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ERA5-ecPoint

Abstract

Accurately estimating rainfall distributions, from small to extreme totals, is crucial for addressing
various environmental challenges, including flood forecasting, water resource management, and dis-
aster preparedness. Global Numerical Weather Prediction (NWP) models can provide useful rainfall
estimates; yet, they often misrepresent point-scale observations from rain gauges, underestimating
the frequency of small rainfall totals and underestimating extreme values. This study provides a
systematic, global verification of four NWP-modelled rainfall datasets with different resolutions -
ERA5’s Ensemble Data Assimilation (62 km, probabilistic), ERA5’s short-range forecasts (31 km,
deterministic), short-range ECMWF reforecasts for cycle 46r1 (18 km, control run), and ERA5-
ecPoint (point-scale, probabilistic) - against 20 years of point-rainfall observations from rain gauges
around the world. The models’ ability to represent the entire rainfall distribution, including extreme
rainfall, was assessed. Overall, the higher spatial resolution of NWP models enables a more accurate
representation of gauge-based climatologies. Nonetheless, ERA5-ecPoint provides the most accurate
representation, capturing the frequency of zeros, the growth rates of rainfall totals, and the wet tails
more accurately. Moreover, due to its probabilistic nature, ERA5-ecPoint can estimate long return
periods (e.g., 1000 years and more), offering insights into extremely rare or unprecedented events at
specific locations. The model significantly improves performance in flat, hilly/mountainous regions.
In very mountainous areas (e.g., the Andes), it underestimates zero rainfall totals and overestimates
the length of the wet tails. These findings underscore the importance of using post-processing to
enhance the local-scale validity of global NWP models. Moreover, as climate change intensifies
extreme rainfall events, these findings are crucial for estimating accurate long-period rainfall cli-
matologies, as needed for effective mitigation and resilience building, particularly in areas lacking
comprehensive and reliable rain gauge records.

Plain language summary

Historical rainfall datasets, modelled with global weather prediction models, enable us to manage wa-
ter supplies and prepare for water-related disasters seamlessly around the world. Yet, these models
often struggle to match measurements taken by rain gauges at specific locations. They may over-
estimate the small rainfall totals (including the zeros) whilst underestimating the big rainfall totals
that might cause disastrous (flash) floods. This research compared four different weather model sys-
tems against twenty years of rain gauge (point-scale) measurements from around the world. Three
models had spatial resolutions ranging from very coarse (62 km, ERA5-EDA) to much finer (31 km,
from ERA5, and 18 km, from reforecasts). The fourth model post-processed ERA5 rainfall estimates
using the post-processing technique ecPoint (ERA5-ecPoint) to obtain point-scale rainfall estimates
that closely mirror rain gauge measurements. The study examined how well each model captured
the distribution of point-scale rainfall measurements, including extremes. This study demonstrates
that while finer resolution generally improves accuracy, ERA5-ecPoint represents the distribution of
point-rainfall estimates better, including extremes. This system can estimate extremely rare events
(e.g., 1 in 1000 years), providing crucial information for infrastructure planning and risk assessment.
The model works particularly well in flat and hilly/mountainous regions. It may encounter difficulties
in very mountainous areas such as the Andes, where it underestimates small rainfall totals and over-
estimates extreme rainfall. These results highlight that even as weather models improve, additional
processing remains essential for producing reliable local rainfall estimates, which are particularly
vital as climate change intensifies extreme rainfall events worldwide.

1 Introduction

Accurately estimating the full range of past and future rainfall distributions, from light to extreme totals,
is one of the biggest challenges in modern meteorology. Yet, it is essential to address a range of critical
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issues. In flood forecasting, accurately estimating the spatial distribution of small and extreme rainfall
totals influences the catchment response to the rainfall event, impacting runoff generation and streamflow
patterns (Cuo et al., 2011; Wang and Karimi, 2022). In water resource management, understanding the
full rainfall distribution informs the management of reservoirs for flood control, power generation, and
irrigation purposes (Tie et al., 2023). It also helps in agricultural applications such as crop selection and
planting schedules (Janmohammadi and Sabaghnia, 2023; Maurya et al., 2024). It also supports urban
planning by helping to design effective urban drainage systems and manage storm-water runoff (Hossain
et al., 2024; Laouacheria et al., 2019). Analysing changes over time in the entire rainfall distribution pro-
vides insights into climate change impacts such as shifts in the frequency and intensity of extreme rainfall
events (Tye et al., 2022), droughts’ characteristics (Haile et al., 2020), biodiversity and ecosystems stabil-
ity (Lamprecht et al., 2021), and food security (Balasundram et al., 2023). Extreme rainfall, in particular,
has received significant attention in recent literature (Gimeno et al., 2022; Schumacher, 2017) due to its
catastrophic impacts for society, infrastructure, and the environment (IPCC, 2023; WMO, 2024). It not
only reduces worldwide macroeconomic growth rates and slows global economic rise (Liang, 2022), but
also can cause long-term anxiety and post-traumatic stress on affected communities, hindering recovery
efforts (Doocy et al., 2013). With climate change expected to intensify both the frequency and severity of
extreme rainfall, even in regions where average precipitation is decreasing (Asadieh and Krakauer, 2015;
Westra et al., 2014; Zittis et al., 2021), understanding its past and anticipating future trends is crucial to
inform disaster preparedness and response efforts.

