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Satellite-informed fuel estimation using hybrid data assimilation L ECMWF

Executive summary

This deliverable presents the final outcomes of the Fuelity project, which aims to improve the represen-
tation of fuel variables in the SPARKY-fuel model through the physically constrained use of satellite
information. To achieve this, we combine satellite observations with land surface modelling using a
hybrid data assimilation framework implemented in the European Centre for Medium-Range Weather
Forecasts (ECMWF) ecLand-integrated forecasting system (IFS).

The system ingests three complementary satellite data streams: L-band vegetation optical depth (VOD-
L) -SMOS- and solar-induced fluorescence (SIF) -TROPOMI- to update a monthly leaf area index (LAI)
climatology, and advanced scatterometer (ASCAT) backscatter to constrain upper-layer soil moisture.
These observations are integrated using a simplified extended Kalman filter (SEKF), which updates the
model background while accounting for uncertainties in both the satellite signals and the physical model,
ensuring that analysis increments remain physically consistent.

Two machine-learning models, an extreme gradient boosting (XGBoost) model and a multilayer per-
ceptron (MLP) neural network, were evaluated as observation operators to map satellite observations to
their model-equivalent counterparts. The models were trained on 8-daily data over 2019-2020 to predict
SIF and VOD-L from meteorological conditions, vegetation and soil states. XGBoost was retained as
it provided the most effective balance of simplicity, flexibility, interpretability, and predictive skill. The
operator reproduced the satellite-driven seasonal cycle with high fidelity: Validation against an inde-
pendent 2021 dataset showed that LAI explained 67% of the variance in SIF and 72% in VOD-L, with

corresponding RMSE values of 0.12 and 0.16 m?> m~2.

On the basis of this validation, the data assimilation framework was used to produce a 25-year global
satellite-informed reanalysis of live fuel moisture content (LFMC) using the SPARKY model definition.
Compared with a climatology-based LFMC benchmark, the reanalysis substantially improves the de-
piction of seasonal variability, drought response, and interannual fluctuations, with the greatest benefits
observed in semi-arid and fire-prone ecosystems.

The system was further evaluated across three main application domains:

* Vegetation dynamics: Improved representation of phenology, drought-induced canopy decline,
and fuel desiccation during major fire events.

* Fire forecasting: Earlier detection of fuel drying and improved spatial localisation of high-risk con-
ditions, supporting the potential for near-real-time (NRT) integration into operational fire danger
systems.

* Numerical weather prediction: Improved short-range forecasts of lower-tropospheric and near-
surface temperatures (1000 hPa, 850 hPa, and 2 m).

These developments provide a scalable, observation-driven framework for global fuel estimation. The
framework enabled the generation of satellite-constrained LFMC fields over more than 20 years. Its
modular structure also creates clear pathways for future extensions to dead fuel moisture and fuel load
as additional satellite missions become available, allowing progressively more complete and physically
consistent fuel characterisation.
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Introduction

Major ecosystems of the world—boreal forests, shrublands, grasslands, and savannas—experience re-
current fires driven by natural causes or human activities (Di Giuseppe et al., 2016, 2021; Hantson et al.,
2022). While fire weather components, such as temperature, have shown an increasing trend from the
early 1980s to the present (Burton et al., 2024; El Garroussi et al., 2024), burnt areas trends have declined
over the same period (Burton et al., 2024). This offset between worsening fire weather and reduced burnt
areas reflects the influence of human activities, such as agricultural expansion, land-use changes, and fire
suppression, in modulating fire outcomes (Abatzoglou et al., 2025). These contrasting trends have gener-
ated significant interest in understanding fire behaviour in relation to fuel characteristics, availability, and
distribution (Carmona-Moreno et al., 2005; Hood et al., 2022). Fuel moisture remains one of the most
influential determinants of fire danger; however, its observation is limited by the sparse, labour-intensive
nature of in-situ sampling. Field measurements typically rely on destructive sampling of vegetation,
which is costly to sustain over large areas and introduces methodological inconsistencies and observa-
tional uncertainty (Yebra et al., 2024). For instance, recent empirical work in the United Kingdom has
shown that point-scale fuel moisture measurements often fail to capture the heterogeneity of surrounding
landscapes, leading to substantial spatial mismatches even in ecosystems that appear relatively homoge-
neous (Little et al., 2024; Ivison et al., 2024, 2025). These limitations underscore the need for spatially
continuous, observation-driven estimates of fuel moisture that can be integrated with fire danger rating
systems and atmospheric monitoring frameworks that incorporate biomass-burning emissions (Fleming
et al., 2009).

