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AIFS ENS becomes operational
Simon Lang, Linus Magnusson

In recent years, machine-learned (ML) weather forecasting systems such as FourCastNet, Pangu-
Weather, GraphCast and the Artificial Intelligence Forecasting System (AIFS) have shown that they can 
produce highly skilful deterministic predictions that match or exceed those from physics-based models. 
These forecast models learn how to forecast by advancing the atmospheric state from one analysis 
date to the next during training. When in forecast mode, they run autoregressively – they evolve the 
atmospheric state forward in time from their own predictions.

However, the first-generation ML models typically tend to produce overly smooth fields, lacking the small-
scale features that are observed in reality. This is because they are trained using a mean-squared error 
(MSE) objective, which can lead to reduced variability in the forecast fields. 

Smoothing reduces differences among ensemble members, which decreases the spread, measured by 
the ensemble standard deviation, and can make the forecast unreliable. In other words, the forecasted 
probabilities do not match reality.

Probabilistically trained models have now been developed that address these limitations. For example, 
denoising diffusion-based models that start with random noise and gradually refine it, like GenCast and 
AIFS-Diffusion, and models trained with a loss based on a proper score, which encourages realistic 
atmospheric variability of forecast fields, like AIFS-CRPS. Compared to diffusion-based models, the direct 
optimisation of proper scores such as the Continuous Ranked Probability Score (CRPS) provides several 
practical advantages. First, the model can learn how to forecast across many steps. Second, generating 
ensemble members requires just one model evaluation per forecast step. This makes them potentially 
orders of magnitude more computationally efficient to run than diffusion-based models that rely on a 
sampler for forecasting, requiring the model to be called many times for each single forecast step. Tests 
have also shown that AIFS-CRPS gives more accurate forecasts than diffusion-based models. Due to 
the advantages demonstrated by AIFS-CRPS, the CRPS-based training approach has been adopted 
by others, including FourCastNet 3 by NVIDIA and Functional Generative Networks (FGN) by Google 
DeepMind.

After a testing phase to assess real-time forecast performance, we have now transitioned AIFS-CRPS 
into an operational system. It is named AIFS ENS to distinguish it from the deterministically trained AIFS 
Single.

Model description
AIFS ENS has been trained on 38 years of ERA5 reanalysis data (1979–2017) and eight years of data 
from the Integrated Forecasting System (IFS) operational analyses (2016–2023). Like the AIFS Single, 
the model uses an encoder-processor-decoder architecture in which the encoder reduces the input to a 
lower-resolution internal grid, the data go through the processor, and the decoder projects it back to the 

FIGURE 1 AIFS ENS training, showing the encoder-processor-decoder architecture in which the encoder reduces the input 
to a lower-resolution internal grid, the data are processed, and the decoder projects it back to the output grid. The loss is 
computed from two ensemble members in training.
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output grid (Figure 1). The encoder and decoder use transformer-based graph neural networks, while 
the processor is a transformer with a sliding attention window, which processes information across a 
latitudinal band. AIFS ENS has a total of 229 million parameters and a spatial resolution of approximately  
30 km. Ensemble members are generated by introducing noise within the processor. When generating 
forecasts, as many members as required can be generated by providing different random seeds to the 
model. Two ensemble members are used in training.

AIFS ENS currently has 50 perturbed members and one control member. However, unlike the physics-
based IFS ENS, where the control member uses unperturbed initial conditions and the forecast model 
is unperturbed as well, the AIFS ENS control member also starts from unperturbed initial conditions but 
still includes model-generated variations during the forecast. This means that all AIFS ENS members, 
including the control, are stochastic forecasts that represent different outcomes from a learned forecast 
distribution.

Evaluation of forecast skill
AIFS ENS forecasts have been evaluated against IFS analyses and against radiosonde and SYNOP 
observations. Figure 2 displays the resulting scorecard, with blue shading indicating where AIFS ENS 
outperforms the IFS ENS and red shading indicating a degradation in forecasting skill. This scorecard 
shows forecast improvements reach up to 25% and that AIFS ENS has higher forecast skill for upper-air 
variables. The skill improvements result from reductions in both bias and random component forecast 
errors. Degradations, however, are seen for forecasts of conditions higher up in the atmosphere. For 
example, temperature at 100 hPa shows a degradation when verified against IFS operational analyses 
and to a lesser degree when verified against radiosonde observations. For early lead times, AIFS ENS 
forecasts can appear less skilful than IFS ENS forecasts when verified against IFS analyses; however, this 
degradation of AIFS ENS compared to IFS ENS is not visible when SYNOP and radiosonde observations 
are used for verification. In terms of surface variables verified against SYNOP observations, AIFS ENS 
shows improved scores for 2-metre temperature for all lead times, and during the first half of the forecast 
for 24-hour accumulated total precipitation. For 10-metre windspeed, IFS ENS is more skilful than AIFS 
ENS when verified against SYNOP observations.

FIGURE 2 Scorecard comparing AIFS ENS with IFS ENS. Blue shading indicates where the AIFS ENS outperforms the IFS 
ENS and red shading indicates a degradation in forecasting skill.
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FIGURE 3 24-hour accumulated precipitation, 16 April 
06 UTC – 17 April 06 UTC. Observations (top), IFS ENS 
member 1 (middle) and AIFS ENS member 1 (bottom).