Precipitation time series can be obtained from various sources. Rain gauges are a primary source of
ground truth. They provide highly accurate direct point-scale precipitation measurements when prop-
erly maintained and calibrated (Lanza and Stagi, 2008). In regions with dense networks, rain gauges
offer a good spatial representation of localised extremes (Haiden and Duffy, 2016). Moreover, stations
have been operating for decades in some locations, providing high-quality long-term historical records
for trend analysis (Anand and Karunanidhi, 2020; Tadeyo et al., 2020). Rain gauge coverage is notably
spatially and temporally uneven, leaving many regions unmonitored (Kidd et al., 2017). In areas with
complex topography or low-density networks, gauges may fail to represent the rainfall’s spatial variabil-
ity (Di Curzio et al., 2022). Inadequate rain gauge maintenance can also lead to data gaps or inaccuracies
(Lanza and Stagi, 2008). Satellite- and radar-derived gridded datasets provide broader spatial and tem-
poral coverage, particularly in ungauged regions (Herold et al., 2017). Their rainfall estimates may,
however, differ from rain gauge measurements, especially extremes which might be severely underes-
timated and mislocated (Ensor and Robeson, 2008; Gupta et al., 2020; Satgé et al., 2020). Numerical
Weather Prediction (NWP) models, such as reanalyses and reforecasts, offer spatially and temporally
consistent precipitation datasets with global, multi-decadal coverage. Reanalyses, like ERA5 and its En-
semble Data Assimilation (EDA) component (Hersbach et al., 2020) or NCEP/NCAR Reanalysis (Hamill
et al., 2022; Kalnay et al., 1996), integrate historical weather observations with a state-of-the-art NWP
model to produce high-resolution precipitation datasets. Reforecasts, such as NCEP’s Global Ensem-
ble Forecast System (Hamill et al., 2006) and ECMWF’s Integrated Forecast System (Richardson et al.,
2014), provide 20-30 years of retrospective forecasts generated with current operational NWP models.
Reanalyses capture rainfall’s spatial patterns and temporal trends (Lavers et al., 2022) but tend to under-
estimate extreme precipitation due to their coarse resolution of about 50 or 30 km (Alexandridis et al.,
2023; Donat et al., 2016; Espinosa et al., 2024; Gomis-Cebolla et al., 2023)1. Reforecasts also capture
rainfall’s spatial patterns and temporal trends, but still underestimate extreme precipitation even though
their resolution is half (i.e. 18 km) (Hewson, 2024)2. Statistical post-processing methods can enhance the

1Note that the studies comparing both ERA5 and ERA5-Land against rain gauge observations are considered in this study
only for their analysis of ERA5. These are somewhat flawed as ERA5-Land simply re-grids, without any statistical or dynamical
downscaling, the precipitation in ERA5 onto ERA5-Land’s grid (Muñoz-Sabater et al., 2021).

2Nowadays, we have reforecasts at 9 km resolution, but Hewson (2024) showed that extremes do not get much bigger in the
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local-scale representation of rainfall (Giorgos et al., 2024), but their effectiveness commonly depends on
the availability of high-quality observations, leading to a patchy geographical coverage of post-processed
reanalysis/reforecasts (Vannitsem et al., 2021). The post-processing method proposed by Hewson and
Pillosu (2021), called ecPoint, improves the local-scale representation of NWP model outputs globally,
particularly for extremes, without requiring high-density observational networks, using a non-local cal-
ibration strategy. The ecPoint approach was applied to ERA5 for rainfall and temperature through the
Highlander project (Hewson et al., 2023; Bottazzi et al., 2024).

The primary aim of this study is to assess the fitness-for-purpose of the ERA5-ecPoint dataset by com-
paring its representation of point rainfall climatologies around the world against the rain gauge-based
equivalent. A secondary goal is to evaluate the impact of spatial resolution on the representation of
point rainfall climatologies from three additional datasets: ERA5’s Ensemble Data Assimilation (EDA,
62 km resolution), ERA5’s short-range forecasts (31 km), and ECMWF 46r1 reforecasts (18 km). Two
research questions are, therefore, examined. How do NWP models represent the overall distribution
of point-rainfall observations (RQ1)? How do NWP models represent, in particular, extreme rainfall
(RQ2)? With this goal, one could develop a climatological analysis of extreme rainfall trends over long
periods (+80 years) or put extreme rainfall or flooding events into a climatological context. The study is
organised as follows. Section 2 describes the rain gauge observations and the NWP models used in this
study. Section 3 describes the methods adopted to answer the research questions. Section 4 presents the
results from the objective verification and a case study, while Section 5 discusses them. Final remarks
are drawn in Section 6.

2 Data

2.1 Point-scale rain gauge precipitation observations

This study considered 24-hourly precipitation from surface synoptic observations (SYNOP) from the
Global Telecommunication System (GTS) network and additional gauge data stored internally at ECMWF.
SYNOP observations consist of standardised, historical and near-real-time meteorological reports that
ensure data quality and format consistency across diverse regions. High-density national rain gauge net-
works (primarily from European countries and available internally at ECMWF) were also integrated into
the analysis (Haiden and Duffy, 2016). The rain gauge rainfall observations underwent manual quality
control to remove erroneously high rainfall totals that would have disproportionately affected the up-
per tails of the point-scale rainfall distributions. The rainfall timeseries were inspected for anomalous
spikes, outliers, and odd constant values inconsistent with station and regional climatologies. Flagged
values were cross-checked against nearby stations and through the independent CPC Global Unified
Gauge-Based Analysis of daily rainfall dataset (gridded, at 50 km spatial resolution)3, and removed if
confirmed to be erroneous. If not corrected, the erroneous high point-rainfall totals could have signifi-
cantly distorted the upper tails of the observed precipitation distributions, leading to inaccurate results.
Rain gauge observations stored at ECMWF have increased considerably since the 2000s. Thus, we con-
sider a 20-year verification period between the 1st of January 2000 to the 31st of December 2019. Only
observations ending at 00 UTC were considered, for a total of 7300 sets of daily precipitation realisations
within the 20-year verification period (Table 1, row 1). Many rain gauge stations had missing data. To
ensure that the timeseries were representative of the considered 20-year period, only sites with at least
75% of valid recordings were considered, which reduced the number of sites in the database from 28834

9 km reforecasts than in the previous lower resolution reforecasts at 18 km resolution.
3https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
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to 4546.