Recently, ECMWF developed a diagnostic fuel framework that integrates land-surface modelling, mete-
orological variables, and satellite observations (McNorton and Di Giuseppe, 2024). This system provides
daily global updates of vegetation characteristics at 9 km resolution, including attributes of live and dead
foliage and woody components. These fuel descriptors support the SPARKY probability of fire (PoF)
model (McNorton et al., 2024; Di Giuseppe et al., 2025), which currently relies on a climatological
LALI field to represent vegetation structure. While this offers a stable baseline, its predictive skill can
be limited during anomalous seasons or rapid vegetation changes. Incorporating Earth observation (EO)
data through data assimilation has the potential to replace the climatological constraint with dynamically
evolving vegetation states, thereby improving both the timeliness and relevance of SPARKY-PoF for
near-real-time fire forecasting and monitoring.

Efforts to address this limitation have highlighted the value of assimilating satellite-derived variables to
better capture vegetation dynamics in land-surface models (Rosnay et al., 2013; Al-Yaari et al., 2014;
Kumar et al., 2019; Garrigues et al., 2025). Building on this principle, the Fuelity project combines
complementary observations, VOD-L and SIF, to improve estimates of key fuel properties. A cen-
tral component of data assimilation (DA) is the observation operator, which translates model variables
into observational space (Courtier et al., 1994). The choice of observation operator strongly influences
assimilation performance and spans several approaches, including physical forward models, empirical
operators, and data-driven emulators. Physical forward models rely on established physical principles to
simulate the measurement process; for example, radiative transfer models that describe the interaction
of radiation with vegetation canopies and soils (Verhoef, 1984; Jacquemoud and Baret, 1990; Widlowski
et al., 2015). These models offer high fidelity and physical consistency but are computationally de-
manding, making their application challenging at global scales or high spatial resolution. Empirical
observation operators, on the other hand, exploit statistical relationships derived from historical data,
such as cumulative distribution function (CDF) matching, to map model states to observations. Such
methods are computationally efficient and straightforward to implement (Calvet et al., 2023; Reichle
and Koster, 2004; Drusch and Viterbo, 2007), but they may oversimplify nonlinear or heterogeneous
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processes. More recently, data-driven emulators, including machine learning (ML) approaches, have
emerged as powerful alternatives. These methods do not require explicit physical descriptions and can
capture complex, nonlinear relationships in the observational data space, which is particularly advanta-
geous for vegetation-related variables (Reichstein et al., 2019; Camps-Valls et al., 2021; Bonan et al.,
2023). ML-based operators therefore provide a flexible and computationally efficient route to represent-
ing processes that are otherwise difficult to model explicitly.

In this report, we outline the Fuelity framework designed to improve LFMC by updating LAI and soil
moisture in the SPARKY formulation using the SEKF within the ECMWF ecLand-IFS system. Section I
introduces the datasets and satellite products used in this work. Section II describes the data assimilation
framework, including the observation operators and SEKF configuration. Section III presents the results,
assessing the impact of the updated fuel states on vegetation dynamics, fire forecasting, and numerical
weather prediction.

1 Data

1.1 Satellite datasets

a SMOS L-band vegetation optical depth b Solar induced-fluorescence
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Figure 1: Satellite-derived datasets used in this study. Panels show global snapshots for August 2021
from: a SMOS L-band Vegetation Optical Depth (L-VOD), b TROPOMI Solar-Induced Fluorescence
(SIF), and ¢ ASCAT surface soil moisture.

In this study, we use three satellite-derived variables that capture complementary aspects of the vege-
tation—water system relevant to fuel dynamics: VOD-L (Fig. 1a), SIF (Fig. 1b), and near-surface soil
moisture from ASCAT (Fig. 1c).

The variables, listed in Table 1, are retrieved from distinct satellite missions: VOD-L from SMOS MI-
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RAS radiances, SIF from the TROPOMI spectrometer, and soil moisture from ASCAT C-band radar
observations. L-band VOD-L (1.41 GHz) represents the attenuation of the microwave signal as it prop-
agates through the canopy. The degree of attenuation increases with canopy water content and biomass,
making VOD-L a physically based measure of vegetation optical thickness at microwave wavelengths.
The long wavelength of L-band reduces saturation effects and enables deeper canopy penetration, giving
VOD-L strong sensitivity to above-ground biomass and vegetation water content (Rodriguez-Fernandez
etal., 2018; Ulaby et al., 1981). As such, it provides a robust proxy for changes in live fuel moisture and
canopy structure. ASCAT soil moisture is retrieved from C-band radar backscatter and reflects variations
in near-surface soil water availability. Although vegetation contributes to the signal, ASCAT-based re-
trieval algorithms primarily respond to soil dielectric properties, providing reliable estimates of surface
soil moisture. Because soil moisture constrains plant water uptake, ASCAT soil moisture offers essential
information on the hydrological conditions influencing live fuel moisture. SIF provides an independent
constraint on vegetation physiological activity by measuring the weak chlorophyll fluorescence emitted
during photosynthesis. SIF depends on absorbed photosynthetically active radiation and photosynthetic
efficiency, and it declines under water stress and stomatal closure (Guanter et al., 2021). It therefore
offers a sensitive indicator of early vegetation stress and fuel desiccation.