FIGURE 4 24-hour precipitation 16 April 06 UTC – 17 April 
06 UTC in a 0.5-degree box in the Italian Alps (see Figure 
3). Showing observation (green hourglass), Analysis (green 
dot), IFS ENS (blue), AIFS ENS (pink), IFS model climate 
(cyan).
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Case study – Storm Hans in the Alps
In April 2025, Storm Hans brought extreme 
conditions to the southern Alps. High 
precipitation values, of as much as 446 
mm in a 24-hour period, were recorded in 
northern Italy and southern Switzerland on 
16 and 17 April. Figure 3 shows the 24-
hour accumulated precipitation values from 
observations, IFS ENS member 1 and AIFS 
ENS member 1, of a 54-hour forecast. The 
perturbed members of both ensemble systems 
reproduce the overall precipitation pattern, 
though they underestimate maximum values. 
The underprediction of AIFS ENS seems more 
pronounced than in the case of IFS ENS. One 
likely factor is the resolution of the forecasting 
systems – approximately 9 km for the IFS 
compared to approximately 30 km for the AIFS. 

Figure 4 shows the time evolution of the 
predicted 24-hour precipitation values from 
AIFS ENS and IFS ENS averaged inside the 
box shown in Figure 3. Both ensemble systems 
show a similar forecast evolution, again with 
AIFS ENS more strongly underpredicting the 
observed values. Nevertheless, both AIFS 
ENS and IFS ENS gave early indication of the 
possibility of an extreme event.
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Limitations
While AIFS ENS shows strong forecast performance, as measured by scores for upper-air and surface 
conditions, some limitations remain. For example, anomalous values in mean sea level pressure and low-
level temperature fields can develop, especially in regions with complex topography such as mountain 
ranges. Another example is 2-metre temperature forecasts, which can show degradations beyond day 
seven, with unrealistic cold biases appearing episodically in high-altitude locations and specific regions, 
including the Red Sea. 

FIGURE 6 Evolution of forecasts for 2-metre 
temperature on 30 April 2025 at 12 UTC in Troyes, 
France. Symbols show observation (green hourglass), 
analysis (green dot), IFS ENS (blue), AIFS ENS (pink) 
and IFS model climate (cyan).
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Case study – heatwave in France
On 30 April 2025, France was struck by a 
heatwave. Figure 5 shows observations 
and short-range forecasts from IFS ENS 
and AIFS ENS member 1, respectively. 
Even for this short lead time, IFS ENS 
underestimated the observed temperatures. 
AIFS ENS, however, predicts temperature 
values closer to those observed. 

The evolution of these forecasts is shown in 
Figure 6. Initially, both ensembles perform 
similarly; however, closer to the event, 
around the 7-day lead time, AIFS ENS starts 
to predict higher temperature values than 
IFS ENS. It is being investigated why the 
IFS ENS underestimated this heatwave and 
other similar conditions during late spring to 
early summer 2025.

FIGURE 5 Two-metre temperature 30 April 12 UTC, 
observations (top), 24-hour forecast of IFS ENS member 1 
(middle) and AIFS ENS member 1 (bottom).
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The model also exhibits systematic biases in precipitation forecasting, generating spurious trace amounts 
of rainfall or snowfall (typically less than 0.1 mm per 6-hour period) in arid regions. This issue becomes 
particularly apparent when examining longer accumulation periods.

Cloud cover forecast, while skilful, displays a noticeably coarser spatial resolution compared with other 
atmospheric variables, resulting in a blocky appearance. This limitation affects the model’s ability to 
represent fine-scale cloud structures that are important for understanding local weather phenomena.

Finally, AIFS ENS is currently overdispersive for a range of upper-air variables – in other words, the 
ensemble standard deviation is larger than the root mean squared error of the ensemble mean. It is likely 
that this is related to the fact that AIFS ENS uses the same initial perturbation as the IFS ensemble. 
To improve the reliability of the IFS ensemble, singular vector perturbations are added to the initial 
conditions. Because AIFS ENS forecast errors are smaller, it might require a different initial perturbation 
amplitude. 

The limitations described are under investigation, with improvements expected in future model cycles.

Conclusion and outlook
AIFS ENS has successfully transitioned from research to operational status, providing highly skilful 
ensemble forecasts. The CRPS-based training approach enables the generation of probabilistic forecasts 
with realistic atmospheric variability, suitable for ensemble forecasting. At the same time, models trained 
this way are computationally efficient, with each ensemble member requiring only one model evaluation 
per forecast step.

Performance evaluations comparing AIFS ENS to IFS ENS show improvements of up to 25% for upper-air 
variables and positive impacts for surface variables such as 2-metre temperature and total precipitation.

There remain several limitations to the model, including artefacts in mean sea level pressure, low effective 
resolution in cloud fields and spurious patterns in accumulated precipitation. Ongoing work aims to 
address these issues in future model cycles.

The operational implementation of the AIFS ensemble represents a milestone in ECMWF’s machine 
learning journey. Further development will also focus on increasing horizontal and temporal resolution, 
and incorporating additional Earth system components.

Further reading:
Lang, S., M. Alexe, M.C.A. Clare, C. Roberts, R. Adewoyin, Z.B. Bouallègue et al., 2024: AIFS-
CRPS: Ensemble forecasting using a model trained with a loss function based on the continuous 
ranked probability score. arXiv preprint arXiv:2412.15832 https://doi.org/10.48550/arXiv.2412.15832
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