2.2 Gridded NWP-modelled precipitation estimates

2.2.1 ERA5 Reanalysis (ERA5) and ERA5 Ensemble Data Assimilation (ERA5-EDA)

ERA5 is the fifth generation of atmospheric reanalysis produced by the Copernicus Climate Change
Service (C3S) run by ECMWF (Hersbach et al., 2020). Compared to its predecessor, ERA-Interim,
ERA5 offers high spatial ( 31 km) and temporal (hourly) resolution and extended temporal coverage
from 1940 to near-real time. ERA5 assimilates a diverse range of observational data from satellites,
weather balloons, aircraft, and ground stations, employing a 4D-Var assimilation system. This system
not only improves the accuracy of the data by adjusting it in four dimensions but also enhances the
continuity and stability of the climatological records. No precipitation observations are assimilated into
ERA5 (Hersbach et al., 2020).

The ERA5 Ensemble Data Assimilation (EDA) system enhances the robustness of the ERA5 reanalysis
by generating multiple simulations with slightly varied initial conditions (Hersbach et al., 2020). Each
ensemble member in ERA5 EDA provides an equally probable realisation of the atmospheric state, quan-
tifying the uncertainty associated with observational errors and limitations within the forecasting model
itself. ERA5-EDA has 10 ensemble members, running at 62 km spatial resolution and 3-hour temporal
resolution.

To match the rain gauge observations, ERA5 and ERA5-EDA data between the 1st of January 2000
and the 31st of December 2019 were extracted, and only 24-hourly precipitation ending at 00 UTC was
considered. Hence, ERA5 precipitation distribution was built with 7300 realisations, while ERA5-EDA
distribution, considering the 10 ensemble members as equally probable precipitation realisations, was
constructed with 73000 realisations (Table 1, rows 2 and 3).

2.2.2 ECMWF Reforecasts

Reforecasts are retrospective weather forecasts generated with a fixed NWP model version. The re-
forecast uniformity (i.e., with no discrepancies caused by historical changes in model configurations)
ensures that differences in climatological patterns are attributable to actual atmospheric variations rather
than artefacts of evolving model technologies. To match the temporal span of the precipitation obser-
vations as closely as possible, reforecasts from the ECMWF’s IFS 46r1 cycle were considered - since
46r1 run operationally from June 2019 to June 2020, the reforecasts span from the 1st of July 1999 to
the 30th of June 2019. 46r1 reforecasts are provided at 18 km spatial resolution, and are produced only
on Mondays and Thursdays. They consist of an ensemble of one control run and 10 perturbed members,
produced at 00 UTC with a 6-hourly resolution up to t+1104 (day 46). The control and the perturbed
members’ model configurations (e.g., resolution, parametrisations) are the same. However, the control
run uses the best estimate of the initial conditions (i.e., the operational analysis), and it has been shown
to have a different precipitation climatology than the perturbed members. Hence, in this study, only the
control run was used. Since reforecasts have fewer realisations per year (as they are produced only on
Mondays and Thursdays), we increased the precipitation realisations by considering lead times up to day
10 as equally probable precipitation realisations. This was possible as there was no drift in the forecasts
up to day 10 (not shown). Hence, the precipitation distribution built with ECMWF reforecasts contains
20800 realisations (Table 1, row 4).
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Figure 1: Characteristics (columns 1 to 5) of the considered observational datasets and NWP models
(rows 1 to 5), and their derived climatologies (columns 6 to 8).

2.2.3 ERA5-ecPoint

Within the Highlander project, co-financed by the EU and coordinated by Italy’s Cineca supercomputing
centre, ECMWF’s ecPoint post-processing technique was applied to the raw ERA5 ”deterministic” fields
to address ERA5 limitations (Hewson et al., 2023). ecPoint aims to infer sub-grid variability and to cor-
rect biases (both according to ongoing weather and geographical scenarios). The ERA5-ecPoint dataset
spans from 1950 to the near-present, providing a long-term, continuously updated record of 24-hourly
point-scale rainfall estimates with an accumulation period ending at 00 UTC. The dataset is provided in a
probabilistic format, i.e. in percentiles 1,2,... 99. Currently, ERA5-ecPoint represents point-scale precip-
itation, but it is provided on its native (reduced Gaussian) grid at 31 km spatial resolution (TL639). The
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99 percentiles can be considered equally probable precipitation outcomes, at a gauge within a grid-box,
so that the precipitation distributions are built with 722700 daily realisations (Table 1, row 5).

3 Methods

3.1 RQ1: assessment of the representation by NWP models of the overall distribution of
point-rainfall observations

The assessment of how well NWP models represent the overall distribution of point-rainfall observations
is conducted by assessing the similarity between observed and the NWP-modelled rainfall distributions
over the 20 years. The modelled estimates are extracted at the rainfall observation locations, considering
the modelled value at the nearest grid-box. This approach is regarded as standard practice for rainfall,
as interpolation may reduce extremes. This study adopts the method proposed by Gudmundsson et al.
(2012), which assesses the similarity between the Empirical Cumulative Distribution Functions (ECDFs)
of the observed and NWP-modelled rainfall estimates, constructed with the empirical percentiles (Boé
et al., 2007). The similarity is assessed by averaging the Mean Absolute Errors (MAE) at corresponding
xth percentiles:

MAE =
1
n

n

∑
i=1

∣∣tpOBS(x
th
i )− tpNWP(x

th
i )

∣∣ (1)

n = 99 percentiles

MAE values are expressed in mm and range from 0 (for perfect similarity) to +∞ (for poor similarity).
Graphically, the MAE represents the areal difference between the two ECDFs (Figure 2a)4. Ninety-nine
percentiles (1st to 99th) were used to avoid contamination related to sampling issues in the observational
dataset. Moreover, more extreme rainfall events will be considered separately.

Gudmundsson et al. (2012) methodology was, however, adapted to compare ECDFs from different cli-
matologies. MAE values were normalised (MAENORM) to avoid having consistently bigger MAE values
in wetter climates (see Figure 2b and Figure 2c). The normalisation consists of computing dimensionless
coefficients by dividing MAE by the corresponding station’s average observed rainfall:

MAENORM =
MAE

average(tpOBS)
(2)

To guide the reader on what was considered by the authors a better or worse similarity degree, Figure 2d
shows a selection of MAENORM values for different similarity degrees between ECDFs. Four categories
of similarity degrees were subjectively defined: MAENORM values below 0.1, in black, indicate a ”good”
degree of similarity, MAENORM values between 0.1-0.3, in blue, indicate an ”acceptable” degree of simi-
larity, MAENORM values between 0.3-0.5, in green, indicate an ”intermediate” level of similarity degree,
MAENORM values between 0.5-1, in yellow, indicate a ”poor” degree of similarity, and MAENORM values
greater than 1, in pink, indicate a ”very poor” degree of similarity.