Table 1: Characteristics of the global satellite-derived variables used in this study.

Variable VOD-L SIF ASCAT Soil Moisture
Satellite SMOS Sentinel-5P MetOp-A/B/C
Sensor MIRAS TROPOMI ASCAT
Frequency band (GHz) L-band (1.41) NIR (743-758 nm window) C-band (5.255)
Swath (km) 1000 2600 550

Spatial resolution (km) 25 35x%x5.5 12.5-25
Temporal resolution daily 8-daily daily
Reference Al Bitar et al. (2017) Guanter et al. (2021) Wagner et al. (2013)

1.2 Model datasets
1.2.1 ECMWEF land surface model - ecLand

The ECMWEF land-surface modelling system, ecLand, is based on the HTESSEL (Hydrology Tiled
ECMWF Scheme for Surface Exchanges over Land) model (Balsamo et al., 2009; Boussetta et al.,
2021), which represents vertical movements of soil moisture using the equations of Richards (1931).
The soil column is discretised into four layers with thicknesses of 0.07, 0.21, 0.72, and 1.89 m from top
to bottom. The vegetation representation in ecLand relies on a tile approach that accounts for dominant
low (grassland, crop, shrubland) and high (forest) vegetation. In the current version of ecLand used in
the IFS, vegetation parameters such as LAI are specified as seasonally varying climatological monthly
mean maps in the ECMWF numerical weather prediction (NWP) system. This climatology uses the lat-
est Copernicus Land Monitoring Service (CLMS) LAI dataset (1993-2019) from the CONFESS project
(Boussetta and Balsamo, 2021) and has been shown to have a significant impact on quality. One of
the main weaknesses of the current approach is that inter-annual variability in vegetation is not taken
into account. Year-to-year differences in vegetation can be significant, driven most notably by land use
change, as well as by fire events, meteorological extremes such as droughts or above-average rainfall,
and fluctuations in 2-metre air temperature. These variations have become even more pronounced in re-
cent years due to the effects of climate change. Soil moisture estimates could benefit from incorporating
dynamic vegetation indicators like LAI, which can help update soil moisture by providing more accurate,
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Figure 2: A schematic of the SPARKY-fuel model, illustrating the required input data and the dependen-
cies for the output variables.

seasonally relevant vegetation states. These differences tend to be especially large during the transition
seasons, spring and autumn, when vegetation characteristics change most rapidly as part of the annual
cycle. This is particularly true in mid-latitude regions, where seasonal conditions vary the most.

1.2.2 SPARKY

SPARKY (McNorton and Di Giuseppe, 2024) is a diagnostic fuel model developed at ECMWF to pro-
vide spatially and temporally resolved estimates of live and dead fuel properties for wildfire danger
prediction (see Fig. 2). It combines ecLand land-surface prognostic variables (including soil moisture,
LAI, vegetation biomass, and meteorological drivers) with empirical and process-based formulations to
estimate LFMC, dead fuel moisture, fuel load, and derived quantities relevant to fire behaviour. SPARKY
partitions vegetation into structural components (e.g., foliage, fine woody material, coarse woody mate-
rial) and computes moisture states for live and dead categories using physically informed relationships
that link vegetation water status, atmospheric demand, and soil moisture availability. The live compo-
nent relies primarily on ecLand leaf area index, canopy water content proxies, and environmental stress
indices, whereas the dead component is driven by vapour pressure deficit, temperature, relative humidity,
and surface moisture dynamics. These fuel properties are then passed to the SPARKY-PoF (McNorton
et al., 2024) diagnostic to characterise fire danger. Because SPARKY is diagnostic, its accuracy depends
strongly on the realism of the underlying vegetation and soil moisture states.

ESA Contract Report 7
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1.3 Independent validation datasets
1.3.1 Satellite-derived LAI observations

For vegetation, we use the observed CLMS LAI 300 m product (Verger et al., 2019), which provides
10-day global composites at 300 m resolution and is widely used for ecosystem monitoring and land-
surface modelling. The consolidated RT6 version was resampled to an 8-day frequency to align with the
temporal resolution of the SIF observations assimilated in this work.

