects for large scale

motions

The atmosphere interacts with the underlying surface; this in-
teraction occurs through the toundary layer by vertical turbulent
transports of momentum, heat and moisture. The turbulent heat
flux coming from the surface or going to the surface represents
a considerable part of the energy sources, resp. sinks; the same
is true for the moisture flux, whereas the turbulent momentum
flux (in the boundary layer always directed downward) is respon-
sible for the rate, at which kinetic energy of the large scale
motion i8 transformed into turbuelnt kinetic energy and then dis-
sipated.

The reaction-time of the free atmosphere to these fluxes is 3-5
days, depending on the definition. That makes it necessary to
take into account the boundary layer effects in any numerical mo-
del, by which large scale motions are simulated for a period lon-
ger than this reaction time. 4
It is known, that under certain conditions an upward turbu-
lent flux of sensible and/or latent heat increases its characte-
ristic (horizontal) length-scale while passing through the boun-
dary layer; this is connected with the transition to more "orga-
nized" convective transports.
For a parameterization of the boundary layer effects one consi-
ders two separate scales, the small-scale and the somewhat larger
convective-scale. The processes on both scales are treated dif-
ferently, since only the small-scale transports are restricted
to the boundary layer, whereas on the convective scale heat and/
or moisture is sometimes transported upward far into the free
atmosphere. That is the reason why only the small-scale turbulent
transports (and their divergences) are understood as the so cal-
led boundary layer effects.

4.2. Boundary layer parameterization -~ what does it mean ?

The horizontal grid-size of the current GCMs is about 300 km,
Since the characteristic (horizontal) length-scale of the small
scale turbulent transports in the boundary layer is of the-order
of 10 meters and that one of the convective transports is of the
order vt 100 meters, these transports cannot be resolved by the
GCM. In order to take into account such sub-grid effects like
the turbulent transports one has to parameterize them, that means
one has to establish relations for the sought sub-grid parameters
as depending on the large-scale variables of the GCM. These large
-gcale variables of the GCM are called sozetimes parame -

t er &8 too, that is why we speak about parameterization (an ex-
pression very unprofitably chosen), if we relate the sought sub-
-grid parameters to the large-scale parameters (i.e. the variables
of the GCHM).
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Since the the sought turbulent fluxes (at the surface) can be
written _

Y 2 e 2 = s /e =
T}(O/g = u, , Tyo/q =V, qo/cpcg = 1V :3; . Jo/q = |v,18,
parameterization does mean relating the sought internal parame-
ters to the given external ones.

4.3. The parameterization with respect to the vertical resolution
of the GCM

Most of the current GCMs have between 5 and 8 levels in the
vertical; of course, there are some having more than a dozen, but
others have only two.

That means the vertical resolution of most of the current GCMs
allows only for one, at most for two levels within-the boundary
layer. In such cases the turbulent fluxes entering or leaving

the boundary layer at the surface must be determined only by the
variables given in the first (or in the two first) interior grid
level(s). By that one is compelled to use for the parameteriza-
tion "integrated” relationships; such relationships are valid for
the entire boundary layer, they are known as resistance law and
transfer laws for heat and moisture.

Fodels with a higher resolution in the vertical may be able to
place the lowest interior grid level in the surface layer. Then
the turbulent fluxes at the surface can be determined by the lar-
ge-scale variables in that grid level with the aid of relation-
ships resulting from the Monin-Obukhov similarity theory. Such
iwodels have some other grid levels within the boundary layer;

for those grid levels the fluxes and their divergences must be
determined too whereby additional relationships are needed for a
parameterization.

For the very simple GCMs with only two or three grid levels a pa-
Temeterization on a physical basis is not possible. The lowest
interior grid level is located outside the boundary layer, its
variables are such of the free atmosphere. Therefore on can apply
for a parameterization only an empirical bulk transfer formula,
in which the transfer coefficient has to be prescribed.

These three kinds of parameterization will be described in
chapter 5 .

4.4. The necessary assumptions of stationarity and horizontal ho-

mogeneity

As to ve seen in chapter 5 the parameterization of the boun-
dary layer effects is based on results of the similarity theory
either for the whole boundary layer or for the surface layer only.
However in both cases the similarity requires stationarity apd
horizontal homogeneity. That implies the necessity to approximate
the real boundary layer by a fictive one, which is steady state
and horizontally homogeneous., .

It means the variation with time of the external parameters (i.e.
of the large-scale variables of the GCM) is understood as a se-
quence of stationary states with discontinuous changes at times,
WIPPERMANN (1973,p.222-243) et. al., have investigated the effect
of non-staticnarity on the drag coefficient and the cross-isobar
angle during a clear day in summer. The deviaticn between ihe‘
values in the non-stationary case and those in the corresponding
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steady state case is considerable in the morning transition time
but tolerable in any other time of the day. Since most of the
current GCMs are not able to simulate the diurnal cycle (the ra-
diative energy input is distributed equally over the whole day)
no remarkable deviation will be caused by the assumption of sta-
tionarity in these models. :

On the other hind models being able to simulate the diurnal cy-
cle too need anyway a better resolution in the vertical and have
probably a grid level located in the surface layer; such models
have been found to be less sensitive to the assumption of statio-
narity.