4The Mean Error (ME) or Bias could have also been used to measure the similarity between the ECDFs. These two
measures, although complementary, can, however, provide very different pictures, as we could have big MAEs while the MEs
could be very small if they cancel each other. Moreover, the ME has already been computed for ERA5 by Lavers et al. (2022)
to assess its performance in climate monitoring. Results from both studies will, however, be compared in the discussion section
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Figure 2: Panel (a) shows a schematic representation and computation of the Mean Absolute Error
(MAE) and the Normalised Mean Absolute Error (MAENORM) for total precipitation (tp). Panels (b) and
(c) show how the values of MAE change for drier and wetter climates, respectively, and how dividing
them by the average of the observed precipitation helps to normalise the MAE values for different cli-
matologies. Panel (d) shows examples of MAENORM values for different degrees of similarity between
ECDFs: black, blue, green, yellow, and pink represent, respectively, a ”good” (less than 0.1), ”accept-
able” (between 0.1 and 0.3), ”intermediate” (between 0.3 and 0.5), ”poor” (between 0.5 and 1), and ”very
poor” degree of similarity (greater than 1). The observational distribution is shown in grey.
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Formal statistical tests such as Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-Darling can
also assess the similarity between two distributions (Stephens, 1974). However, for large sample sizes
(as in this study, see Table 1, row 6), the tests’ statistical significance levels become extremely sensi-
tive to minor differences between distributions that might not be practically significant (Engmann and
Cousineau, 2011; Janssen, 2000). This is being referred to as ”the problem of practical insignificance”
(Kirk, 1996), where the test flags differences that are statistically significant but not meaningful in prac-
tice, causing the rejection of the null hypothesis (i.e., the two samples come from the same population)
when it is nonetheless practically valid. Gudmundsson’s approach was tested to assess whether it was
as sensitive to sample size as the formal statistical tests. The ECDFs were sampled with 99, 999, 9999,
and 99999 percentiles to assess the sensitivity of MAENORM to the choice of sampling resolution. The
results showed negligible differences across the range of percentiles tested (not shown). Moreover, Gud-
mundsson’s approach assesses similarity between the observed and NWP-modelled rainfall distributions
by comparing the whole ECDFs differently to other formal tests that assess similarity only for specific
moments of the distribution, such as the mean, standard deviation, skewness, or specific percentiles (An-
thanahalli Nanjegowda and Kulamulla Parambath, 2022). Finally, the use of MAE concerning other
commonly used scores, such as the Root Mean Squared Error (RMSE), is preferable as it is not unduly
sensitive to outliers (e.g., caused by erroneous observations or atypical events), typically observed in the
wet tails of the distribution. Hence, MAE should be more representative of the distribution as a whole
(Jolliffe and Stephenson, 2011). Moreover, the RMSE is more appropriate when errors follow a normal
distribution, which is very atypical for rainfall (Chai and Draxler, 2014). Nonetheless, the RMSE was
computed for the examples shown in Figure 2d, and its property of giving more weight to the larger
errors (in the wetter part of the distribution) did not change the ranking obtained with the MAENORM
between the different CDFs in 2d (not shown), reassuring the reader that using MAE instead of RMSE
should not change the final picture.

Maps plotting MAENORM values at different rain gauge locations are shown to compare the performance
of the four analysed NWP models. The maps are accompanied by pie charts that summarise, for specific
regions, the percentage of locations falling in the five MAENORM categories defined in Figure 2d (<
0.1, between 0.1 and 0.3, 0.3 and 0.5, 0.5 and 1, and > 1). The regions considered are North America,
South America, Europe, the Mediterranean, Africa, the Arabian Peninsula, Asia, and Oceania. Finally,
a selection of representative ECDFs for all four models against their corresponding observed point-scale
precipitation distributions is also shown, to illustrate some differences between the observed and the
NWP-modelled precipitation estimates.

3.2 RQ2: assessment of the representation by NWP models of extreme rainfall

The assessment of how well NWP models represent extreme rainfall is conducted by visually comparing
the precipitation maps for the 10-year return period to pinpoint geographical differences in estimating
extreme precipitation. The 10-year return period was considered because it is the most extreme precipita-
tion event that it was possible to compute with the observational dataset in hand (Table 1, columns 7 and
8, row 1), even though larger events could have been calculated with the NWP-modelled precipitation
estimates (Table 1, columns 7 and 8, and rows 2 to 5). The 10-year return period may be exceeded by
10 values in ERA5-EDA, 1 to 2 values in ERA5, 2 to 3 values in the reforecasts, and 100 values in
ERA5-ecPoint. A lower number of values exceeding the considered return period may make its estimate
noisier. To complement the general global comparison between observed and NWP-modelled extreme
precipitation, 24-hourly precipitation estimates from a case of widespread flash floods in Italy are pre-
sented. Italy was chosen because, out of all countries in our database, it has the rain gauge network with
the highest spatial resolution. This is vital for a case-study-based analysis of extreme rainfall events, as
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it increases the chances of capturing extreme localised totals.