Although CLMS LAI 300 m offers high spatial detail and operational continuity, the reliance on machine-
learning inversion introduces several limitations, including sensitivity to the training domain, residual
inconsistencies under dense canopies, and potential artefacts during rapid vegetation transitions. Addi-
tional structural changes were introduced in July 2020, when Sentinel-3 OLCI replaced PROBA-V as
the primary sensor, modifying the spectral inputs and influencing the temporal consistency of the re-
trievals. This is particularly relevant here because the CONFESS project’s LAI climatology (Boussetta
and Balsamo, 2021) was based on the GEOV?2 long-term LAI dataset (Baret et al., 2013), which merges
SPOT-VGT (1999-2014) and PROBA-V (2014-2019). Consequently, the 2021 CLMS LALI fields dif-
fer from the CONFESS climatology due to interannual variability, the transition from PROBA-V to
Sentinel-3, and changes in the retrieval methodology. To ensure consistency with the long-term CON-
FESS record, the CLMS LAI was bias-corrected before use. This correction was performed using a
machine-learning approach comparable to the CDF-matching method applied in CONFESS (Boussetta
and Balsamo, 2021). To characterise vegetation seasonality, we derived the 2021 amplitude of the bias-
corrected CLMS LAI 300 m product, calculated as the difference between the annual maximum and
minimum LAI after resampling to an 8-day frequency (Fig. 3). The resulting map shows large seasonal
variations across temperate, boreal, and semi-arid regions, and comparatively low variability in tropi-
cal evergreen forests. This provides a reference for the magnitude and spatial pattern of observed LAI
dynamics used in the assimilation framework.

1.3.2 ISMN in situ soil moisture observations

For soil moisture, we used in situ observations from the international soil moisture network (ISMN)
(Dorigo et al., 2021), which compiles quality-controlled point measurements from multiple regional
and national monitoring networks. These ground-based observations serve as a reference standard for
assessing the accuracy of satellite- and model-derived surface soil moisture estimates.

1.3.3 MODIS active fires

Active fire detections were obtained from the MODIS Collection 6.1 Active Fire product, which provides
globally consistent observations of thermal anomalies derived from the 1 km fire channels on board the
Terra and Aqua satellites. The algorithm identifies actively burning pixels using contextual tests that
compare the thermal signal of each pixel with that of its surrounding neighbourhood, enabling robust
discrimination between fires and other hot surfaces. MODIS active-fire detections are widely used for
global fire monitoring due to their long observational record, twice-daily sampling from the combined
platforms, and rigorous calibration and validation. Although the product inevitably misses small or
short-lived fires and may be affected by cloud cover and overpasses, it remains one of the most reliable
long-term datasets for characterising fire occurrence and timing at regional to global scales.
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Figure 3: Global seasonal amplitude of the CLMS 300 m LAI product, computed as the difference be-
tween the annual maximum and minimum LAI after resampling to an 8-day temporal frequency. High
amplitudes in temperate and boreal forests, savannas, and semi-arid regions reflect strong seasonal cy-
cles in canopy development and senescence, whereas tropical evergreen forests exhibit markedly lower
variability.

2 Methodology

2.1 Live fuel moisture derivation

The SPARKY (see section 1.2.2) formulation was used to derive LFMC from LAIs and soil moisture,
treating these variables as proxies for canopy water status and vegetation condition. A semi-empirical
model was fitted using Globe-LFMC samples to estimate LFMC globally at a daily 9 km resolution. The
model assumes an asymptotic response of LFMC to LAI and soil moisture and is expressed as:

LFMC = LFMCpx — Ae—(aLAI—i—ﬁSM—}—'yLAI-SM)’ (1)

where LFMC,,x represents the vegetation-specific upper bound of LFMC and A denotes the range be-
tween minimum and maximum values. The coefficients ¢, 8, and y govern the sensitivities to soil mois-
ture, LAI, and their interaction, respectively, capturing drought resistance and growing-season uptake
effects within a compact formulation. Parameters were estimated using a trust-region reflective optimi-
sation applied separately to seven vegetation functional types (crops, short grass, evergreen needleleaf
forest, deciduous broadleaf forest, mixed crops—grassland, deciduous shrubs, and broadleaf savanna)
based on subsamples of the Globe-LFMC dataset. The remaining types were assigned the closest ana-
logue. LAI was obtained from the CONFESS dataset (Boussetta and Balsamo, 2021) at a monthly 9 km
resolution, and soil moisture was sourced from ERAS-Land (Mufioz-Sabater et al., 2021), aggregated
according to ecLand rooting-depth distributions (Boussetta et al., 2021).
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2.2 Land data assimilation framework

ERA-5 atmospheric forcing
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Fuel variables analysis

Soil moisture
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LFMC: diagnostic based on LAI and SM

Figure 4: Schematic of the data assimilation system for LAI analysis: Satellite observations of VOD-
L and SIF are assimilated using SEKF to update LAI, from which LFMC is diagnosed. A machine
learning-based observation operator is used to map model variables to observation space.

