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AIFS ENS becomes operational

Simon Lang, Linus Magnusson

In recent years, machine-learned (ML) weather forecasting systems such as FourCastNet, Pangu-
Weather, GraphCast and the Atrtificial Intelligence Forecasting System (AIFS) have shown that they can
produce highly skilful deterministic predictions that match or exceed those from physics-based models.
These forecast models learn how to forecast by advancing the atmospheric state from one analysis
date to the next during training. When in forecast mode, they run autoregressively — they evolve the
atmospheric state forward in time from their own predictions.

However, the first-generation ML models typically tend to produce overly smooth fields, lacking the small-
scale features that are observed in reality. This is because they are trained using a mean-squared error
(MSE) objective, which can lead to reduced variability in the forecast fields.

Smoothing reduces differences among ensemble members, which decreases the spread, measured by
the ensemble standard deviation, and can make the forecast unreliable. In other words, the forecasted
probabilities do not match reality.

Probabilistically trained models have now been developed that address these limitations. For example,
denoising diffusion-based models that start with random noise and gradually refine it, like GenCast and
AIFS-Diffusion, and models trained with a loss based on a proper score, which encourages realistic
atmospheric variability of forecast fields, like AIFS-CRPS. Compared to diffusion-based models, the direct
optimisation of proper scores such as the Continuous Ranked Probability Score (CRPS) provides several
practical advantages. First, the model can learn how to forecast across many steps. Second, generating
ensemble members requires just one model evaluation per forecast step. This makes them potentially
orders of magnitude more computationally efficient to run than diffusion-based models that rely on a
sampler for forecasting, requiring the model to be called many times for each single forecast step. Tests
have also shown that AIFS-CRPS gives more accurate forecasts than diffusion-based models. Due to
the advantages demonstrated by AIFS-CRPS, the CRPS-based training approach has been adopted

by others, including FourCastNet 3 by NVIDIA and Functional Generative Networks (FGN) by Google
DeepMind.

After a testing phase to assess real-time forecast performance, we have now transitioned AIFS-CRPS
into an operational system. It is named AIFS ENS to distinguish it from the deterministically trained AIFS
Single.

Model description

AIFS ENS has been trained on 38 years of ERA5 reanalysis data (1979-2017) and eight years of data
from the Integrated Forecasting System (IFS) operational analyses (2016-2023). Like the AIFS Single,
the model uses an encoder-processor-decoder architecture in which the encoder reduces the input to a
lower-resolution internal grid, the data go through the processor, and the decoder projects it back to the
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FIGURE 1 AIFS ENS training, showing the encoder-processor-decoder architecture in which the encoder reduces the input
to a lower-resolution internal grid, the data are processed, and the decoder projects it back to the output grid. The loss is
computed from two ensemble members in training.
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FIGURE 2 Scorecard comparing AIFS ENS with IFS ENS. Blue shading indicates where the AIFS ENS outperforms the IFS
ENS and red shading indicates a degradation in forecasting skill.

output grid (Figure 1). The encoder and decoder use transformer-based graph neural networks, while
the processor is a transformer with a sliding attention window, which processes information across a
latitudinal band. AIFS ENS has a total of 229 million parameters and a spatial resolution of approximately
30 km. Ensemble members are generated by introducing noise within the processor. When generating
forecasts, as many members as required can be generated by providing different random seeds to the
model. Two ensemble members are used in training.

AIFS ENS currently has 50 perturbed members and one control member. However, unlike the physics-
based IFS ENS, where the control member uses unperturbed initial conditions and the forecast model
is unperturbed as well, the AIFS ENS control member also starts from unperturbed initial conditions but
still includes model-generated variations during the forecast. This means that all AIFS ENS members,
including the control, are stochastic forecasts that represent different outcomes from a learned forecast
distribution.

Evaluation of forecast skill

AIFS ENS forecasts have been evaluated against IFS analyses and against radiosonde and SYNOP
observations. Figure 2 displays the resulting scorecard, with blue shading indicating where AIFS ENS
outperforms the IFS ENS and red shading indicating a degradation in forecasting skill. This scorecard
shows forecast improvements reach up to 25% and that AIFS ENS has higher forecast skill for upper-air
variables. The skill improvements result from reductions in both bias and random component forecast
errors. Degradations, however, are seen for forecasts of conditions higher up in the atmosphere. For
example, temperature at 100 hPa shows a degradation when verified against IFS operational analyses
and to a lesser degree when verified against radiosonde observations. For early lead times, AIFS ENS
forecasts can appear less skilful than IFS ENS forecasts when verified against IFS analyses; however, this
degradation of AIFS ENS compared to IFS ENS is not visible when SYNOP and radiosonde observations
are used for verification. In terms of surface variables verified against SYNOP observations, AIFS ENS
shows improved scores for 2-metre temperature for all lead times, and during the first half of the forecast
for 24-hour accumulated total precipitation. For 10-metre windspeed, IFS ENS is more skilful than AIFS
ENS when verified against SYNOP observations.
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FIGURE 3 24-hour accumulated precipitation, 16 April
06 UTC - 17 April 06 UTC. Observations (top), IFS ENS
member 1 (middle) and AIFS ENS member 1 (bottom).