The assumption of horizontal homogeneity does not cause an
additional error, since the lar,e-scale variables at the grid 5
points of the GCM are anyway averages over an area of about 10
km?,

5. Possible methods for the parameterization of the turbulent

fluxes

As explained in section 4.3. the kind of the parameterization
procedure depcnds strongly on the vertical resolution of the GCM,
for which the parameterizaticn has to be made. In this chapter
three different parameterization-procedures will be described.

5.1. Parameterization by using empirical bulk transfer formulas

At present most of the GCMs use for the purpose of parameteri-
zation of the turbulent fluxes at the surface bulk transfer for-
mulas with prescribed transfer coefficients, although the verti-
cal resolution of several of these models would allow a more phy-
sically based parameterization.

The bulk transfer formulae read

T/3 = = Cay Vi (5.1)
1,/(e8) = - Cpy Wyt { By - I (5.2)
3o/3 = = Conl ¥yl (B - ) (5.3)

Since the veering of the wind is not considered in such models,
a relation for the cross-isobar angle (or any other parameter for
the direction of the surface stress) is not needed.
The subscript "o" denotes the values at the surface whereas the
subscript "M" indicates values at ihe first interior grid level
of the GCM. There are some GCMs for which the 3 (resp. 8 ) and
u , v are not computed in the same grid level; in such cases the
subscript "M" refers to different grid levels and %l imn (5.2),
(5.3) must be obtained by interpolation. )
The bulk transfer coefficients Cyny , Cuy , Ciq are prescri-
bed, they are often assumed equal having a fixed numerical value.
Mostly they are obtained by running the model with different val-
ues and then chosing theose which give the-most reasonable results.
In some GCMs different transfer coefiicients are assigned for sea
and for land surfaces.
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5.2, The use of the resistance law and the transfer laws for

heat and moisture

5.2.1, The resistance law and the transfer laws for heat and
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If the real boundary layer can be approximated by a PBL, i.e,
by a boundary layer with Rossby-number similarity (see sect.3.2.),
in that boundary layer a set of "laws" can be applied, which re-
late the sought internal parameters o, , Cq , C, , C, to the gi-

oy & o
ven external ones Vg 5, VYoo 4 A% 5 N, » By 5 B,

¥ sin(ﬂh\)/Cg = N(r I G Ly) (5.4)
xcos(a,)/ ¢, = 1n( C, Ro, ) - ﬁm((kgxxg'k7) (5.5)
Ao/ €, = 1n( €, Rog ) = M (s A dy ) (5.6)
aj/ €, = 1n( C, Ro, ) - M (g ey M) (5.7)

Herein is ‘_
Ro, = ™ l/( £z ) (5.8)

the surface Rossby number and
®ho = (kh/ﬁm)o %50 ~ (ks/km)o (5.9 a,b)

The N , M, , M, , My in (5.4)-(5.7) are universal functioms, i.
e, they are independent of any external parameter; they depend
only on the internal stratification parameter 4 &nd on the two
internal (in antitriptic coordinates !) parameters XA« , Ay for
the bareclinicity. Mostly N , M, , M, , M are called B ,A , C ,
D , however in Fussian and also in sowe French papers N = A and
M, = B.

The resistance law (5.4),(5.5) was Tirst derived by KAZANSKII

and MONIN (1961) for the neutral and barotropic case; it has been
extended to diabi:tic cases by BLACKADAR (1967) and simultaneously
by MONIN and ZILITINKEVICH (1967) and later on also to baroclinic
cases by YORDAKOV and WIPYEHMAKRN (1972).
The egs. (5.4)-(5.7) can be derived in differnt ways; these are
summarized by WIFFERMANN (1973, p. 157-163). The simplest method
of derivation is based on the matching of inner and outer layer
similarity theories.

5.2.2. Tne determination of the universal functions N and M

For an application of the four equaticns (5.4) - (5.7) the
four universal functions N , M., , M. , M, have to be known. In
principle it is impossible to derive these functions (varying
with the stratification and the baroclinicity) theoretically.One
has to rely on the evaluation of measurements in the boundary
layer, whereby for N the equation (3.5) may be very useful, which
relates it to the ncondimrnsicnal displacement thickness. Unfortu-
nately only two sets of data exist (Great Plains and Wangara),
which allow such an evaluation. Several authors ZILITINKEVICH
and CHRALIKOV (1968), CLARKE (1970), CLAR:E and HESS (1974), ARYA
(1975) and others have puhlished such evaluations. In the fi§a
5.1 = 5.3 the results by AkYA (1975) are shown for N(pgm) , M. (g )}
Mh(gk); since no suffient data are available for an evaluation of

S UUUTU——
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M, , usually on puts M, = M, .

) There 18 a very large scatter of the data, especially for the
stable stratification (& > 0). ARYA (1375) gives by the thin so-

lid lines in the figures 5,1 - 5,3 the best fitted polynomials
(for the Wangara data only):

N((+,0,0) = 5.14 + 0,142 + 0.00117&.2 - 0.0000033‘u3

Mm(r,o,o) = 1.01 - 0.105p - 0.00099 2, o.ooooooar3
Mh(p~.0.0) = - 2.95 - 0,346

- 0.00187u 2 + 0.0000211 p 2
MB( t"oto) = Mh((“ ,0,0) (5.10 a-d)
With the knowledge of N , M_ and M. one is able to construct with
the aid of egs.