4 Results

4.1 RQ1: comparison of rainfall distribution climatologies

Out of all NWP-modelled precipitation estimates, ERA5-ecPoint reproduces observed point-precipitation
distributions best. This can be seen by the larger percentage of small MAENORM values (depicted by the
black dots) in Figure 3e compared to Figure 3b-d, where there are bigger percentages of larger MAENORM
values (depicted by the coloured dots). ERA-ecPoint increases the number of MAENORM values in the
black category by a factor of 10, 30, and 27 compared to the reforecasts, ERA5, and ERA5-EDA, re-
spectively (see piecharts and tables in Figure 3a-e). In the baseline NWP models (ERA5-EDA, ERA5,
and ECMWF reforecasts), the proportion of grid points with the very high similarity between observed
and modelled precipitation (”black” dots) remains consistently low, below 2% in most regions, except in
North America, where reforecasts reach about 4%. In South America, the raw NWP models do not yield
any such high-similarity points, whereas applying ERA5-ecPoint boosts this proportion to 13%, with
representation along Brazil’s eastern coast looking particularly good, in relative terms. At the opposite
extreme, points with poor similarity (”pink” dots) are substantially reduced when using ERA5-ecPoint.
Compared to ERA5-EDA, the number of these poorly performing points declines by about 60%, and rel-
ative to ERA5 and reforecasts, by about 50%. These improvements are most pronounced in the Arabian
Peninsula, Asia, and North America. Although reforecasts also have a lower count of poorly performing
points in these areas, they exhibit slightly worse performance in parts of South America, especially the
Bolivian Amazon, increasing the proportion of poor-similarity points by 2% and 5% relative to ERA5-
EDA and ERA5, respectively. In contrast, ERA5-ecPoint markedly improves this situation in South
America, reducing poor-similarity points by 47%, 23%, and 10% compared to reforecasts, ERA5, and
ERA5-EDA, respectively. Much of this improvement occurs in the flatter Amazonian regions east of
the Andean highlands. Still, even with ERA5-ecPoint, some challenging areas remain, such as the An-
dean slopes and the narrow desert-like coastlines of Peru and Chile. For intermediate similarity levels
(previously represented by ”blue”, ”green”, and ”yellow” categories), the application of ERA5-ecPoint
consistently shifts conditions toward a higher level of agreement across all domains. This results in fewer
points showing poor similarity and more points reaching acceptable or good similarity levels. The im-
provements are especially apparent in South America, Africa, Asia, and Oceania, where ERA5-ecPoint
generally transitions more points into categories reflecting moderate to good agreement, thereby offering
a notably better representation of precipitation patterns than the baseline NWP models.

It is worth comparing the observed and the NWP-modelled ECDFs to gain insights into how the distribu-
tions differ (Figure 4). Each ECDF (in linear scale) has an insert with the ECDF’s x-axis in logarithmic
scale to compress/expand the small/high rainfall totals, and see more clearly differences in the distri-
butions. In flat areas (Figure 4a), ERA5-ecPoint (in coral) represents the distribution of point-scale
precipitation observations better than the baseline raw NWP-models: it captures well the frequency of
observed zero precipitation totals (see ECDF in log scale), the growth rate of the precipitation observa-
tions5 (see ECDF in log scale), and the length of the wet tail (going up to the 99th percentile, see ECDFs
in linear scale). There are no notable differences between the distributions from ERA5-EDA (in green),
ERA5 (in brown), and reforecasts (in blue): they all underestimate, although to different degrees, the
frequency of observed zero precipitation totals, and they have similar growth rates, which are greater
than that in the observed distribution. They all underestimate the length of the wet tail but to different

5(Growth rate here is intended as the rate of change of the logarithm of precipitation totals)
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Figure 3: Panels (b) to (e) indicate the Normalised Mean Absolute Error (MAENORM) for 24-hourly total
precipitation at each rain gauge location for ERA5-EDA (62 km), ERA5 (31 km), ECMWF Reforecasts-
46r1 (18 km), and ERA5-ecPoint (point-scale, but provided in ERA5’s grid), respectively. Dots in black,
blue, green, yellow, and pink represent, respectively, a ”good”, ”acceptable”, ”intermediate”, ”poor”, and
”very poor” degree of similarity to the corresponding point observed climatology. The pie charts indicate
the frequency of MAENORM values in the domains defined in panel (a). The tables on the right offer a
numerical representation of the pie charts. The numbers in bold in the last rows of each table represent
the global average for each representation category.
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Figure 4: Empirical Cumulative Distribution Functions (ECDFs) for 24-hourly total precipitation (tp)
from rain gauge observations (OBS, in black) and the NWP models ERA5-EDA (in green), ERA5 (in
brown), ECMWF Reforecasts-46r1 (in light blue), and ERA5-ecPoint (in coral). Panels (a) to (d) show
examples of ECDFs, respectively, for flat areas, hilly/mountainous areas, very mountainous areas, and
deserts. The inserts represent the same ECDFs but with the x-axis on a logarithmic scale.
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degrees: in general, ERA5-EDA shows the biggest underestimation, reforecasts show the smallest, and
ERA5 falls in between the two. In hilly/mountainous areas (Figure 4b), ERA5-ecPoint behaves simi-
larly to flat areas. It represents the frequency of zero precipitation totals observed and the growth rate
of the precipitation observations well. However, ERA5-ecPoint tends to slightly overestimate the distri-
bution’s wet tail of the observed ECDF (in black). Compared to point-rainfall observations, raw NWP
models show behaviour similar to that observed in flat areas. The main difference lies in a progression
in a better representation of the observed ECDF for NWP models with increasing spatial resolution, i.e.,
ERA5-EDA at 62 km (in green, in Figure 4b), which shows a worse representation of the observed ECDF
compared to ERA5 at 31 km (in brown), and ERA5 shows a worse representation than reforecasts (in
blue). This behaviour is seen in other sites too (not shown). In very mountainous areas (Figure 4c),
all NWP models fail to represent the observed ECDFs. It is worth noting that this is not surprising as
the observations used to train ERA5-ecPoint, and indeed to validate all representations, come primarily
from valleys and hilly areas. First, all the NWP model versions underestimate the frequency of observed
zero precipitation totals. ERA5-ecPoint tends to double such a frequency, but it does not reach the val-
ues in the observed ECDFs. The ECDFs from raw NWP models show a growth rate that is too large
compared to the observed ECDFs, while ERA5-ecPoint also improves on that. Finally, while the raw
NWP models tend to slightly underestimate the length of the observed ECDFs (with ERA5 providing
the best representation out of the three models), ERA5-ecPoint tends to overestimate it. In desert areas
(Figure 4d), all NWP models represent the observed ECDFs well, apart from the wet tails that tend to all
be overestimated. The overestimation is reduced with the increase in the spatial resolution of the NWP
models, with ERA5-ecPoint representing the actual length of the wet tail best.

