

IN THIS ISSUE

METEOROLOGICAL Changes to the operational forecasting system 2 The Antarctic Ozone Project 3 Revised use of satellite data in the operational analysis 4 The spin-up problem 7 COMPUTING The data handling system, phase 2 12 COMPUTER USER INFORMATION Still valid news sheets 14 GENERAL ECMWF calendar 1987 15 ECMWF publications 15 Index of still valid Newsletter articles 16

COVER: The telecommunications network established during the Airborne Antarctic Ozone Experiment, see article on page 3.

Observational data network

Document fax network based on 9.6 Kbps (group 3) satellite links

GSFC - Goddard Space Flight Center

This Newsletter is edited and produced by User Support.

The next issue will appear in December 1987.

The first article, on page 3, describes how ECMWF, the Météorologie Nationale, France, and United Kingdom Meteorological Office are involved in the important Airborne Antarctic Ozone Experiment. It continues an occasional series of articles (which has included round the world sailing races and Atlantic crossings by balloon in the past) on the more unusual areas in which ECMWF forecasts have been used and which, it is hoped, will be of general interest.

The second article (page 4) describes and gives background to the modifications to the data analysis in its processing of satellite observations which were introduced in July.

An article in the computing section (page 12) describes the upgrade of the data handling system which has just been implemented at ECMWF and will be of particular interest to those who use the ECMWF computing facilities.

CHANGES TO THE OPERATIONAL FORECASTING SYSTEM

Recent changes

- (i) Several modifications to the data analysis were implemented on 21 July 1987. The most important items were:
 - Use of 7 SATEM layers in the vertical instead of 11: 100/700 hPa, 700/500 hPa, 500/300 hPa, 300/100 hPa, 100/50 hPa, 50/30 hPa and 30/10 hPa. The modification allows better use to be made of satellite sounding data in agreement with the vertical resolution given by the satellite instruments. It also permits more satellite data to be used in the horizontal. The overall impact on the resulting forecast is small, however, in the Southern Hemisphere, where SATEMs are the main data source, the effect is noticeably positive.
 - Revision of the satellite observation error statistics and quality control.

Further details of the analysis changes and the impact on the forecasts are summarised in a Newsletter article on pages XXX.

Planned changes

- (i) Forecast error correlation statistics will be revised, resulting in a higher horizontal and slightly increased vertical resolution of the analysis. As a consequence, the analysis will draw more to wind data and less to height observations.
- (ii) A linear, vertical hybrid-coordinate scheme (finite element scheme) is expected to replace the operational finite difference scheme later this year.

- Horst Böttger

THE ANTARCTIC OZONE PROJECT

In May this year the Centre was requested by NOAA (National Oceanic and Atmospheric Administration), USA, to provide support for a joint NASA/NOAA project, based in Punta Arenas, Chile, to investigate the stratospheric ozone layer over the Antarctic. The Météorologie Nationale, France, and the United Kingdom Meteorological Office are also actively involved in this project.

The Airborne Antarctic Ozone Experiment, as it is called, is flying specially instrumented NASA ER-2 and DC-8 aircraft into the ozone hole (layer of minimum ozone concentration) over the Antarctic in August and September, when the hole, which expands and contracts seasonally, is anticipated to be at its maximum size.

The ER-2 is the limited range, high altitude research aircraft and is able to penetrate the ozone hole at the altitude of the maximum decline in ozone (around 20 km). The DC-8 is equipped with remote sensors which will map the vertical distributions of ozone and aerosols above the cruising altitude of the aircraft and within the hole. It will attain altitudes associated with the lower extremes of the ozone hole and, since it has a greater range than the ER-2, will survey the polar vortex and explore the region of high ozone outside the vortex.

ECMWF participation in the project is on two important fronts. Firstly, surface weather at Punta Arenas can change rapidly when cyclogenesis occurs to the west of the Ross Sea; surface winds of up to 60 knots can occur. In addition, upper air temperatures of -95°C or colder may be expected over large volumes of air in the vortex during August and September and this may cause problems with the operation of the aircraft; winds of up to 200 knots may be expected at ER-2 cruise levels in some regions. Considerations of aircraft and personnel safety therefore require the availability of the best possible forecast charts for interpretation by a forecaster experienced in that particular region: ECMWF forecast products up to day 10 are, with United Kingdom Meteorological Office forecasts to day 3, sent to Punta Arenas daily by facsimile for flight planning.

Secondly, the success of the flights also depends upon knowing the exact position of the hole at the time of each flight. Two methods are being used for this purpose. The first is total ozone maps produced using TOMS (Total Ozone Mapping System), as observed from the Nimbus satellite. This is supplemented by a second system which shows the total ozone, including that in regions of darkness. The HIRS instrument (High resolution Infrared Radiation Sounder) on a TIROS series satellite provides total ozone retrievals which are relayed from NASA and acquired onto the ECMWF Cray X-MP/48 system. Here, a suitable subset of orbits are extracted and are then processed using an ozone model developed by D. Cariolle, CRNM, Toulouse. The resulting ozone map is also sent to Punta Arenas as an aid to flight planning.

A complex telecommunications network (see front cover illustration) was established to fulfil these purposes, linking NASA Goddard Space Flight Centre in Washington to Punta Arenas, ECMWF and the UK Meteorological Office. ECMWF has lines to Washington, Punta Arenas and the UK Meteorological Office. A small

telephone exchange linking these sites into a "local" network has been installed at ECMWF, in addition to two facsimile machines for the transmission of forecast charts and ozone maps. The costs of the project are being covered by NASA.

