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Combining machine learning and data 
assimilation to estimate sea ice concentration 
Alan Geer

ECMWF aims to analyse the full state of the Earth system from the atmosphere and ocean through to the land 
surface and cryosphere. This is intended to be achieved through closer coupling of the relevant models and 
the data assimilation systems that combine the model forecasts with new observations. But aspects of the 
Earth system, such as sea ice, snow, soil and vegetation, are hard to model from physical first principles, so 
in practice, the modelling can be quite empirical. Earth system modelling components are often parametrized 
or fitted based on a limited set of observations from experimental ground stations, and they may struggle 
to perform in other locations. A ‘model first’ approach has served us well in the atmosphere, where at least 
the dynamics are mostly well known: here the purpose of observations is to correct the physical trajectory 
of the model. But the recent explosion in machine learning for Earth system applications has shown us an 
‘observation first’ approach. If observation-driven machine learning forecasts are starting to do better than 
physical forecasts, it suggests we have not been making good enough use of observations to improve our 
forecast models. Especially for Earth system applications where models are already partly empirical, there is 
clearly great potential to let the observations increasingly define these models. However, as demonstrated in 
this article with the example of sea ice assimilation, the best results are unlikely to come by throwing away 
physical models entirely, but by carefully combining known physics with empirical components.

Getting more out of satellite observations
Taking a global viewpoint, available observations of the Earth system come mainly from satellites, and 
primarily from the naturally-generated radiation that is emitted by the Earth. An observational viewpoint 
starts from understanding what information the measured radiances contain and how to extract that 
information into useable geophysical variables. If we take microwave observations as an example 
(Figure 1), we can see by eye the overlapping sensitivities to the atmosphere (clouds, precipitation, water 
vapour, temperature) and the surface (ocean surface state, sea ice and its snow cover, snow, vegetation 
and soil moisture). The atmospheric sensitivities are currently used in all-sky radiance assimilation within 
ECMWF’s 4D-Var atmospheric data assimilation. But the surface sensitivities remain mostly unused, in 
part due to the difficulty of physical modelling. These difficulties concern both the forecast model for 
the surface state and the translation between the surface state and the observations, which is done by 
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Figure 1 Observed 
brightness temperatures 
(an alternative way to 
represent radiances) 
from 12 hours of 
microwave imager 
overpasses of the 
northern hemisphere 
on 7 December 2020, 
labelled with the main 
geophysical sensitivities 
in the data. The image 
is composed of roughly 
40 km resolution 
superobservations 
based on Advanced 
Microwave Scanning 
Radiometer 2 (AMSR2) 
19 GHz v-polarized data 
from the JAXA GCOM-W 
satellite. (Original data 
credit: JAXA)
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the observation operator (sometimes called an observation model). The goal of making full use of the 
information contained in these observations is often described as ‘all-sky, all-surface assimilation’.

A better use of the information in satellite observations has three benefits:

• we get more information on the atmospheric state in areas where satellite observations were previously 
discarded, such as sea ice, snow and land surfaces

• we get new information on poorly known variables, such as sea ice concentration, snow cover or soil 
moisture

• we can use the observations to help constrain, improve and develop better physical and empirical 
models of the Earth system.

The contention of this article is that we will make the furthest progress in the middle ground between 
model-led approaches and purely observation-driven approaches. Traditional data assimilation 
frameworks and newer machine learning approaches alike are best understood as Bayesian problems 
(see Box C later). What this means is that we aim to maximise the information extracted from current 
observations while making best use of our prior information, whether that comes from physical laws or 
from historical observations. This is not only a theoretical argument. A middle-ground, Bayesian-inspired 
approach is already helping us make rapid progress towards better use of surface-sensitive observations 
in our operational weather forecasting system. The example here is sea ice, but the same techniques can 
be used across the Earth system. The question is not whether to use physical or empirical models, but 
how best to combine them.

The sea ice problem
Sea ice is an attractive first target for approaches that combine machine learning and data assimilation. 
It is also a perfect illustration of how we can get more out of satellite observations while retaining physical 
modelling where possible. It covers all three areas where we would expect benefits:

Get more information on the atmosphere: In the current atmospheric 4D-Var, we have to reject 
any satellite observations with strong sensitivity to sea ice. As a result, there is a particularly severe 
information desert in southern hemisphere high latitudes. As will be illustrated in this article, putting more 
observations into this desert results in significant forecast improvements.