In the system implemented for this study, we use an offline DA setup (except for Section 3.3.3, where
online DA is used to evaluate the impact on NWP skill), meaning that the analysis corrections do not
feed back into the atmospheric forcing (de Rosnay et al., 2022). The state vector includes soil moisture
from the top three soil layers (SM;;.3) and LAI. For the computation of the LFMC analysis, increments
of LAI and the three top layers were applied; no increment was applied to the deepest soil layer (SMy4).

The observation vector, background state vector, and observation operator are structured as follows:

¥ - X — H(xP) = @)
VODy, VODLJJ
SIF LAl SIF,

We use the notation VODy instead of "VOD-L" in mathematical formulations to avoid confusion with a
minus sign.

In Equation 2, variables highlighted in represent the existing observations and model states al-
ready assimilated into the system. Specifically, 2-metre temperature (2mT) and 2-metre relative humidity
(2mRH) pseudo-observations, along with ASCAT soil moisture observations, were assimilated to im-
prove soil moisture estimates in the top three model layers. Variables highlighted in purple correspond
to the newly assimilated datasets introduced in this study, specifically VOD-L and SIF, to enhance the
representation of LAL
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As described in Drusch et al. (2009), the background error covariance matrix (B) and the observation
error covariance matrix (R) were assumed to be static and diagonal, with diagonal terms defined by error
variances (Gg for background errors and 62 for observation errors). The values in Table 2 represent the
final configuration retained for the assimilation system. They were selected based on sensitivity exper-
iments in which background and observation standard deviations were systematically varied to assess
their impact on assimilation performance. A larger observation error (0,) results in smaller analysis
increments, giving more weight to the background, while smaller observation errors increase the influ-
ence of observations. Similarly, larger background errors (0p,) increase the weight of observations in the
analysis.

Table 2: Standard deviation values (0}, for background errors and 6, for observation errors) retained for
this study. These values define the diagonal terms of the background error covariance matrix (B) and the
observation error covariance matrix (R).

Variable Standard Deviation Unit
Background variables (c},)

Soil moisture (top three layers) 0.01 m’ m—3

LAI 1 m? m—2
Observation variables (c,)

2-metre temperature 1 K

2-metre relative humidity 4 %

ASCAT soil moisture 0.05 m? m—3
VOD-L 0.16 unitless

SIF 0.12 mWm 2 s nm™!

Background errors for soil moisture, 2-metre temperature, 2-metre relative humidity, and ASCAT soil
moisture follow the statistics reported in K. Scipal, M. Drusch, and W. Wagner (2008); Rosnay et al.
(2013). The LAI background error standard deviation was set to a static value of 1 m? m~2 based on sen-
sitivity analysis and is consistent with literature reporting typical static LAI errors in the 0.4—1.2m> m 2
range (Sabater et al., 2008; Albergel et al., 2018; Barbu et al., 2011; Garrigues et al., 2025). LAI was
assimilated against a climatological background representing the mean seasonal cycle, which does not
capture interannual or synoptic variability. Its associated uncertainty was intentionally inflated toward
the upper range of literature values to reflect spatial heterogeneity, model structural limitations, and ob-
servation—-model mismatches. Assigning a larger background error allows the analysis to place greater
weight on observational information. Observation error standard deviations for SIF and VOD-L were
derived from O-B statistics over the year 2021. Desroziers diagnostics Desroziers et al. (2005) applied
to single-observation-type assimilation experiments indicated similar error magnitudes despite imperfect
convergence.

The Jacobian matrix H was computed via finite differences as follows:

B T2m7pert 1—Tom T2m7p9r12 —Tom T2)7Lpert3 —Ton T2m7pert4 —Tom T
OSM;, OSM), OSM)3 SLAI
RHZm?pert 1 7RH2m RHZmﬁpertZ 7RH2m RHZanerrS 7RH2m RHZanert4 7RH2m
oMy o5Mp SSM3 SLAT
H-— SMit_pern1 —SMitascar SMi1_per2—SMpi ascat - SMi1_per3—SMi1 ascar SMi_pera—SMi1 ascat
- 0SM;, 0SM), OSM3 SLAI
VODL?penl 7VODL VODLJ)ertZ*VODL VODL?perB 7V0DL VODLiperM*VODL
0SM;, 0SM), O0SM)3 SOLAI
SIF pers1 —SIF SIF pera—SIF SIF per3—SIF SIF persa—SIF
L 0SM;, 0SM), O0SM)3 OLAI J
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Following Drusch et al. (2009), the soil moisture perturbations (8SM;;.3) were set to 0.01 m*>m~3. Simi-
larly, the LAI perturbation (§LAI) was set to 0.01 m?>m~2 based on sensitivity analysis.

In this study, the assimilation of VOD-L and SIF was intentionally restricted to updating only the LAI
component of the state vector, with their sensitivities (Jacobians) with respect to soil moisture set to zero.

Table 3: Summary of XGBoost features.

