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Data-driven weather forecast models are a promising addition to physics-based numerical weather 
prediction (NWP) models. ECMWF now runs the Artificial Intelligence Forecasting System (AIFS) in an 
experimental real-time mode. It is run four times daily and is open to the public under ECMWF’s open 
data policy. This AIFS version (henceforth referred to as ‘deterministic AIFS’) is trained to produce 
forecasts that minimise mean squared error (MSE) up to 72 h into the forecast. The MSE optimisation 
leads to excessive smoothing and reduced forecast activity (Lang et al., 2024(a)). This is detrimental to 
ensemble forecasts, which rely on a realistic representation of the intrinsic variability of the atmosphere.

In this article, we describe two training approaches for data-driven forecast models to produce skilful 
ensemble forecasts: diffusion training (Karras et al., 2022, and Price et al., 2024), where the forecast is the 
result of a denoising task, and probabilistic training with a proper score objective adjusted for the finite 
ensemble size, such as the fair continuous ranked probability score (fair CRPS; Leutbecher, 2019, and 
Kochkov et al., 2024).

Model and data
The forecast model for both methods, diffusion-based training and CRPS-based training, is the AIFS 
(Lang et al., 2024(a)). The AIFS is built around an ‘encoder–processor–decoder’ architecture. The encoder 
and decoder are attention-based graph neural networks (GNNs), and the processor is a sliding-window 
transformer. The latest version of the AIFS at the time of writing (0.2.1) was trained on approximately 
40 years of Copernicus ERA5 reanalysis data and ‘fine-tuned’ on the ECMWF operational analysis from 
2019 to 2020 to improve the skill of real-time forecasts. 

CRPS-based training
In the AIFS–CRPS configuration, multiple model states (i.e. ensemble members) are propagated 
forward in time, as shown in Figure 1 (see for example Kochkov et al., 2024). For each ensemble 
member, a different realisation of random Gaussian noise is injected into the transformer processor. 
White noise is fed into the model, during both training and inference (forecasting), to be used by AIFS–
CRPS to learn a representation of forecast model uncertainty. The CRPS training objective is calculated 
against the ERA5 deterministic reanalysis at the forecast target time. Perturbed initial conditions are 
generated by re-centring the ERA5 Ensemble of Data Assimilations (EDA) on the ERA5 deterministic 
reanalysis. This is consistent with the use of the EDA for ECMWF’s Integrated Forecasting System (IFS), 
as described in Lang et al., 2015. In addition to model parallelism (sharding, see Lang et al., 2024(a)), 
the AIFS code can distribute ensemble members across several graphics processing units (GPUs) 
to enable the training of larger ensembles at higher spatial resolution. AIFS–CRPS also implements 
autoregressive rollout during training, with 6‑hour time steps; this makes it possible to optimise CRPS 
up to several days into the forecast. We found that a four-member ensemble was sufficient during 
training to arrive at a model that shows good probabilistic skill in both training and inference. Larger 
ensemble sizes are used during inference.

Diffusion-based training
In the diffusion approach (AIFS–Diffusion), the AIFS learns to remove noise from a forecast state, 
conditioned on the initial conditions and a noise schedule (Price et al., 2024; Karras et al., 2022; and 
Figure 2). During training, the model ‘sees’ different noise levels, i.e. increasingly noisy forecast states, 
all the way up to ‘pure’ noise. The model iterates on the same state using a sampling process, arriving at 
a 12‑hour forecast tendency after 20 denoising steps. This increases the computational cost of a single 
forecast trajectory. Diffusion-based training usually requires a significantly larger number of training steps 
than deterministic training. On the other hand, AIFS–Diffusion does not incur the overhead of propagating 
multiple ensemble members as in AIFS–CRPS. We have found that both ensemble configurations have 
comparable training costs at a horizontal grid spacing of approximately one degree (111 km).
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Figure 1  Probabilistic training with CRPS optimisation (AIFS–CRPS): the AIFS propagates four 
ensemble members that are then optimised jointly through the CRPS loss. The ensemble members 
can reside on separate GPU devices; in this case, a differentiable all‑gather operation happens 
before the loss computation. Ensemble member trajectories start from different initial conditions 
(re‑centered ERA5 EDA, see text) and receive different noise inputs.