Get more information on the surface: Microwave radiance observations are already used in the 
ECMWF sea ice analysis. The problem is that they are finally introduced into the atmospheric analysis by 
a slow, roundabout, and sub-optimal route. Sea ice concentration retrievals are inferred using heuristic 
approaches, then incorporated into a daily analysis at the UK Met Office, then assimilated into ECMWF’s 
OCEAN5 system, then passed to the atmospheric data assimilation with an overall delay of around 
48 hours. If we can use our in-house data assimilation tools to infer the sea ice concentration directly 
from the radiances, we can eliminate the delay and almost certainly do a better job of inferring the state of 
the sea ice, too.

Use the observations to develop better physical and empirical models of the Earth system: 
One reason the sea ice analysis is still so far behind the atmosphere is a lack of accurate enough 
physical models, both to propagate the state forward in time and to model the radiance observations. 
In particular, the state variables that affect the radiative transfer properties of sea ice include aspects of 
the microstructure of the ice and snow that are not represented in current physical models.

This final aspect makes the problem just as challenging from a machine learning perspective as for data 
assimilation. The normal machine learning approach, known as ‘supervised learning’ (we might also 
call this ‘brute force’), attempts to learn an empirical model given its known inputs and outputs. For the 
sea ice observation problem, we know the outputs – these are the satellite radiance observations – 
but the inputs, including the microstructural details of the ice and snow, are basically unknown in the 
absence of ice core and snow pit measurements. This is a chicken and egg problem, and its solution 
starts by acknowledging that we need to simultaneously learn the state of the sea ice and the empirical 
observation model to go from that to the observations. The problem is solved by combining both data 
assimilation and machine learning in a Bayesian framework with parallels to ‘unsupervised’ or ‘generative’ 
machine learning techniques.
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To practically solve this problem, a year’s worth of microwave radiance observations were paired with 
atmospheric profiles from the background (short-range) forecast of the Integrated Forecasting System 
(IFS). Machine learning tools built on top of Python, Keras and Tensorflow were used to set up a hybrid 
data assimilation and machine learning framework to simultaneously learn the sea ice state along with 
an empirical model for the sea ice surface emissivity. Here the surface emissivity is a convenient way 
of representing the surface radiative transfer. Unlike standard data assimilation frameworks used for 
real-time forecasting, this offline approach was able to simultaneously fit a whole year of observations 
in one go.

Box A and its figure illustrate the resulting empirical-physical model as it applies to the surface 
radiative transfer for one observation. It takes physical inputs, namely the sea ice concentration, the 
skin temperature, and the ocean water surface emissivity, and three empirical inputs that represent 
the microstructural and physical state of the sea ice and the snow on top of it. It outputs the surface 
emissivity of the combined ocean and sea ice scene observed by the satellite. Because of the simple 
physics encoded in the network, it is capable of being used to infer physical variables, namely the sea 
ice concentration. 

The physical-empirical model
The figure shows the key part of the empirical-
physical Bayesian network used for learning the sea 
ice state and the empirical model for the sea ice 
surface emissivity. The complete model component 
describes the mixed-surface emissivity within 
the field of view of a single satellite observation. 
Here bold outlines are independent variables, 
with solid outlines if they are held fixed (obtained 
from the ECMWF background forecast) and 
dashed outlines if they are to be estimated within 
the learning framework. Fine outlines indicate 
variables that are just dependent functions of 
other variables. The empirical part of the model 
estimates the sea ice surface emissivity based on 
the skin temperature and three empirical variables 
representing the state of the sea ice and the snow 
cover on top of it (more of this in Box B). In practice, 
the empirical model is a simple one-layer linear 
neural network, though deep nonlinear neural 
networks have also been trained in this framework 
but proved unnecessary. The physical part of the 
model represents the mixed surface emissivity as a 
linear weighted combination of the ocean surface 
emissivity and the sea ice surface emissivity. It is 
this physical emissivity contrast between sea ice 
and open ocean surfaces that ultimately allows the 
sea ice concentration to be estimated within the 
field of view of a satellite observation. 

The broader network, not shown here, holds daily 
maps of the four learned state variables. It offers 
interpolation operators to go from the maps to the 
observation time and location, so that in reality it 
is the maps that are the true trainable variables, 
not the observation-space variables as shown 
here. The neural network weights are the same 

throughout the year and at all locations, with the 

aim to create a universally valid empirical model 
for the sea ice surface emissivity. The mixed 
surface emissivity is input to a physical radiative 
transfer model that represents the atmosphere 
including clouds and precipitation (obtained from 
the ECMWF background forecast). The aim of the 
training is to find the maps of surface state and the 
neural network weights that will generate simulated 
observations that best fit a year’s worth of real 
observations. The training is done simultaneously 
on all observations using the variational inverse 
Bayesian framework common to both machine 
learning training and 4D-Var data assimilation. 