Variable Input Category Frequency | Source Reference
2m Temperature Weather Daily ERAS5-Land Muiioz Sabater
(2t) etal. (2021)
2m Dewpoint Weather Daily ERAS5-Land Muiioz Sabater
Temperature (2d) et al. (2021)
Surface Weather Daily (acc.) | ERAS5-Land Muiioz Sabater
Short-wave (solar) et al. (2021)
Radiation
Downwards (ssrd)
Soil Moisture Weather/Fuel Daily ERAS5-Land Muiioz Sabater
(swvl) et al. (2021)
Soil Temperature Weather Daily ERAS5-Land Muiioz Sabater
(stl) etal. (2021)
Total Fuel Load Fuel Daily Fuel Model McNorton and
Di Giuseppe
(2024)
Dead Fuel Fuel Daily Fuel Model McNorton and
Moisture Content Di Giuseppe
(2024)
Leaf Area Index Fuel/Vegetation 10-daily Satellite Fuster et al. (2020)
(LAID) (Copernicus
Global Land
Service, LAI 300m
v1.0)
Type of Vegetation | Vegetation Fixed ecLand Boussetta et al.
(2021)
Vegetation Cover Vegetation Fixed ecLand Boussetta et al.
(2021)
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2.3 Observation operators
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Figure 5: Comparison of observed (TROPOMI in blue) and predicted (XGBoost in orange) seasonal
cycles of SIF across major vegetation types in 2021. The XGBoost model closely reproduces the satellite-
derived seasonal cycle for six representative biomes, accurately capturing both the phasing and amplitude
of seasonal variations.

Two machine learning models were developed as ML-based observation operators, XGBoost and MLP,
and trained to predict the model-space equivalents of satellite SIF and L-band VOD-L using a common
predictor set. Their predictive performance was broadly comparable; however XGBoost was selected
for integration into the assimilation framework due to its numerical stability, ease of implementation,
and greater interpretability, which supported the verification of physically consistent predictor—response
relationships. The XGBoost operator was trained on 8-day data for 2019-2020, matching the temporal
frequency of SIF, and evaluated using an independent dataset from 2021. Predictors were temporally
aligned with the satellite record and preprocessed to ensure internal consistency. The final set (Table 3)
comprises fuel-related variables, LAI, surface and deep soil moisture, near-surface meteorological con-
ditions, and vegetation-type information. LAI from the CLMS 300 m product was resampled to an 8-day
cycle, and all experiments were conducted at TCO1279 (~ 9 km) resolution. Regularisation parame-
ters were tuned to maintain stable behaviour across biomes, using a split penalty of v = 2.0, L, and L,
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terms of A = 5.0 and o = 2.0, a minimum child weight of 10, and a subsampling fraction of 0.6. An
avenue for further development is to compare the analytically derived Jacobians available from the MLP
with finite-difference Jacobians computed from the XGBoost operator to assess their consistency and
potential suitability for future assimilation configurations.

3 Results

3.1 Observation operator performance

The XGBoost-based observation operator reproduced the satellite-driven seasonal cycle for both SIF and
VOD-L across major vegetation types. Validation against an independent 2021 dataset showed that LAI
explained 67% of the variance in SIF and 72% in VOD-L, with RMSE values of 0.12 and 0.16 m?m~2,
indicating strong sensitivity to vegetation structure and seasonal dynamics. Figure 5 illustrates this be-
haviour for SIF, showing close agreement between observed and predicted seasonal cycles across six
representative biomes. The operator captured the timing and amplitude of the annual cycle, including
pronounced mid-year peaks in crops and savannas, as well as weaker variability in evergreen systems.

3.2 25-year live fuel moisture reanalysis

The assimilation system was first evaluated for 2021 to assess its impact on vegetation and soil states.
Comparisons with ISMN showed that the increments applied to surface soil moisture were small and
did not yield systematic improvements. In contrast, assimilating SIF and VOD-L produced substantial
adjustments to the LAI climatology, correcting its amplitude and phase to reflect the observed seasonal
cycle and interannual variability. This improvement provided a basis for applying the system over a
longer period to produce a multi-decadal record of LEMC. The assimilation was therefore applied from
1999 to 2024 to produce a 25-year satellite-informed LFEMC reconstruction at approximately 9 km resolu-
tion. When LAl-related satellite observations were unavailable—particularly before the launch of SMOS
and TROPOMI—the system relied on the CLMS LAI product to maintain continuity in vegetation con-
straints. The resulting LAI analysis, together with the soil moisture field taken from ERAS5-Land(Mufioz
Sabater et al., 2021), was subsequently combined through Equation 1 to produce the updated LFMC.
Figure 6a shows the spatial pattern of the mean LFMC increment for August, with positive corrections
in boreal and temperate ecosystems where the climatological LAI underestimates peak-season green-
ness, and negative corrections in semi-arid regions where vegetation activity is overestimated. Figure 6b
presents the corresponding LFMC anomalies over 2003 to 2022, highlighting coherent year-to-year vari-
ations driven by global drought patterns and shifts in vegetation productivity. Together, these results
demonstrate that the assimilation provides physically consistent adjustments to vegetation state, enabling
a long-term LFMC dataset that reflects both satellite-observed variability and model dynamics.