5.4)-(5.6) diagrams for the sought parameters
®. , Cqy y Cy as depending on Ro, and m

. The figures 5.4 and
5.5 are examples for such diagrams based on the resistance law,
They are obtained by WIPPZrMAKNN (1973, p.180) using functions N ,
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CJ‘( + Cz(ly')
- cz(k,

+ 01(17) ‘
(5.11 a,b)

The values of the constants are not yet well determined, they are
in the neutral case roughly

C1(O) = 0,1 R 02(0) = 0,2 (5.11¢)

Since the observational data are to poor for an evaluation of ihe
constants ¢, and ¢, ,one has to rely on numerical PBL-models.
Their results show a fast decrease of ¢, and ¢, with increasing
stratification; this mecans that the effect of taroclinicity may
be neglected in rather stable conditions. However for am increa-
sing instability a2lso the two ceonstiants will increase; see for
instance WIFPERMANN (1973, p.199).

H

N((‘AD’)‘:&BX‘/) - N(’.‘M,0,0) )
Mm(g"\a XKB Xy) - Mm( ‘“‘ @Oso) )

D e G o G W . i o o W s m s s e b mam o e i o o o o o o B

A practical application of the formulae (5.4)-(5.7) requires
al=o the knowledge of the surface Rossby rnucber (5.8). While s}
is computed at each grid point by the (UM &nd £ is known, the
roughness-length 2, must be prescribed for each horizontal grid
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point. Por this purpose it has to be deterrcined as a value re-
presenting ilhe rouglness averaged over an arca of about 300 m x
300 km. 1f sufficient data of ihe rou_ hness are zvailable :in
such an area one can ottain ihe needed value of 2z, by foruing
an average of the local values 2/

£, = exp{ ; Ailln(zé)]i} , ZAi = 1 (5.12)

where the subhscript "i" stands for a special vegetaticn type &nd
A; is an area-weight of that vegetation type. The logarithuic
averaging of 2! is necessary since Cq = ln(z,) , see eq.(5.5)
Scme determinaticns of this ¥ind for z, have been published, e.
g. KURG =nd LETTAU (1961). |

The z}! ranges over five orders of magnitude, the averaged val-
ues 2z, (over an area corresponding to the square of the grid -
size -of the current GCls) still range over three orders of mag-
nitude. At the present time it zeems to be hopeless to get suf-
ficient infurmaticns to ferm 2z, according to (5.12) for each
grid-point over 1:vd; for cst of the grid-points cne bas to
cuess the vaiuwes, which of ccurse will vary with the reanons. A
vrocedure of *that kind muy be still better than the use of a con-
stant value 2z, at a&ll grid-points over land as made in mwost cur-
rent GCNMs,

It +heuld be menticied, ithat the use of an overall roughness
length =2, (5.12) requiives to wurize a completely plain arca
over which the 2! are averiged (ihe square of Lhe horinuntal
grid-cize of the GCM); any saall-scele or mesc-scale topugraphy
has 1o be ncglected, 0f couree, there is no doubt, that a consi-
dernble part of the total 4 ag is-cauvsed by the topographic ir-
cegnlaritiers, tut one ist 21311 unable to drlermine it, Since the
toundary layer flow over an irregular topogriphy is horizentially
inhcmogeneous alwost all of the boundary layer theories are in-
valid, Here is a remarkable sap in our understanding of the hy-
drcdynawical procesces-in the baundary layer, it is necessary to
fill it by an enhanced reseavch work in the future,

Over the se¢a the situation is much different, since there 2z,
characterizes the stage of the sea surface, which is effected by
the surface stress itself. CHAKNOCK (1955) has given a relation-
ship by dimensional argusents, it relates g, to the surface
stress

2

= ; .1
Por the nondizersional constant ¢, a value between 20 and 30 is
appropriate; it can be shown, that a slight change in ¢, has on-
v rnazligitie effects cn the further rerulis,
Eg. (5.13) allows to eliwminzte 2z, in eq. (5.5), in which now the
(gecostrophic) ILettau-number

Le = g/(fi%.l) (5.14)

appears instead of the surface Rossby-nuwmber Ro,; the sume elimi~-
nation of 2. c¢#n be rmade in the hecat transfer law 55.63, resp.
in the moisiure transfer law (5.7). The laws (5.4)-(5.7) bave
over sea the fourm

-

l

NCey Xa X,) (5.15)
In(Le/c,) - Molp, A, X)) (5.16)

i v V) /C
x sin( )/ g

ii

x cos(«.)/ Cg
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ano/Cp = In(Te/Cl) - Mi(p, A, L)) (5.17)
a,/Cy = 1n(Le/Cg) - M;(‘ug Ay, Ay ) (5.18)

wvhere
M:_ = M, - lo(cg) , =n = m,h,s (5.19)