This same network fragment is extracted, along with 
the trained network weights, to be implemented 
in operational 4D-Var as part of the observation 
operator for all-sky, all-surface microwave 
observations. In 4D-Var, the learnable input 
variables are estimated at observation locations, but 
keeping the neural network weights fixed.
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The empirical state variables
The simultaneous training of an empirical state 
alongside an empirical model is what allows us 
to solve the chicken and egg problem. The figure 
shows maps of the empirical ice properties on 7 
November 2020, the same date as the sea ice maps 
in Figure 2. Empirical property 1 follows known 
differences between multi-year and first-year ice. 
The positive (red) values are found in areas of long-
lived ice. The negative values (blue) correspond to 
areas where the sea ice is newly formed. New ice 

contains pockets of brine. This is lost over 
subsequent months, leaving behind air pockets 
that strongly scatter microwave radiation. At higher 
microwave frequencies, the microstructural 
characteristics of the snow lying on top of the sea 
ice become most important. The second and third 
empirical properties help represent this and other 
aspects of the sea ice and snow properties that 
affect the radiative transfer. 
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The quality of the resulting sea ice concentration analysis is illustrated in Figure 2 during the rapid freeze-
over of the Arctic ocean during November 2020. The OCEAN5 sea ice analysis represents the Siberian 
side of the Arctic ocean as open water, due to the 48-hour delay, whilst the new approach shows that 
it has already mostly frozen over. The new empirical-physical model is also able to closely replicate 
microwave observations at frequencies from 10 GHz to 89 GHz, in all seasons and both in the Antarctic 
and the Arctic (not shown). The empirical variables representing the detailed microstructural and physical 
aspects of the sea ice and snow state are explored in Box B. 

Figure 2 Sea ice concentration analyses, showing (a) the OCEAN5 sea ice concentration for 7 November 2020, 
(b) the analysis from AMSR2 observations for the same date using the new machine-learning/data assimilation 
framework, and (c) the difference between the two.
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The offline analysis of the sea ice state and observation model is on one hand an illustration of how the 
Bayesian approach could be used, along with empirical state variables where required, to solve all our 
Earth system problems using an observation-first perspective. On a more practical level, it is also a first 
step in adding sea ice assimilation to the IFS.

Assimilating sea ice observations in the IFS
From the offline machine learning and data assimilation framework, we have a model (Box A) that can be 
plugged into the existing atmospheric 4D-Var framework of the IFS. This becomes part of the observation 
operator alongside the existing RTTOV (Radiative Transfer for TOVS) model for the radiative transfer of 
the atmosphere including clouds and precipitation. To estimate the four poorly-known model inputs, 
namely the sea ice concentration and the three empirical variables, 4D-Var uses an observation-space 
augmented control vector similar to the ‘skin temperature sink variable’ that has been used in satellite 
data assimilation at ECMWF for several decades. So, as well as estimating the state of the atmosphere in 
the usual way, 4D-Var also estimates the sea ice concentration and the three empirical variables at each 
observation location from microwave imager observations, namely the Advanced Microwave Scanning 
Radiometer 2 (AMSR2) and the GPM microwave imager (GMI). 

An illustration of the quality of the resulting 4D-Var sea ice concentration analyses is provided by Figure 3. 
During the autumn and winter of 2020, the giant iceberg A-68A was drifting from its source in the Weddel 
sea and came close to the Southern Ocean island of South Georgia. At the time, A-68A was being 
tracked visually using radar and visible measurements, but the new sea ice analysis in 4D-Var has made 
a retrospective track of its movements that agrees well with the contemporary analysis. The figure shows 
A-68A approaching South Georgia on 4 December. At around 100 km long and 60 km wide, the iceberg 
is of similar size to the island itself. Allowing for the fact that the observation-space sea ice analysis has 
a relatively coarse resolution of around 40 km, it shows very similar features to the visual picture from the 
OLCI sensor on Sentinal-3. By contrast, the OCEAN5 analysis does not represent the iceberg. 