Table 4: Data availability for the LEFMC reanalysis. The table lists the dataset produced in this study and
the corresponding access link.

Dataset Access
LFEMC reanalysis (1999-2024) 10.24381/378d1497
XGBoost model Github/Fuelity/XGBoost
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a LFMC increment, spatial mean for August
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Figure 6: Assimilation-driven adjustments and long-term variability in LFMC. a Spatial pattern of the
mean LFMC increment for August, expressed as the difference between the analysis and model back-
ground. Positive increments indicate higher LEMC after assimilation, while negative increments indicate
reductions. b Latitude—time distribution of LFMC anomalies for 2003-2022, computed relative to the
20-year reference climatology. Colours represent departures from the long-term mean LFMC at each
latitude.
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LAl anomalies from climatology, lagged observations, and analysis
Portugal wildfires, July 29, 2025
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Figure 7: LAI anomalies during the Portugal wildfires on 29 July 2025. a Bias-corrected CLMS LAI on
31 July. b LAI anomaly relative to the July climatology. ¢ Change in LAI between 20 and 31 July, with
MODIS active fires on 29 July. d Difference between observations on 31 July and the analysis on 29
July.

3.3 Impact evaluation

We assessed the impact of the assimilation on vegetation and surface conditions during the 2025 boreal
summer (June—August), a period characterised by strong seasonal gradients in fuel moisture and high
fire activity across mid-latitude regions.

3.3.1 Vegetation dynamics

Late July 2025 in Portugal was marked by persistent heat and low humidity, with dry northerly winds
limiting moisture availability across much of the country. Vegetation conditions reflected this pattern
(Fig. 7). The first LAI observation available after the event, on 31 July, shows a marked reduction in
foliage over the affected areas. When compared with the July climatology (Fig. 7b), these observations
reveal substantial negative anomalies, indicating the extent to which vegetation conditions had diverged
from the long-term seasonal state under the prevailing meteorological conditions. Because the CLMS
product is available only every 10 days, the change between 20 and 31 July (Fig. 7c) captures part of this
decline but cannot fully resolve the progression of the canopy downturn. The analysis on 29 July (Fig.
7d) reduces this observational lag by adjusting the vegetation field towards the low-LAI state emerging
during the event, providing a more representative estimate than either the climatology or the most recent
observation.

3.3.2  Fire forecasting

To evaluate whether the behaviour identified in Portugal also appears across larger spatial scales, we con-
ducted a regional analysis over the Mediterranean, where vegetation seasonality and fire occurrence differ
markedly between subregions. We used the SPARKY PoF model with three LAI LAI "flavours" as in-
puts: climatological (CLIM), analysed (DA), and near-real-time observed from CLMS (NRT), and com-
pared the resulting modelled signals with MODIS active-fire detections. Across the Western Mediter-
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Mediterranean subregions
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Figure 8: Sensitivity of SPARKY Probability-of-Fire (PoF) to different LAI forcings across the Mediter-
ranean. Top: Definition of the Mediterranean subregions used in the analysis: Western (WMED), Central
(CMED), and Eastern (EMED). Bottom: Regional time series of SPARKY-PoF forced by three LAI con-
figurations: climatological LAI (CLIM), analysed LAI (DA), and near-real-time LAI (NRT), compared
with MODIS active fire detections.
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ranean (WMED) and Central Mediterranean (CMED), the three LAI configurations exhibit very similar
seasonal behaviour, which is consistent with the weak vegetation seasonality characteristic of these re-
gions. Consequently, the SPARKY-PoF curves produced using climatological, analysed, and NRT LAI
differ only slightly, with each providing a comparable match to the observed pattern of fire activity. In
contrast, the Eastern Mediterranean (EMED) (Fig. 8) shows a clearer separation between the LAI fields.
The climatological LAI produces a smooth seasonal cycle and does not capture the sharper mid-summer
reductions visible in the satellite record. The NRT and DA LAI forced PoF follow a more pronounced
decline, with similar timing and magnitude.

When used as forcing for SPARKY-PoF, both the NRT and DA LAI configurations produce a stronger
and more temporally aligned pre-fire increase in fire probability than the climatological LAI. The anal-
ysed LAI produces a slightly sharper transition due to the assimilation updates, but the overall behaviour
is consistent between the two satellite-informed versions.