Figure 2  Diffusion training (AIFS–Diffusion): we show four (non-consecutive) steps from a denoising diffusion chain. 
Starting from pure Gaussian noise (top left), the model generates a 12‑hour tendency (bottom right). The model has many 
variables and levels; for illustration purposes, the meridional wind component at 850 hPa has been selected.
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Inference
During inference, AIFS–CRPS and AIFS–Diffusion start from the initial conditions of the operational 
IFS ensemble. The initial conditions include the singular vector component of the initial perturbations. 
Both AIFS–CRPS and AIFS–Diffusion are then run autoregressively to generate 15-day forecasts. 
The ensembles are configured with a forecast step of 12 hours (AIFS–Diffusion, cf. Price et al., 2024) 
and 6 hours (AIFS–CRPS). Each ensemble member is independent, and thus the forecast generation is 
fully parallel. The cost of an AIFS–Diffusion forecast is significantly higher than that of an AIFS–CRPS 
forecast because the diffusion model is called multiple times per forecast step. That said, both data-
driven approaches are very cheap when compared to the computational cost of an IFS ensemble 
member trajectory: e.g., when run on a single NVIDIA A100 GPU device, AIFS–Diffusion needs only about 
2.5 minutes to produce a 15‑day forecast ensemble member. For reference, one IFS Cycle 48r1 ensemble 
member takes about one hour to produce (excluding I/O), on 96 AMD Epyc Rome central processing 
units (CPUs). The operational IFS ensemble runs at a spatial resolution of approximately 9 km (Lang 
et al., 2023).

Forecast evaluation
To enable rapid testing at a small computational cost, we have thus far only trained models at a horizontal 
grid spacing of one degree, which is consistent with the configuration used for the development of the 
first deterministic (v0.1) AIFS system.

We found that both approaches produce skilful ensemble forecasts. In Figure 3 we compare AIFS–
Diffusion and AIFS–CRPS initialised from perturbed, re-centred ERA5 analyses at O96 horizontal grid 
spacing (ca. one degree) to the 2019 IFS operational ensemble (ca. 18 km horizontal grid spacing). AIFS–
Diffusion and AIFS–CRPS produce well-calibrated forecasts and generate realistic forecast variability. In 
contrast to deterministic AIFS forecasts, probabilistically trained AIFS ensemble members retain a similar 
level of detail at short- and medium-range lead times, as evidenced in Figure 4.
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Figure 3  Fair CRPS scores of (a) 500 hPa geopotential height and (b) 850 hPa temperature, comparing the 
50‑member operational IFS ensemble with 8‑member ensembles initialised from the ERA5 EDA for a 3‑month 
period in 2019, using models trained with the proper score optimisation (AIFS–CRPS) and diffusion (AIFS–Diffusion) 
techniques.
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Implementation
AIFS–Diffusion was chosen as the first candidate for experimental real-time implementation. 
The operational IFS ensemble provides perturbed initial conditions for the data-driven ensemble 
forecast. After fine-tuning on operational IFS analyses, the resulting model is competitive with the 9 km 
IFS ensemble for upper-air scores (see Figure 3 in Lang et al., 2024(b)). It now runs twice daily in a 
51‑member configuration and produces a similar set of variables to that of the deterministic AIFS (Lang 
et al., 2024(b)). It is important to note that, while the control member of the AIFS–Diffusion ensemble 
configuration is started from unperturbed initial conditions, it nonetheless includes a representation of 
model uncertainty because of the stochastic sampling involved in calculating the forecast.

To better quantify and understand its forecast performance, the real-time AIFS–Diffusion ensemble is 
periodically evaluated by ECMWF analysts – see, e.g., the recent episode of exceptionally heavy rainfall in 
the United Arab Emirates described by Magnusson et al., 2024.

A cold snap over western Europe
The forecasting skill of the diffusion-trained ensemble can be illustrated with an example from France. 
A cold spell was observed over parts of central and western Europe in late April 2024. The cold air 
caused late-season, potentially damaging frost during the flowering period of fruit trees and grapevines. 
Figure 5 shows 2‑metre temperature ensemble forecasts from the IFS ensemble and the experimental 
real-time AIFS–Diffusion ensemble. The forecasts are averaged over a 1x1-degree box located near 
Troyes, France, a winemaking region. Both forecasting systems successfully forecast the 24 April cold 
anomaly about 8–10 days before the event.

a Deterministic AIFS, 24 hours, 0.25 degrees b AIFS-Diffusion ensemble member, 24 hours, 1 degree

c Deterministic AIFS, 240 hours, 0.25 degrees d AIFS-Diffusion ensemble member, 240 hours, 1 degree