0 0.2 0.4 0.6 0.8 1 0 50 100 150
(mW m–2 sr–1 nm–1)

200 250 300

a OCEAN5 sea ice b AMSR2 sea ice c OLCI

Figure 3 For 4 December 2020 around 12 UTC, the panels show (a) the sea ice concentration at AMSR2 observation 
locations obtained from the ECMWF OCEAN5 analysis, (b) the new sea ice analysis made within 4D-Var at these same 
locations, and (c) OLCI channel 10 visible radiance observations (Copernicus Sentinel data 2020). The island in the top 
right is South Georgia and the A-68A iceberg is to its left (west). Towards the bottom of the figure is the main Antarctic 
sea ice and towards the left part of the domain is one of the South Orkney group of sub-Antarctic islands.
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Benefit of sea ice observations for atmospheric forecasts
Figure 4 shows the impact of adding microwave observations in sea ice areas on the temperature 
forecast, based on year-long testing in 2021 and 2022. Notably, this testing period is different to the 
training period used in the offline machine learning framework, which was 2020 to 2021. The new 
observations over sea ice areas have little impact on the Arctic forecast, likely because the year-round 
availability of in-situ measurements helps fill any gaps in the satellite data. But in the Southern Ocean, 
particularly around 50 to 60 degrees south, there is a statistically significant improvement in the forecast 
that lasts out to around day 4 and that spans from the surface up to the mid-troposphere. This localised 
impact is strong enough to also generate a statistically significant improvement in the headline southern 
hemisphere (20°S to 90°S) forecast scores. 

Figure 4 Normalised change in temperature forecast root-mean-square (RMS) error, measured against own-analysis, 
showing the impact of adding assimilation of the AMSR2 and GMI microwave imagers over sea ice and possible 
sea ice regions. Cross-hatching indicates statistical significance at the 95% confidence level. Blue areas indicate a 
reduction in the RMS error and hence a beneficial impact from the sea ice assimilation. Based on an entire year of 
testing in 2021–2022.
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Figure 5 Number of observations per day per 10,000 km2 assimilated from AMSR2 (in its 
37 GHz v-polarized channel) between 1 June and 5 June 2022 in (a) the Cycle 48r1 control 
configuration in the northern hemisphere, (b) the Cycle 49r1 sea ice configuration in the northern 
hemisphere, (c) the Cycle 48r1 control configuration in the southern hemisphere, and (d) the Cycle 
49r1 sea ice configuration in the southern hemisphere.

Figure 5 shows the number of observations being assimilated in atmospheric 4D-Var in IFS Cycle 48r1 
(control) and experimental IFS Cycle 49r1 (sea ice) from the AMSR2 sensor during June 2022. The added 
observations in the Arctic are limited to the relatively small area of summer sea ice. By contrast, a much 
larger area of the Southern Ocean, including both the sea ice and its surrounding areas, gains microwave 
imager observations for the first time. The new sea ice assimilation has relatively large observation errors 
and the added ‘safety valve’ of being able to adjust the surface emissivity to fit the observations. A side 
effect is that it is possible to assimilate for the first time ‘cold air outbreak’ regions over the ocean in 
the vicinity of the sea ice (Forbes et al., 2016). It appears that most of the atmospheric forecast benefit 
comes from these new observations, rather than those over the sea ice itself. However, as the modelling 
improves and observation errors are reduced in future years, it is expected that observations over sea ice 
will provide atmospheric information, too.

A further detail of Figure 5 is that the density of observations is up to six times higher in the polar regions 
than at midlatitudes. This is due to the polar sun-synchronous orbit used by most meteorological 
satellites, which in this case takes the AMSR2 sensor over part of each polar cap every 100 minutes. 
Further development of the sea ice and snow analysis could release a huge amount of high temporal 
frequency data from polar-orbiting satellites in polar regions.

b Sea ice – northern hemispherea Control – northern hemisphere

d Sea ice – southern hemisphereC Control – southern hemisphere
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Future developments
The sea ice assimilation described in this article is intended to become operational with Cycle 49r1 of 
the IFS in the middle of 2024. For the moment, the main practical benefit will be improved forecasts 
in the Southern Ocean. But the next stage of development is to assimilate the sea ice concentration 
analyses into the ocean data assimilation component using an outer-loop coupling data assimilation 
framework. This will also assimilate new sea-surface temperature (SST) retrievals from the microwave 
observations, testing an approach that could ultimately eliminate the need to use external SST and sea 
ice concentration (SIC) products in the ocean analysis, along with the 48-hour delay this entails. That next 
stage is in development and will be documented elsewhere.