3.3.3  Numerical weather prediction
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Figure 9: Verification scorecard for near-surface meteorological variables. Scorecard summaris-
ing the impact of using analysed LAI in the IFS compared to the climatological configuration for
June—July—August 2025. Colours indicate changes in forecast skill across regions and 10-day lead times.
Blue squares denote improved performance, while red squares indicate degradation. Only differences
that pass a 95% significance threshold are shown.

Although NWP performance was not a primary objective of Fuelity, evaluating the atmospheric response
to vegetation corrections is essential for understanding the broader implications of satellite-informed land
states. We therefore performed online integrations of the IFS over June, July, and August, during which
the analysed LAI replaced its climatological baseline. In this configuration, departures in vegetation
state directly influence surface conductance, evapotranspiration, and the partitioning of available energy,
allowing vegetation anomalies to feedback into near-surface meteorology. Across different global re-
gions, the score fields display a systematic atmospheric response to the updated vegetation forcing (Fig.
9). In the Northern Hemisphere mid-latitudes, where the analysed LAI experiences widespread nega-
tive anomalies linked to early drying and canopy loss, the forecasts show warmer (Fig. 10) 1000 hPa
and 2 m temperatures, along with lower 2 m dew-point temperatures (Fig. 11). This combination of
higher temperatures and lower moisture is consistent with a boundary layer receiving less evaporative
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cooling. Although surface fluxes were not explicitly diagnosed in this study, the pattern is physically
indicative of reduced evapotranspiration and enhanced sensible heat flux. Such behaviour is expected
when the canopy becomes sparser or water-limited, reducing transpiration and increasing the fraction of
net radiation converted into turbulent heating of the near-surface air. The signal weakens in the Southern
Hemisphere and the tropics, where differences between analysed and climatological LAI are smaller and
vegetation phenology exerts less seasonal control on surface fluxes in the IFS.

Time-varying, observation-informed vegetation states can affect short-range forecasts. As parts of the
IFS land scheme have been fine-tuned for the use of climatological LAI, adopting analysed vegetation
states may require revisiting these routines and could explain the degradation in the 2 m dew-point.
While a systematic exploration of the full flux pathways lies beyond Fuelity’s scope, the results high-
light the broader relevance of vegetation analysis for coupled prediction systems and motivate further
investigation into land—atmosphere feedbacks.

Change in field mean in T (AN_LAI-CLIM_LAl)

8-Jun-2025 to 31-Aug-2025 from 85 to 85 analyses.
Cross-hatching indicates 95% confidence with Sidak correction for 20 independent tests.
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Figure 10: Latitude—pressure structure of temperature changes. The difference in mean temperature
(DA-LAI - CLIM-LAI) for forecasts initialised between 1 June and 31 August 2025 is presented. Panels
display latitude—pressure cross-sections at lead times ranging from 12 to 168 hours. Warm colours indi-
cate higher temperatures in the experiment using analysed LAI, while cool colours denote lower values
compared with the climatological-LAI configuration. Cross-hatching marks regions where the differ-
ences are significant at the 95% confidence level, using a Siddk correction for 20 independent tests.
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Change in field mean in R (AN_LAI-CLIM_LAI)

8-Jun-2025 to 31-Aug-2025 from 85 to 85 analyses.
Cross-hatching indicates 95% confidence with Sidak correction for 20 independent tests.
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Figure 11: Latitude—pressure structure of the change in relative humidity. The difference in mean rel-
ative humidity (DA-LAI — CLIM-LAI) for forecasts initialised between 1 June and 31 August 2025 is
presented. Panels display latitude—pressure cross-sections at lead times from 12 to 168 hours. Warm
colours indicate higher relative humidity in the experiment using analysed LAI, while cool colours in-
dicate lower values compared with the climatological-LAI configuration. Cross-hatching marks regions
where the differences are significant at the 95% confidence level using a Siddk correction for 20 inde-
pendent tests.

Conclusion

Fuelity has demonstrated that live fuel moisture is a critical driver of extreme fire behaviour; however,
the scarcity of in-situ LFMC measurements forces operational systems to rely almost entirely on satellite
observations. By showing that LAI—the primary large-scale proxy of LFMC—is observed only every
10 days and is therefore unable to capture rapid fuel transitions, Fuelity has leveraged additional obser-
vations such as VOD-L and SIF to improve our understanding of vegetation water content. Crucially,
the project proved that linking these datasets requires a physical model, as purely observational meth-
ods introduce artefacts and inconsistencies, whereas a data-assimilation framework delivers physically
coherent estimates across the full range of fuel variables. Fuelity’s new LEMC product could provide ac-
curate, real-time live fuel moisture information that substantially enhances existing fire danger datasets,
and its success reinforces the Global Climate Observing System’s recognition of LFMC as a priority
variable to be added to the essential climate variables for monitoring climate-driven fire adaptation.
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