Instead of the diagrams in the figures 5.4a and 5.4b one can
now construct diagrams, which show Cgq and «., depending on Le
and s . Theffigures 5.5a and 5.5b are- examples for such diagrams
valid over sea, corresponding to the diagrams 5.4a and 5.4b (val-
id over land).
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while over land the surface Rossby-nuzber has to te used, for
which the roughness-length =2z, must be given, over sea the more
simple Lettau-number has to be used, which is directly provided
by the GCHM.
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(a) the stratification parameter
For an application of the relations (5.4)-(5.7) over land, resps
(5015)w(5@18) over sea one has to know the internmal stratifica-
tion parameter g = Hs/L,; however given is only the external
stratification parameter o = le (S -%} /& .The conversion of &
into ¢ requires an iterative procedure. CHALIKOV (1968) was the
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first to make such a conversion; he ap-
plied functions N , M, , M, ,which he
had evaluated vom Great Plains data set.
In the figure 5.6 a diagram for such a
conversicn is shcwn as obtained by WIiP-
PERMANN (1975), who applied functions

N , M. , M, obtained by a numerical
PBL-model. One noticws only a very small dependence on the sur-
face Rossby-rnumber suggesting to neglect that for practical pur-
poses,

(b) the parameters for the baroclinicity
Just as for the stratification also the parameters for the baro-
clinicity have to be converted from the external (provided by the
GCM) in the internal ones, which are needed. The GCM provides the
thermal wind “,- V,. probably in two components according to the
orientation of the grid. There is no difficulty to transform the-
se in a component directed along the geostrophic wind at the sur-
face v, and perpendicular to it, The thermal wind, of course, is
needed in antitriptic coordinates, but the cross-isobar angle is



not yet known and depends itself on the baroclinicity. Therefore
an iterative procedure would be necescary by applying eqs. (5.4),
(5.5). In order to save such work it mzy be sufficient to rotate
the coordinate system into the antitriptic one by the cross-isobar
angle *(Ro , #,0,0) valid in the barotropic case (as shown for
instance in figure 5.4b).

Being able to convert (with the aid of a diagram like that one
in figure 5.6 or a corresponding table) the external stratifica-
tion parameter o given by the GCM into the needed internal stra-
tification parameter M one can comxpute the sought Cg , «., Cn
and C, by eqs. (5.4)-(5.7), resp. (5.15)-(5.18) over sea. Such
computations have to be made only once. Cne obtains

over land: ao(s”,RoO) over wea: o, (6" ,Le) (5.20)
Co(0 ,Roy) C (o, Le)
Ch(G'QRoO) Ch(d’gLe)
Cs(o" BROO) o Cs(é’ ,Le)

These functions can be nomographed or tazbulated. Homograms of this
kind have been presented first by CHALIEOV (1968), who used the
Great Plain data set for the evaluvation of ihe universal functions
N &:d M needed in the compuiation, CLARKE (1970") evaluated the
functions ® and M from the Warngara data set and constructed
such diagrams too. Some other authors have given similar nomograms
As an example for such nomograms in

co.Y the figure 5.7 Cws(0" ,Ro,) is shown
UGS as constructed by WIPPERWMANN (1975)
e 0" using univers~l functions N and M

obtzined with a numerical FPBL-model.
It seems to be the time to con-
struct such nomograms (5.20) or tab-
) les by using all zvailable data,mea-
o surements as well ag results by the
different theoretical
1BL-models, every thing
reasonably weighted.

_/

Crne zhculd keep in
ind that all the nomo-
grwns mentioned above
are valid for a barotro-
pic I'BL only, since the
universal functions N
&znd M , which are nee-
ded for the construc-
tion hizve been evalua-
ted from data disregar-
¢ing the baroclinicity.
ror the time being cone
may consider the real
stmospheric boundary
layer as being approxi-
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mated by a barotropic one, since the observational data are not
yet sufficient to allow an evaluation of correct values of the
coefficients ¢, () and c,(p) in the egs. (5.11 a,d). At a
future stage one probably will have additional nomograms for cor-
rections with respect to baroclinicity

SC (Ot l. ] )~7) ? 80(0(0, 1- ’ )‘-7) 4 2:’Ch(or )‘ii 17) and
6c (0, 1., 1,) (5.21)

which of course give -~ as a first step - +these corrections
for neutral stability only.

(a) The proximity to the equator

Approaching the equator f -+ 0 and therefore Ro,—=*°,
which mzkes the forrulae (5.4)-(5.7), resp. (5.15)-(5.18) inappli-
cable; also the internal scale height H, = xu,/f — o,

In comparison to the boundary layers in middle and high lati-
tudes in the tropics a strong thermal convection is more predomi-
nant, the assumptions for a PBL are less satisfied there %e.g.
cloud induced meso-scale circulations vicolate the condition of
horizontal homogeneity). :

At the present time a boundary layer theory for the tropic atmos-
phere does not yet exist, which is suitable for the purpose of
parameterization of the surface fluxes. One has to rely on empi-
rical bulk transfer formulae with prescribed transfer coefficients
(see section 5.1.). An application of such bulk formulae will be
necessary within a latitude belt roughly 5°N > g > 5°S; {j‘(szsv
= 1.27-107% sec™ }.

(b) The determination of the temperature < and moisture. s,
In order_to form the external stratification parameter o = Le.
{3,-5,1/% by the variables of the GCM one has to know how 3 ,the
temperature in the level z,, depends on the temperature 9 in
the level z = 0; only the latter one is provided by the GCM, ei-
ther computed by an equation for the heat balance at the surface
or (in other GCMs not having grid levels in the underlying ground
or sea) given as the obscrved sea surface temperature and assumed
temperatures over ngnd.
The difference J,- J¢ cannot be simply neglected although the
vertical distance (z,) between the two levels is very small; un-
der certain conditions this temperature difference can reach a
remarkable amcunt,
MONIN arnd ZILITINKEVICH (1968) have proposed an empirical forzmula

S - & = 8,0.13 (Re)?* , Re, = uyz /v (5.22)

where v is the viscosity of the air. Unfortunately an analog re-
lation for &,- 8, is still missing.