4.2 RQ2: comparison of the wet tail in the distributions built with NWP-modelled pre-
cipitation estimates and rain gauge observations

4.2.1 Comparison of the 10-year period

The precipitation maps for the 10-year return period show that ERA5-ecPoint provides a better repre-
sentation than the raw NWP models. In North America, the extremes in 24-hourly precipitation over
the west coast of Alaska, Canada and North-West USA, which reach peaks up to 500 mm, are better
represented in ERA5-ecPoint than in ERA5-EDA, ERA5, and reforecasts that tend not to exceed 125
mm. The peaks around the Gulf of Mexico, the USA’s East Coast and the border between Canada and
the USA are also better represented in ERA5-ecPoint. However, in the latter case, there seems to also
be sampling-related noise in the observations. The raw NWP models better represent the extremes over
the Rocky Mountains since ERA5-ecPoint overestimates them. However, the latter shows an overall
closer representation of the observed ECDFs apart from the tail. ERA5-ecPoint greatly improves the
precipitation peaks over Mexico and South America over the other three NWP models, apart from the
Andean region and the desert on the west coast of Peru and Chile, where ERA5-ecPoint overestimates
the wet tails (as shown in section 4.1). It is worth noting that the ECMWF reforecasts from 46r1 halved
the precipitation extremes over the Amazon compared to ERA5-EDA and ERA5.

The extremes over Europe also verify better on ERA5-ecPoint than the three raw NWP models. The
wetter climatology with peaks up to 300-500 mm around the Mediterranean catchment (including the
African part), the Alps, the Atlantic coast of Spain and the UK, and the Norwegian Fiords is better
captured in ERA5-ecPoint than in the three raw NWP models. The higher spatial resolution in the
reforecasts helps to increase the extremes compared to both reanalyses, but they still do not exceed 100
mm in 24-hours.
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Figure 5: Panel (a) displays the 10-year return period for 24-hourly total precipitation from rain gauge
observations, calculated over the 20-year period between 2000 and 2019, and using only rain gauges
with at least 75% of valid records. Panels (b) to (e) show the 10-year return period for NWP-modelled
24-hourly total precipitation: ERA5-EDA (62 km), ERA5 (31 km), ECMWF Reforecasts-46r1 (18 km)
and ERA5-ecPoint (point-scale, provided on ERA5 grid). The pie charts represent the percentage (in
%) of modelled climatologies exceeding the observed climatologies. Reliable modelled estimates should
exceed the observed ones, on average, 50% of the time.
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In Asia, there is a varied picture. The raw NWP models highlight the wetter climatologies of India (espe-
cially the Northeast regions), East China, Japan, Southeast Asia, and the Malay Archipelago. However,
they do not reach the peaks of 300-500 mm/24h seen in the observations. ERA5-ecPoint represents such
peaks. However, the peaks greater than 500 mm/24h observed in the Malay Archipelago remain under-
estimated, also in the post-processed ERA5. The overall overestimation in the mountainous regions of
Western China has a similar flavour to the ones discussed over the Rocky Mountains in the USA: ERA5-
ecPoint shows the best overall representation of the full observed ECDFs, but tends to overestimate the
wet tails. In the Arabian Peninsula, all models represent the overall observed ECDF tails quite well. As
discussed in section 4.1 for desert areas, such good representation originates from the high frequency of
zero precipitation totals well estimated by all NWP models. The only exception is on the peninsula’s
south coast, where precipitation peaks can reach 200 mm/24h, and raw NWP models estimate a maxi-
mum peak of only up to 80 mm/24h. ERA5-ecPoint increases them up to 150 mm/24h. In Oceania, all
NWP models show a good overall representation of the observed ECDFs with slight underestimations of
the wet tails. The added value of ERA5-ecPoint in this region mainly provides a better representation of
the precipitation peaks. There are a few observations in Africa, and nothing can be said about the model
representation of precipitation extremes in the numerous ungauged areas of this continent. All NWP
models represent the wet climatology of West Africa, including its Atlantic coast. However, ERA5-
ecPoint best represents the observed local peaks that vary between 100 and 500 mm/24h. It is worth
noting that ECMWF 46r1 reforecasts degrade the representation of the extreme precipitation around the
Gulf of Guinea by producing maximum peaks only up to 80-100 mm/24h. Similarly, out of all NWP
models, ERA5-ecPoint somewhat better represents the varied precipitation peaks, between 80 and 500
mm/24h, in South Africa, where raw NWP models suggest extreme precipitation might not exceed 80
mm/24h. Also, in East Africa, ERA5-ecPoint provides a more realistic representation of the extreme
precipitation peaks (up to 500 mm/24h) than raw NWP models. The reforecasts considerably reduce the
precipitation in this area. The wet climatology of Madagascar is well represented in all NWP models, but
ecPoint can increase the wet tail of ERA5 and provide extreme precipitation totals that are closer to those
observed. Finally, all NWP models seem to represent quite well the observed precipitation distribution
in the Sahara, with the caveat that data coverage there is poor. In any case, good performance likely
connects to the prevalence of dry weather.