The techniques that have enabled us to get started with sea ice assimilation are also immediately 
applicable to snow over land and, with further development, the whole land data assimilation problem, 
including soil moisture and vegetation. There is scope to extend the empirical-physical modelling to 
a wider range of microwave frequencies and viewing geometries, aiming to start assimilating not just 
microwave imaging channels over sea ice (10 to 89 GHz) but also microwave sounding channels, which 
provide a leading contribution to forecast accuracy over surface types that are easier to assimilate. 
One aim is to move the surface radiative transfer modelling away from the use of surface emissivity 
and towards a more physical representation of scattering and absorption within the sea ice and snow 
pack. And when improved forecast models of sea ice and snow are coupled into atmospheric 4D-Var, 
the empirical modelling can be re-trained using these additional physical inputs. The long-term aim is 
to increasingly impose physical constraints and to minimise the use of empirical models and empirical 
state variables.

For an even wider perspective, we can go back to the Bayesian viewpoint that unifies machine learning 
and data assimilation. It is this framework that makes the hybrid sea ice state and model estimation 
possible, and this framework will lie behind its future extensions into the whole area of Earth system data 
assimilation. The Bayesian approach treats both prior knowledge and observations in a theoretically 
correct way. This means we can obtain the best possible information on the current state of the Earth 
system and its modelling components (see Box C). Prior knowledge can be encoded using the physical 
equations of the Earth system that we already know. But we can also encode the areas of the Earth 
system that we know less well using empirical model components that can be learned from observations. 

The Bayesian approach
Bayes’ theorem comes out of fundamental rules 
of statistics and shows how to combine prior 
information with new observations to gain an 
improved knowledge of the world. Bayes’ theorem 
is formulated in terms of ‘prior’ and ‘posterior’ 
probability distribution functions and is hard to 
solve directly for high-dimensional problems like 
the Earth system. Variational data assimilation 
turns Bayes’ theorem into a tractable method for 
ingesting observations by using the assumption of 
Gaussian error distributions. But the applications 
of Bayes’ theorem are far wider, both philosophical 
and practical. One key extension is the ‘Bayesian 
network’, which enables us to break up huge 
probabilistic problems into simpler components if 
we know (or can learn) the statistical dependencies 
between variables. The hybrid empirical-physical 
model in Box A is also an illustration of the Bayesian 
network describing sea ice and ocean surface 

radiative transfer, where the arrows represent 
the dependencies, and the circles represent 
statistical variables. Again, it is solved by making 
simplifying assumptions and by doing a variational 
minimisation to fit new observations, just like 4D-Var 
or indeed most neural network training. Within these 
networks, known physics can be represented using 
fixed physical equations. Unknown physics, such as 
the sea ice surface emissivity, can be represented 
using an empirical model such as a neural network. 
Typical ‘brute force’ machine learning throws away 
all the prior physical knowledge and attempts to 
learn from the new observations alone. Unless these 
observations contain all knowledge, then by Bayes’ 
theorem, brute force machine learning cannot 
possibly provide as much posterior knowledge 
of the world as we can gain by using a learning 
process that includes prior knowledge.

C
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If we could completely implement the Bayesian network framework, it would help us balance the 
information gleaned from the limited field measurements that underpin many current Earth system 
parametrizations with the vast and continuing amount of information coming from satellite observations. 
It would help us derive much more sophisticated physical parametrizations that would work more 
universally across the globe. The role of the scientist would move away from finding heuristic or 
regression models based on limited field observations. Instead, the job would be to encode the physics 
we already know, to correctly describe our confidence in this knowledge, and to make sure that Earth 
observations are used as completely as possible. This is not just an issue for the ‘newer’ aspects of Earth 
system studies, such as sea ice, snow or vegetation, but for the ‘older’ empirical aspects of atmospheric 
models, such as cloud and precipitation parametrizations and sub-grid scale physics. Although it would 
be a daunting task to break apart our current systems and re-implement them in a unified Bayesian 
framework, many of the tools already exist and are being used for machine learning; indeed, they 
underpin its current success. 

In comparison to a brute-force machine learning approach, a careful hybrid of the physics we already 
know with all the new and evolving knowledge that comes from observations will always give us a 
better understanding, not just of the Earth system state but also the physical and empirical models that 
represent its evolution. It is only in a few places in the world, such as at ECMWF, that all the different 
components of observations, prior physical knowledge, and Bayesian learning methods (including data 
assimilation and machine learning) can be brought together to generate the highest-quality Earth system 
analyses and forecasts.
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