(c) The determination of the pick-up height 24
The GCM, for which the parameterization is made, has to provide
the external parumeters, nimely Ve, Voo, & , % , 5,9 5 «In
order to pick-up the values & and 8, one has to know the
height 2, of the top of the therzal boundary layer. This height
will generally not coincide with the lowest interior grid level,
at which ihe GCM computes the 3 and B8 ; an interpolation will
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be necessary.

What is the value of 2, ? The similarity theory requires, that
Z; is proportional to the intermal scale height H, ,where the
factor of proportionality depends only on the internal stratifi-
cation parameter and on the two internal parameters for the baro-

clinicity

Z2p T Gy
There are more than a dozen proposels for the definition of 2z,
by different authors, but unfortunately most of them contain 1¥.l
instead of 'vol , 21ls0 many are restricted to a special stability
carepory. ZILITINKEVICH (1972) shows, that ¢, e m™ in stable
conditions and ¢, = (~rAy“ in unstable ones, where the latter
result is doubtful.
For the neutral case ( +:0) the following Zp = zT/Ha have been

H* 9 ZT = 04((*, )\rg )\7) - (5023)

propesed HENNA (1969) Zp = 0.50
PLACKADAR and
TENNFKES (1568) 0.62
CLARKE (1970) 0.75
ZILITINKEVICH et al. (1967) 1.00
MONIN (1970) 1.00
TEARDORFFE (1970) 1.12
SHIR (1973) - - 1.23

ETLING and WI1rXrFPEAMANN (1975) published a table of Z,-values in a
barotropic FBL with different thermal stratifications and for the
following four definitions of ZT '

(zg), = 2{* /=~ = oseg)
(Zg)e = 2( D, =0.10) , D, = (D,° + D)
(z2)g = 2( D, = 0.50)

The values given in tuble 1 have been obtained with a numerical
PBL-model

[
Table R I a0 230 2200 -10 0 10 20 30 40
5.1 (718 240 193 149 098 057 038 023 0.15 0098
1)y iys 164 122 0 84 G 4R 032 019 0.12 0080
(77)e 200 1 85 150 108 066 047 031 019 0115
(Z1)g | 092 (91 087 0.74 0.51 038 0.25 0.17 0.105

Cne ghould xeep in rind that all the ztuve piven Z,-values are
valid for the dynamical boundary layer; the values for the ther-
mal boundary layer are generally slightly different.
The error caused by an incorrectly fixed pick-up height 2, may be
rather large: the similarity theory requires that for Z z 2+ :
¥ =5 and 8 = 8, , but the GCM will in most cases (due to the
poor vertical resolution) provide a d-~ /dz # O and d§/dz # O
in the range Z > Z,; this renders the difficulties in fixing
the fictive height 2. .

At the present time most of the GCKs content themselves with
a heat input by radiation egually distributed over the whole day;
in such models the transfer laws for heat (5.6), resp.(5.17) and
for moisture (5.7),7esp.(5.18) seem to be applicable for parame-
terigation - of course, some research work has still to be done

for the determination of 2Z_ . However in GCMs, which include the
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diurnal cycle of radiative heating - and there will be more in
the future -~ these two transfer laws (and to some extent also
the resistance law) are inapplicable at least in the daytime over
land.

That is one of the reasons why some authors, e.g, DEARDORFF(1972}
2ILITINEEVICH and DEARDOKFF (1974), MELGAREJO and DEARDORFF (1974
ZILITINKEVICH and MONIN (1974), ZILITINKEVICH (1975) and YAMADA
(1976) replace the internal scale height H, by the boundary lay-
er height =z, ; this height =z, is prescribed in some way, for
instance as the height 2z, which gives the height of the lower
border of a temperature inversion. 2z, could be also defined as
the fixed height of the first interior grid intervall of the GCM,
which is even more interesting with respect to parameterization,
O0f course such a substitution implies ithat the similarity is lost.
It can be seen immediately that the sinilarity condition I = 1
with 1 according to (3.19) requires with A = g3 a scaling ve-
locity w =-f z,, which introduces via the boundary conditions a
new parameter 2, = z,/H,. This additional parameter Z, (an ex-
ternal c¢ne) appears now in the resistance law and in the two laws
for heat- and moisturc-transfer; they are derived in the same way

as eqB.(5.4)-(5.7)
‘xsin(ka)/Cg

X cos(a, C
cos(w.)/ ¢,

aho/ch

aso/cS = ]n(ZE) + 1n(Cg Roo) - Mé(ZB,tL, 1., \,)
Also the set of equations (5.15)-(5.18), which is valid cver sea,
can be modified in the saume way in order to take into account

the parameter 2z, .

In (5.24)-(5.27) the functions N' ~nd M' appear instead of

N and M 1in the eqs. (5.4)-(5.7). One rnotices that the func-
tions N' and M' are no longer universal ones, since they de-
pend on the external parameter 2z, .