4.2.2 Case study: Storm Vaia in Italy (28th of October 2018)

We now examine the case of widespread (flash) flooding in Italy on the 28th of October 2018 (Figure
6). This event is part of a weather system that persisted over different parts of Italy between the end of
October and the beginning of November 2018. It is called Storm Vaia. In the observations (Figure 6a),
one can see extreme precipitation amounts between 300-400 mm/24h over Veneto (north-east), up to 200
mm/24h over Lombardi (North) and Liguria (North-East), up to 240 mm/24h in Lazio (centre), up to 130
mm/24h in Puglia (Southwest), and up to 260 mm/24h in Calabria (Southeast). ERA5-EDA (Figure 6b),
ERA5 (Figure 6c), and reforecasts (Figure 6d) provide a good signal on which might be the wetter areas
in Italy for that day, apart from the south of Italy, that does not stand out as a possible area at risk of ex-
treme precipitation. The precipitation peaks over the Italian Peninsula increase with the increasing spatial
resolution of the NWP models, but they do not reach the observed extreme precipitation totals. ERA5-
EDA estimated a maximum total of 100 mm/24h, and ERA5 pushed the estimated peaks to 150 mm/24h
over Veneto. Reforecasts increased the precipitation peaks in Veneto and Lazio up to 200 mm/24h, but
precipitation in Liguria, Puglia, and Calabria remains highly underestimated. ERA5-ecPoint (Figure 6e)
represents better the areas where the precipitation peaks were observed. In the north (Figure 6f, Northern
Italy), where the Storm created the biggest impacts, roughly 1% of the rainfall observations exceeded the
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Figure 6: Widespread (flash) flooding in Italy on the 28th of October 2018 due to Storm Vaia. Panel
(a) represents the rain gauge observations. Panels (b) to (d) show the deterministic rainfall estimates, re-
spectively, for ERA5-EDA at 62 km (from control run), ERA at 31 km (single realisation), and ECMWF
Reforecasts from 46r1 at 18 km (from control run, day 1 lead time). Panel (e) shows the probabilistic
rainfall estimates from ERA5-ecPoint (99th percentile). Panel (f) shows the locations of the rain gauge
observations exceeding the ERA5-ecPoint estimates at the 99th percentile. The representation is split
into two geographical areas: Northern and Southern Italy, with pie charts denoting total counts for these
two areas.

99th percentile of ERA5-ecPoint (red dots), indicating reliable point-scale rainfall estimates. In the rest
of the peninsula (Figure 6f, Central + Souther Italy), 6% of the observations exceed the ERA5-ecPoint
estimates, indicating an under-prediction of point-scale rainfall over Le Marche, Puglia, and Calabria. In
this specific case, the location of the red dots along coastlines indicates underestimation primarily due to
the known issue of convective cells generated over the sea not moving onto land.

The results from this study show that ERA5-ecPoint provides, overall, the best representation of point-
rainfall distributions out of all the NWP models tested. Specifically, ERA5-ecPoint captures better the
frequency of the observed zero rainfall totals, the growth rate within the rainfall observation CDFs, and
the longer wet tails. The bigger improvements are particularly evident in flat and hilly/mountainous
regions. However, in very mountainous areas such as the Andes, ERA5-ecPoint underestimates the
frequency of zero rainfall totals and overestimates the length of the wet tails, raising some questions
about its effectiveness over very complex orography. This should not surprise, as ERA5-ecPoint is post-
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processed with observations primarily coming from valleys and hilly areas, although, on the other hand,
verifying data comes from such sites too. Probably, we have a complex interplay, whereby data from
non-mountainous regions is sometimes used to train for mountainous areas, despite the inclusion of a
sub-grid orography variable in the ERA5-ecPoint decision tree. The growth rate of the ERA5-ecPoint
rainfall estimates closely aligns with that of the observations, indicating that the post-processing system
is making meaningful adjustments to the rainfall estimates. Additional observational data from regions at
high altitudes are necessary to refine the corrections, particularly to increase the accuracy in representing
the frequency of zero rainfall totals and to reduce the overestimation observed in the wet tail.

Overall, the raw NWP models (i.e., ERA5-EDA, ERA5, and ECMWF Reforecasts – 46r1) consistently
show an underestimation of the zero rainfall totals and the wet tails, and the growth rate of the modelled
rainfall estimates is consistently bigger than that observed. This means that the raw NWP models over-
estimate the frequency of small rainfall totals and underestimate the frequency of extreme rainfall events,
as one might expect from representivity considerations, and as has been reported previously by National
Meteorological and Hydrological Services around Europe (Hewson and Chevallier, 2024). ERA5 (at
31 km) improves the overall representation of point-rainfall distributions compared to ERA5-EDA (at
62 km), especially in mountainous regions such as the Rocky Mountains, the Alps, and the Norwegian
Fjords. However, the improvements in these regions remain modest in proportion, despite the twofold in-
crease in spatial resolution. The ECMWF Reforecasts provide general improvements due to the increased
spatial resolution (18 km) and a more up-to-date model version (46r1 rather than 41r2 of ERA5-EDA
and ERA5). The observed degradations over Australasia and Africa in 46r1 (see pie charts on Figure 3)
are counterintuitive and may be symptomatic of a physics issue that manifests in those areas. Compared
to ERA5, the 46r1 improvements are focused again on mountainous areas and extend to most of Europe,
the arid regions of Northern Africa, and the Arabian Peninsula.

Focusing on extreme rainfall events, there is a general increase in the values with the increase of the
raw NWP models’ spatial resolution, which better agrees with the observed wetter tails. The major
difference is observed between ERA5-EDA and ERA5, while the differences between the latter and the
ECMWF reforecasts are less prominent. Indeed, for the rainfall in the Amazon region, Equatorial Africa,
and Indonesia, the reforecasts show rainfall estimates that do not exceed 100 mm/24h. In contrast, both
reanalysis, ERA5-EDA and ERA5, show rainfall estimates up to 300 mm/24h, which better represent the
observed rainfall totals in the region. These results similarly contradict expectations and may indicate
regional limitations in cycle 46r1 employed for the reforecast dataset.

When focusing on extreme precipitation events, ERA5-ecPoint consistently demonstrates a superior abil-
ity to replicate observed extremes compared to raw NWP models. For example, the 10-year return period
precipitation maps show that ERA5-ecPoint provides a much closer representation of observed extreme
rainfall events in regions like North America, Europe, and parts of Asia. The Italian case study on Storm
Vaia further underscores this finding. While raw models captured the general distribution of wetter ar-
eas, they underestimated the magnitude of precipitation peaks across multiple regions, including Veneto,
Lazio, and Liguria. ERA5-ecPoint, on the other hand, was able to capture these extremes better, pro-
viding a more realistic forecast of the potential for flash floods. Some underestimation of rainfall along
coastlines is highlighted due to non-moving convective cells generated over the sea that fail to generate
rain over the land. Convective cell drift is something that has been explored in the ecPoint framework,
but not implemented yet. Applying it should bring intrinsic improvements in the areas of triggering, via
the bias correction aspect (as shown in the Hewson and Pillosu (2021), Norway example).