Figure 4  Depicted are (a) a 24‑hour forecast of the deterministically (MSE) trained AIFS at N320 (a forecast with 
a horizontal grid spacing of ca. 0.25 degrees), (b) a 24-hour AIFS–Diffusion ensemble member at O96 (a forecast 
with a horizontal grid spacing of ca. 1 degree), (c) the same as (a) but showing a 240 h forecast, and (d) the same as 
(b) but showing a 240 h forecast. The forecasts the AIFS produces after probabilistic training (diffusion or fair CRPS) 
show a similar level of detail at short- and medium-range lead times.
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Sub-seasonal forecasts
Early evidence strongly suggests that the ensemble AIFS will also have a role to play in sub-seasonal 
forecasting. While deterministically trained data-driven forecast models are known to develop large biases 
over relatively long forecast horizons (Ben‑Bouallègue et al., 2023), the systematic errors of the two 
probabilistic models described here are comparable to or smaller than the biases of the physics-based 
IFS, for a range of forecast parameters (see Figure 6 for AIFS–Diffusion vs the IFS). Notably, preliminary 
analyses of sub-seasonal AIFS–Diffusion ensembles show significant forecast skill, outperforming 
(weeks 1 and 2) or matching (week 3 and later) the skill of the IFS when predicting the Madden–Julian 
Oscillation (MJO), as shown in Figure 7.
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Figure 5  Ensemble forecasts of 2‑metre temperature ahead of a cold spell over Europe, in late April 2024. 
The forecasts are averaged over a 1x1‑degree box centred around 48.3°N, 4°E (near Troyes, France). 
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Figure 6  Scorecard summarising changes in mean absolute bias (MAB) for the northern hemisphere (30°N–90°N) for 
AIFS–Diffusion versus operational IFS (Cycle 48r1) sub‑seasonal hindcasts, calculated as 1 – MABAIFS/MABIFS as 
described in Roberts et al. (2021). MAB is shown estimated for all available dates (2003–2022; left) and three different 
5‑year subsets, including data not used for training (2018–2022; right). Upward (blue) triangles indicate that absolute 
biases aggregated across all locations and start dates in AIFS–Diffusion are reduced compared to IFS Cycle 48r1. 
The variables shown are mean sea‑level pressure (msl) and zonal/meridional wind at 10 m (uas/vas); temperature (t) 
and zonal/meridional wind (u/v) at different pressure levels (850, 500, 200 and 50 hPa); and geopotential height (z) at 
500 hPa. For both systems, MAB is calculated relative to ERA5 using 8‑member 46‑day ensemble forecasts initialised 
every Monday and Thursday within the re‑forecast period. Symbol areas are proportional to the fractional change in bias 
score and significance from the distribution created by block-bootstrap resampling of the available start dates. 

Figure 7  Bivariate correlations for an MJO index calculated from 200 hPa and 850 hPa zonal wind anomalies for 
AIFS–Diffusion (blue) and IFS Cycle 48r1 (red) calculated (a) using all available dates (2003–2022) and (b) data 
not used for training (2018–2022). Higher correlations mean better forecasts. The MJO index used here is an 
approximation for the full Wheeler and Hendon (2004) Real-time Multivariate MJO index as it excludes contributions 
from outgoing longwave radiation that are not available from AIFS–Diffusion. For both systems, correlations are 
calculated relative to ERA5 using 8‑member 46‑day ensemble forecasts initialised every Monday and Thursday within 
the re‑forecast period. Error bars represent the 2.5th and 97.5th percentiles of the distribution created by block-
bootstrap resampling of the available start dates.
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Outlook
Probabilistic training of data-driven models results in skilful ensemble forecasts that also overcome 
one of the main limitations of deterministically trained models: the over-smoothing of forecast fields. 
Ongoing research aims to further increase forecast skill, to improve the fine-tuning approaches of the 
ensemble models on operational IFS analyses, to increase the temporal resolution, and to decrease 
horizontal grid spacing to 0.25 degrees. It is likely that higher-resolution ensembles will improve forecast 
scores for surface fields such as 2‑metre temperature, precipitation, and 10‑metre winds, as well as the 
representation of tropical cyclones. 

Because data-driven ensemble forecasts are much cheaper to produce than their physics-based 
counterparts, it will be possible to add an AIFS–CRPS ensemble configuration to the experimental real-
time suite, running alongside the diffusion-based system. This will allow a comprehensive evaluation of 
the strengths and weaknesses of both approaches.

Meteograms along with mean and spread products from the experimental AIFS real-time ensemble are 
available as open charts (https://charts.ecmwf.int) under ECMWF’s open data policy. Further charts and 
data will be available in the near future.
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