By using the equations (5.4)-(5.7),resp.(5.15)-(5.18) the height
Zr is fixed, according to (5.23) it dcpends only on internal pa-
raxeters. If one uses the equations (5.24)—(5.27{, or a corre-
sponding ret valid over wsea, one is free to chose the neight =z,
in a reasonisble way, for instance 2z, = z; ,However one has to
pay for it by sacrifying the similarity. The consequence for the
practical application would be that the sought parameters will
not depend only on ¢* and Fog, (see 5,20) but also on Za .

il

N'(ZB,r » Aoy Xy) (5.24)-(5.27)

m”jh(ZB) +N1H(Céwﬁoo) - Mé(ZB'fA’ l.! XY)

1n(2g) + In(C, Ro ) - M!(Zg, py Aoy Xy)

]

ine functioms N' and N' in (5.24)-(5.27) depend in the
barotropic case on 2, , H, and L. . These three parameters _
can either be coanbined to 7, = z,/Hs and ¢ = Ha/L. as done in

(5.24)-(5.27) or to 8§ = 2z,/L. and ¢ = H./L. as done in seve-
ral other papers, e.g. ZILITINEEVICH (1975). Some authors, e.g.
MELGAREJO and DEARDORFF (1974), postulate that the functions N!
and M' d.pend only on £, , which corresponds to the assump-
tion for 2, Vbveing a function of ¢« only. There is some doubt,
that the height =z, , at which in actual ci:ses the variables are
picked up, satisfies ithat assumption; if it really does satisfy
the assumption the functions N' and M' are universal again.
At the prusent tlime there are only first atteopts made to
evaluate these stability functicns from otservational data; a
practical application of eqsu.(5.24)-(5.27) or of a similar set



of equations with €, instcad of 2, seems not yet possible.How-
ever in future days with improved GCMs it may becowme necessary to
apply such reclations for the purpose of parameterivation; then
poss‘bly also a prognostic relation for ¢, or Zp will be nee-
ded, a research area which is presently more important for air
pollution problems.

5.3. The application of the Monin-Obukhov similarity theory
5.3.1. The permissible maximum height of the first _interior_grid

i o otis B e i ke ———— - — . oy — i —— Sl e e o e " — — D — .~ o G2

If the GCM's first interior grid level, at which u and v
are computed, can be placed within the surface layer or so-called
constant flux layer, ewpirical profiles according to the Monin -
Otukhov similarity thecry can be used for the parameterization.
The question ariczes up- to which height this first interior grid
lvvel can be placed in order to be wure that the similarity still
exists. The height 2. of the surf«ce layer is mostly defined as
that height, at which the Reynolds! stiress has decreased to 90 %
of the value at the surface., fnother definition would be that
heizht, where the downwurd energy flux T- ¥ has its maximum.
VELING and WITPRAFANN (1975) have- compated th:se two heights
(z¢)e = 2(v/ v = 0.9) , (2;)2 = z( TV = wux) for different stra-
tifications in a baroiropic PBL with ihe aid of a numerical PBL-
model, In table 5.2 these heights are listed in ncondimensional
form ( Z, = 2z, /H, )

4 40 -20 0 +20 +40
(;{p)1 0.053 0.C45 0.023 0.010 0.004
(ZD)2 0.0%6 0.050 0,032 0.027 0.018

Cne notices the sireng decrease of 2z, with increasing gtatic sta-
bility.

The conclusion is, ‘hit a GUM, which chould be ~ble to treat also
very stable condiiticns (let say po> +30) rust heve its first inte-
rior grid level (for u and v) not higher than 2 = 0.007 according
to the first definition a«nd 2 = 0.022 according to the second de-
finition. Since the internal scale height H, is abcut 600 m for

o = +30 and Fo = 1-10" and a veual reourhnesc-length in middle

- &

letitades, the Tirst interior grid level :hould not be placed
higher than roughly 10 m.

5.3.2, The wind-, tompersiure and moisture grofjles in the sur-

tccording to Monin-tiuri.ov the fellewing relations are valid

in the surface layer

du/dz = @ (2/1,) u./(=2) (5.28)
iv/dz = O (5.29)
av/dz = G (2/1,) 5/ (), 2) (5.50)
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"dg/dz = Eﬁs(z/L.)s,/(aso z) (5.31)

bnr On ., b are the so-called profile-functions, they de-
pend only on § = z/L, ( = 2 in the notation of the forego-
ing section). Similar to the functions N and M in section
5.2.2. also these profile functions cannot be derived theoreti-
cally, they have to be evaluated from observations. Numerous au-
thors have presented such evaluations, here those by BUSINGER et
al., should be used

z/L, < O z/L, > O
d_ - (1 -152/1,)" "4 O =1+ 4.7 2/1, (5.32 a,b)
By = 0.74(1 - 9 2/1,)" 2 = 0.74 + 4.7 2/1, (5.33 a,b)
o, = Py (5.34)

After replacing the profil-functions in (5,28)-(5.31) by the em-
pirical relationships (5.32)-(5.34) the former equations can be
integrated over z from 2z, up to an arbitrary beight 2z ( < z°).
One obtains p