Furthermore, ERA5-ecPoint enables one to estimate rainfall events with significantly longer return peri-
ods than those presented in this study (e.g., up to a 1000-year return period, as noted in Table 1, row 5,
column 8). Hewson et al. (2024) have shown for 2023 Storm Daniel in Libya that applying the ecPoint
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post-processing technique to ERA5 can deliver usable estimates of an n-year return period rainfall from
m years of data, where n ≫ m. Consequently, datasets like ERA5-ecPoint offer valuable insights into the
potential magnitude of extreme rainfall events, improving our preparedness for unseen events (Heinrich
et al., 2024; Ommer et al., 2024) or ones so infrequent that they have faded from collective memory
(Ludwig et al., 2023; Merz et al., 2024).

One area where ERA5-ecPoint did not seem to provide significant benefits, and where extremes were
overestimated, was in the high-altitude and relatively dry western parts of the USA, where mountain
barriers can block external moisture sources. Parts of inland northern China fall into the same class.
Dry boundary layers often characterise such areas. We know from experimenting with ecPoint and
considering physics that low-level rainfall under-evaporation in such situations can lead to large net
positive raw model rainfall biases at the grid scale, particularly in convective situations. Although ERA5-
ecPoint includes a low-level humidity parameter within its decision tree, which can combat such biases,
it is probably not activated in enough weather-type scenarios to be fully effective. Hence, probably there
is some cross-contamination in the calibration from data in areas with much moister boundary layers.
This could thus be a focal point for future work. While ecPoint’s remote calibration approach has shown
significant benefits compared to a purely local approach, as in this paper and in Hewson and Pillosu
(2021), there can evidently be some local downsides.

The general improvements provided by ERA5-ecPoint open up significant opportunities across various
fields of environmental research that require a more accurate representation of point rainfall estimates.
We advocate that such improvements would enhance both long-term strategic planning (e.g., using this
dataset for climatological studies) and short-term emergency response (e.g., this dataset to create point-
scale rainfall thresholds that are compatible with ecPoint rainfall medium-range forecasts to determine
areas at risk of extreme localised rainfall), thereby contributing to developing more resilient societies in
the face of climate change. In the realm of flood forecasting, more accurate rainfall estimates at local
scales are crucial for predicting runoff and streamflow dynamics, particularly in catchments prone to
flash floods. Precise point-scale rainfall data is pivotal in enhancing early warning systems, which are
essential for safeguarding communities from the severe impacts of extreme rainfall and flooding. Better
rainfall representation could facilitate more efficient management of reservoirs and irrigation planning in
water resource management, optimising water storage and distribution for agriculture, power generation,
and urban water supply systems. Furthermore, enhanced point-scale precipitation estimates are crucial
for designing more resilient stormwater infrastructure and urban drainage systems, which are facing
increasing pressure from the intensification of extreme rainfall events due to climate change. In the
context of disaster preparedness, ERA5-ecPoint’s ability to capture the full spectrum of rainfall values,
including zeros and extremes, provides valuable insights into the risks posed by changing precipitation
patterns.

5 Conclusions

Modern-day NWP systems and reanalysis products do not provide a good representation of 24h climato-
logical rainfall distributions for gauged sites around the world, whilst ecPoint, in its ERA5 variant form,
though not perfect everywhere, does do very much better.

This study provides a systematic, global verification of how well NWP models represent the distribution
of point-rainfall observations. It considered point-rainfall observations over 20 years and four differ-
ent modelled, gridded datasets with distinct spatial resolutions: ERA5-EDA (62 km), ERA5 (31 km),
ECMWF Reforecasts for 46r1 (18 km), and ERA5-ecPoint (point-scale but provided over ERA5’s grid
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at 31 km). Among the tested models, this study shows that ERA5-ecPoint most accurately captures both
the frequency of zero rainfall totals and the wet tails of the observed point-rainfall distributions.

Since ERA5-ecPoint provides rainfall totals over a continuous global domain, the post-processed reanal-
ysis could be used to provide seamless point-rainfall estimates, including over regions with sparse or
no rain gauge observational data. However, caution is needed when generalising the verification results.
While ERA5-ecPoint demonstrates strong performance in estimating point-rainfall totals overall, it is
essential to note that the verification dataset contains large regions with sparse or no rain gauge obser-
vations. Furthermore, ERA5-ecPoint has shown some limitations in very complex mountainous terrains
(e.g. the Andes), where the post-processed reanalysis remains short in representing the frequency of
zero rainfall totals and overestimates the wet tails. Hence, this finding highlights the need for further
refinement of the post-processed forecasts in these regions by incorporating, when available, more rain
gauge observations in the calibration process.

The improved performance of ERA5-ecPoint over raw NWP models in representing point-scale rain-
fall totals, whether small or large, emphasises post-processing’s critical role in addressing the inherent
limitations of gridded rainfall estimates in guiding point-scale rainfall. ecPoint effectiveness, however,
remains contingent on the quality of the underlying NWP models it post-processes. Without accurate
raw NWP estimates at a grid-scale, the skill demonstrated by the ERA5-ecPoint rainfall estimates would
be diminished. Moving forward, the authors advocate enhancing the spatial resolution and the skill of
raw NWP models alongside ongoing improvements of post-processing techniques such as ecPoint to re-
duce further errors in estimating the whole distribution of point-rainfall totals. Such improvements will
be particularly significant as climate change intensifies the frequency and severity of extreme rainfall,
making accurate and reliable point-rainfall estimates indispensable for effective mitigation and response
efforts related to droughts, extreme rainfall, flooding, food security, and urban resilience.
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