AIFS ENS becomes operational

Case study - Storm Hans in the Alps

In April 2025, Storm Hans brought extreme
conditions to the southern Alps. High
precipitation values, of as much as 446

mm in a 24-hour period, were recorded in
northern ltaly and southern Switzerland on

16 and 17 April. Figure 3 shows the 24-

hour accumulated precipitation values from
observations, IFS ENS member 1 and AIFS
ENS member 1, of a 54-hour forecast. The
perturbed members of both ensemble systems
reproduce the overall precipitation pattern,
though they underestimate maximum values.
The underprediction of AIFS ENS seems more
pronounced than in the case of IFS ENS. One
likely factor is the resolution of the forecasting
systems — approximately 9 km for the IFS
compared to approximately 30 km for the AIFS.

Figure 4 shows the time evolution of the
predicted 24-hour precipitation values from
AIFS ENS and IFS ENS averaged inside the
box shown in Figure 3. Both ensemble systems
show a similar forecast evolution, again with
AIFS ENS more strongly underpredicting the
observed values. Nevertheless, both AIFS

ENS and IFS ENS gave early indication of the
possibility of an extreme event.
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FIGURE 4 24-hour precipitation 16 April 06 UTC — 17 April
06 UTC in a 0.5-degree box in the Italian Alps (see Figure
3). Showing observation (green hourglass), Analysis (green
dot), IFS ENS (blue), AIFS ENS (pink), IFS model climate
(cyan).
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Observations Case study - heatwave in France

On 30 April 2025, France was struck by a
heatwave. Figure 5 shows observations
and short-range forecasts from IFS ENS
and AIFS ENS member 1, respectively.
Even for this short lead time, IFS ENS
underestimated the observed temperatures.
AIFS ENS, however, predicts temperature
values closer to those observed.

The evolution of these forecasts is shown in
Figure 6. Initially, both ensembles perform
similarly; however, closer to the event,
around the 7-day lead time, AIFS ENS starts
to predict higher temperature values than
LTre7es00 BHED04 312 sl st 1 IFS ENS. It is being investigated why the

IFS ENS underestimated this heatwave and
other similar conditions during late spring to
early summer 2025.
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FIGURE 5 Two-metre temperature 30 April 12 UTC, FIGURE 6 Evolution of forecasts for 2-metre
observations (top), 24-hour forecast of IFS ENS member 1 temperature on 30 April 2025 at 12 UTC in Troyes,
(middle) and AIFS ENS member 1 (bottom). France. Symbols show observation (green hourglass),

analysis (green dot), IFS ENS (blue), AIFS ENS (pink)
and IFS model climate (cyan).

Limitations

While AIFS ENS shows strong forecast performance, as measured by scores for upper-air and surface
conditions, some limitations remain. For example, anomalous values in mean sea level pressure and low-
level temperature fields can develop, especially in regions with complex topography such as mountain
ranges. Another example is 2-metre temperature forecasts, which can show degradations beyond day
seven, with unrealistic cold biases appearing episodically in high-altitude locations and specific regions,
including the Red Sea.

doi: 10.21957/hg1z-pe65 5



Simon Lang et al AIFS ENS becomes operational

The model also exhibits systematic biases in precipitation forecasting, generating spurious trace amounts
of rainfall or snowfall (typically less than 0.1 mm per 6-hour period) in arid regions. This issue becomes
particularly apparent when examining longer accumulation periods.

Cloud cover forecast, while skilful, displays a noticeably coarser spatial resolution compared with other
atmospheric variables, resulting in a blocky appearance. This limitation affects the model’s ability to
represent fine-scale cloud structures that are important for understanding local weather phenomena.

Finally, AIFS ENS is currently overdispersive for a range of upper-air variables — in other words, the
ensemble standard deviation is larger than the root mean squared error of the ensemble mean. It is likely
that this is related to the fact that AIFS ENS uses the same initial perturbation as the IFS ensemble.

To improve the reliability of the IFS ensemble, singular vector perturbations are added to the initial
conditions. Because AIFS ENS forecast errors are smaller, it might require a different initial perturbation
amplitude.

The limitations described are under investigation, with improvements expected in future model cycles.

Conclusion and outlook

AIFS ENS has successfully transitioned from research to operational status, providing highly skilful
ensemble forecasts. The CRPS-based training approach enables the generation of probabilistic forecasts
with realistic atmospheric variability, suitable for ensemble forecasting. At the same time, models trained
this way are computationally efficient, with each ensemble member requiring only one model evaluation
per forecast step.

Performance evaluations comparing AIFS ENS to IFS ENS show improvements of up to 25% for upper-air
variables and positive impacts for surface variables such as 2-metre temperature and total precipitation.

There remain several limitations to the model, including artefacts in mean sea level pressure, low effective
resolution in cloud fields and spurious patterns in accumulated precipitation. Ongoing work aims to
address these issues in future model cycles.

The operational implementation of the AIFS ensemble represents a milestone in ECMWF’s machine
learning journey. Further development will also focus on increasing horizontal and temporal resolution,
and incorporating additional Earth system components.

Further reading:

Lang, S., M. Alexe, M.C.A. Clare, C. Roberts, R. Adewoyin, Z.B. Bouallégue et al., 2024: AIFS-
CRPS: Ensemble forecasting using a model trained with a loss function based on the continuous
ranked probability score. arXiv preprint arXiv:2412.15832 https://doi.org/10.48550/arXiv.2412.15832
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