U(z) = xi/u, = In(z/z,) - v (2/T.) , 2/5,<0 (5.35a)
Vi(z/3.) = 1n{[1+ 812 [1+ 621/8] + 2 tang(d))
u(z) = va/u, = In(z/2) + 4.7 z/L, , 2/L,>0 (5.35b)
O(z) = (3-8)/3, = 0.74 { In(z/z ) - v (z/1.)} (5.36a)
z/L,< 0~
v, (2/5,) = 1 {]1 + 0.74 O} /2]
z) = (§-3)/% =0.74 In(z/z) + 4.7 z/1, (5.36Db)
z/Ly>0

—— v - ———— i —t o e e i s o B e i mm = - ey — ——————— — —

Unfortunately the sought parameters u, and & appear not
only on the left-hand side of the eqs. (5.35),(5.36), they are
21so contained in the Obukhov stabilitry-length I, = ul&F/(xgh)
on the right-hand side. This stability length has io0 be obtained
by a ccnversion from an external stability parameter,_which is
provided by the GCM, e.g. the temperature difference § -~ 3, bet-
ween the grid level at =z, and the surface. More convenient is
to use a bulk-Richardson-number as extermal stratification pa-

rameter

— »—A — — 2
o = B gl Sgp - V(S 8grT) (5.37)
Dividing (5.37) by L. one gets the relation between 2z, /L, and
the bulk-Richardson-number Ri :

Ri

o : 3
2o1/Ta = % Rigy Gy 61/Cq 61 (5.38)

The conversion of the externmal stability parameter RiGL provided

a —
Netice  imat C“LL' u.‘,u:‘_

. - -
Ch e CJ V. ',3-‘,_ B
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by the GCM into the needed internal stratification parameter § =
2,./L, is attained by an iterative method using the egs. (5.32) -
(5.36); it yields z./L,=f(Ri., z./Zo). This allows to determine
from (5.32)-(5.36) the parameters ‘

uy (g, Rigr, 251/%.)
F (Fgy= Fg0 Rigy » 261/2,)
8, (851,840 Rigps 201/7,)

Herewith nomograms can be constructed giving directly the trans-
fer coefficienis needed in the foriiulae for the fluxes at the sur-
face

'fo/§ = Cd,GL(RiGL’ 201,/ 20) ﬁgL _ _ (5.39a)
a,/(e ) = Cp o (Rigr, 201/2,) o L Fgp, = 3l (5.390)
Jo/9 = CssGL(RiGLg za1/24) 6L {81, = 8!} (5.39¢)

Usually one assumes C,¢ = Cnc ; the transfer coefficients depend
on the two external parameters Ri,, and 2 /%. . Nomograms for
the transfer coefficients depending on these two external parame-
ters have been constructed for example by ARYA (1976). Similar
nomograns for ul/fu,, and /{ -3 ), both depending on Rie.
and z_/z, are given by 2ITLITI KEVICH (1970) &nd in a slightly
different form by CLARKE (1970).

Similar to ihe heat and woisture transfer laws the tempera-
ture J; and moisture 8, is needed in the eqs. (5.36a),(5.36b)
(and similar equations for the moisture), whereas the GCM pro-
vides only 8, and 8, , the values directly on the surface. For
the determination of the needed values at z = 2z, see the sec-
tion 5.2.6.(b).
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In most cases, in which the first interior grid level is lo-
cated within the surface layer, one or more further grid levels
will fzll inside the tcurdary layer. £lso at this levels the tur-
bulent fluxes and their divergences must be determined.

For this purpose the use of the flux-gradient relationship is re-
cormended here whereby the profiles Xk, (z) and k,(z) should

be prescribed. For such a prescription WIFFERMANN (1974) propo-
ses an empirical formula, cttained by a pumerical PBL-model:

km(z) = U, o expz~ 05([4)[2/HA0°764} (5.40)
with values of c¢c¢ an given in table 5.3
{xA ""40 “"30 ""20 ““‘10 U +1O +20 Table 563

cg | 1.6 2.1 3.0 4.8 7.8 14.8 27.8

u, and therefore H, as well as = B.,/L., &are known from the
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values at the surface, where

2
(M = % Rogy Rigy Cp 1 / C4 gp (5.41)
with Ro,; = u, /(£ ZGL) .

For k,.(z) one assumes that the ratio kn(2)/X.(2) observed in
the surface layer (e.g. BUSINGER et al. 1971) should be valid in
the whole PBL:

ap = kh/km = §m/ g)h

(1 + 4.7(«4Z)/(0.74 + 4.7‘uZ) M 0

(1 - 9(*Z)1/2/(1—15[*Z)1/4 <0
(5042 a,b)

Because of the shape of the k.,-profiles, see fig.3.8, it may be
useful to form layer-averaged values (according to the vertical
grid size) to be applied in the detecrmination of the turbulent
fluxes.

Of course, the formula (5.40) is applicable only in a PBL, i.e.
in a boundary layer in which the temperature profiles increase
or decrease monotonously with height. If a high vertical resolu-
tion enables the GCM to simulate also temperature inversions,
the formula (5.40) becomes inapplicable. In such cascs one has
to make wddiiional computations for the k.(z) and k(z) possibly
by using the equation for the turbulent kinetic energy with a
closure hypothesis for the length-scale). .

il
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8. List of symbols

A,B,C,D-= Similarity functions in
eqs8.(5.4)-(5:7); here
denotes as M, ,N M, ,N,

ABL = Atmospheric RBoundary Layer

A, =

i Weighting factor in tre de-

termination of Zg
kh/km (turb.Prandtl number)
kB/km (turb.Schmidt number)

kinetic energy of mean flow

]

i

]

turbulent kinetic

il

energy

€. = s8pecific heats

v

i

u,/iv,.| geostroph.driag coeff,

3./(3,-5) heat transfer co-
eff, (Stanton num-
ber)

QO O 06 o o
B W & B w DP

i

L]
]

s,/(s; - s_,) nmoisture trans-
fer coefficient
(Dalton numrbter)

o
i

u x(u-1u_)/u, non-dinens,
€ veloclity defect
(x-compenent)

(v - v_)/u, ron-dimens,
velocity defect
(y-component)

(:5 - §T)/ 3&

nondimensional
temperature defect

o)
!

nondimens. eddy
flux of momentum
(x~component)

norndimens,. eddy
flux of momentum
(y-component)

F,o= T,/ (3ul)

&)
li

© /(qul)

txi
V4
i

q/(cPQUQS;) nendimens. eddy

fiwux of heatw

&)
i

nondimens. eddy
flux of moisture

o = 3/(qu.s.)

Coriolis parameter

i

2w sin(y)

gravitational acceleration
« = Xu,/f
= ¥/ T
internal energy per vol.

il

internal scale heighﬁ

juof e ol 1 B Y

external scele height
I = cvqT

I =1TA /w
k = vertical unit vector

3 turbulent flux of
moisture

abbreviation

g s'w!

8

km,kh,ks = turbulent diffusion
coefficients for mo-
mentum, heat and
moisture

Km’Kh’Ks = nondimensional turbu-

lent diffusion coeff.
E = kf/(x*u?)

Le = g/(flv,.) geostrophic Let-
tau number

L, = —cp@u?/(ac(Sqo) or

~e qui/ 1% (ag+ b 3,))
Otukhov stability length
for a dry or moist bounda-
ry layer

~— - 2 — —

L= Veo /ip(’s&’l‘ “&o)}
external stability length

i

{ = nixing-length

L, = £ /A, nondimens. mixing
length

M ,M ,M_ = Similarity functions

m’h*s in €98.(5.5)-(5.7)
usually called A,C,D

(IR L TR V.E B 35 d . :

Mm’ﬁh’ms = Similarity functions

in egs.(5.25)-(5.27)
usvally called a,c,d

N = Similarity function in edq,

(5.4), usually called B

Similarity function in eq.
(5.24), usually called b

pressure

N =

= Plinetary Boundary Layer

turbulent flux of
sensible heat

Iﬁg/(f zo) surface Rcssby
number

_'Q"
[ g"vw::
P
ro =

grid level
Rossby number

surface Reynolds
number

Rogq, = ugy /(L 2g,)
Re, = u,z_/v

8 = specific humidity

Sg = < 30/(K.§u¢) characteristic
noisture fluctuation

T = teaperature

U = velocity outside the bounda-

Ty layer
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U = wu/u, nondimensional velocid
ty {x-component)
u = velocity component (x-direc.)
u, = friction velocity, x-comp.
V = xv/u, nondimensional velo-
city (y-component)
v = velocity component (y-direc)
v, = friction velocity, y-comp.
¥ = horizontal velocity
v, = (IE;V§)1/2 friction veloc,
X = dislance from the edge
2 = z/H, nondimeneional verti-
cal ccordinate
z = vertical coordinate
2y = roughness-length
Z, = (x Cg Roo)—? nendimensio-
nal roaghne:-s-1,
a'y = cross-isobar angle

g/ %

boundary layer thickness

buoyancy factor

P
il

& -

displacement thickness

E = rate of energy dissipation

® = /% nondimensional poten-
tial (virtual) trazpe-
rature

pl
i

potential (virtual) tempe-
rature

reference tecmperature

214
"

scaling temperature

- 9,/(xep g u,) o

~(q, + b j )/ (x 5 9 u,)
characteristic texperature

filuctuation for a dry or
moist boundary layer

= v, Karsan's constant

> &

scaling length
1 =

Xx' external parameters
y for the taroclinicity

(geostraphic coordin.)

A,. = internal parazeters
¥ for the biroclini-
city (antitriptic co-
ordinates)
ror definition see p.5

A

¥x?

H /L = intermal stratifi-
cation parameter

{l
kinematic viscosity

@m'@h’éa

i

= nondimensional
(universal) pro-
file functions for
momentum, heat and

moisture
q = density
o = H/L = external stratifica-
tion parameter
T, = - §u'w' eddy momentum
flux (x-compon.)
T, = — §v'w' eddy momentum
y flux (y-compon.)
Subscripts
g = grostrophic
h = for heat
GL = Grid level (= M , page 19)
m = for momentum or '
for mean motion
P = denoting the'upper border
of the surface layer
8 = for moisture or
denoting the surface at
z = 0
T = denoting the top of the
bcundary layer
t = for turbulent
u,v = for one of the velocity
components
o = denoting the height 2z = Z4
3 = for the temperature
(or heat)
*+ = denoting an internal para-
meter
Other s mbols
() = denoting a large-scale va-
riable provided by the GCM

dencting a layer-averaged
value