- Pam Prior

* * * * * * * * * * *

REVISED USE OF SATELLITE DATA IN THE OPERATIONAL ANALYSIS

Over the last few years several modifications have been introduced into the operational forecasting system to improve the use of satellite data. Since February 1985 data with a resolution of 250 km have been used - twice the resolution of the data generally available on the GTS. Initially, because of the structure of the analysis code, SATEM reports were assumed to comprise 14 levels of information, subsequently this practice was altered and from October 1985 only 11 levels were used. In addition, more stringent checking procedures were introduced and satellite data has, from time to time, been blacklisted for some geographical regions and for some levels, in order to deal with operational problems.

It is clear that the satellite radiance measurements from which SATEMs are derived can only provide 6/7 layers of information in the vertical. Any additional detail in SATEM reports can only come from the retrieval method used to deduce temperature and humidity profiles from the observed radiances.

Over the past year a major study has been undertaken to review the use of SATEM data in the operational system. Two periods have been studied - 14 to 20 November 1979 and 30 January 1987 to 14 February 1987 - and three possibilities have been evaluated: an 11-layer SATEM, a 7-layer SATEM, no SATEM data. The results of this study may be summarised as follows:

- (i) many SATEM reports have large errors which are mainly due to cloud-clearing (the procedure to derive clear-column radiances from a cloud contaminated field) or rain contamination of microwave data (this is the main reason why large errors have been attributed to satellite data);
- (ii) because of the large observational errors ascribed to satellite data, they have a modest effect on analyses; as a consequence, if there are large differences between accurate SATEM reports and the first guess, in the absence of other data a significant correction to a first guess can only be achieved after a number of assimilation cycles;
- (iii) in the Southern Hemisphere the impact of SATEM data is consistently positive, however, in the Northern Hemisphere the impact is often dependent on the synoptic situation;

(iv) the use of 7 layers in place of 11 layers improves analyses, however, the impact on the resulting forecasts is small - in the Southern Hemisphere, where SATEMs are the main data source, the impact is noticeably positive; the use of 7 layers permits more data to be used in the horizontal.

Following the previous study a modification was made to the operational analysis on 21 July. The main purpose was to use 7 SATEM layers in the vertical instead of 11: 1000/700 hPa, 700/500 hPa, 500/300 hPa, 300/100 hPa, 100/50 hPa, 50/30 hPa and 30/10 hPa.

The other technical changes related to SATEMs are:

- rederivation and retuning of vertical covariance matrices for SATEM observation errors. The new statistical sets contain two 7 x 7 covariance matrices: one for clear soundings and one for cloudy and microwave soundings;
- (ii) revision of the SATEM quality control checks, which are now more stringent;
- (iii) SATEMs are no longer blacklisted below 400 hPa in the polar areas;
- (iv) the horizontal correlation of SATEM observation error is put to zero when the two SATEMs belong to different satellites. Also, when the observations belong to the same satellite, it is reduced by a factor which depends on the time difference between the two observations.

Some technical changes not related to the use of SATEMs are also included:

- (i) modification of the weights given to different boxes in the horizontal overlapping technique;
- (ii) introduction of an overlap in the vertical between the two layers, or slabs, for which wind analyses are produced;
- (iii) improvement of the data selection near the poles.

The impact of the operational modification of 21 July is illustrated by the scatter diagrams in the top part of Fig. 1, which show the comparison of the anomaly correlations of 15 forecasts at day 4 for the old system versus the new system ("7 LAYER EX") during the period 30 January - 15 February 1987: the improvement obtained from the modified analysis is really significant only in the Southern Hemisphere. As a reference, the bottom diagrams show the impact of SATEMs presented in the same way: "NO-SATEM" versus "OLD SYSTEM".

- Graeme Kelly, Jean Pailleux, Per Undén

METEOROLOGICAL

Fig. 1: Impact of the SATEM's and of the revised use of SATEMs on the quality of the forecast

Each scatter diagram shows 15 points, each of them comparing the anomaly correlation at day 4 of two forecasts from a case between 30 January and 15 February 1987.

- Horizontal axis: anomaly correlation of the old system (operations before 21 July 1987 11 layers for SATEMs)
- Vertical axis: anomaly correlation of the new operational system, 7 layers (top diagrams), or of the "No-SATEM" experiment (bottom diagrams)
- NH Northern Hemisphere on the left
- SH Southern Hemisphere on the right

THE SPIN-UP PROBLEM

An important problem in numerical forecast models is the specification of well balanced initial conditions. In the case of purely adiabatic processes constraints on mass and wind fields must be preserved to avoid the generation of gravity modes during the forecast. When diabatic processes are included, the balance is more complex, involving the thermal as well as the dynamical state of the model. Imbalances in the initial thermodynamic state result in a mutual adjustment of the model fields as they approach a dynamical and physical balance. This initial adjustment phase, which can be as long as three days in the tropics, is commonly referred to as the "spin-up". A study of the model "spin-up" and the imbalance typical of the initial state may give insights into deficiencies in the data, in the analysis technique and the initialisation. Since the spin-up is also a function of the dynamics and the physical parametrisation, it may also provide insights into possible model deficiencies. A better understanding of the behaviour of the model in its initial adjustment phase will also help in the understanding of its subsequent time evolution and how the model approaches climatology.

The adjustment during the spin-up manifests itself in various aspects of the forecast fields. It is particularly evident in quantities such as vertical velocity, humidity and rainfall. Fig. 1 plots the mean specific humidity as a function of forecast time. The drying is very intense in the first few days, indicating a large imbalance between precipitation and evaporation. This is clearly displayed in the global hydrological budget, Fig. 2, which provides a good global measure of the spin-up. Precipitation exceeds evaporation in the first few days, with a maximum precipitation between 24 and 36 hours. An equilibrium is reached only after 3 days. A separation between large scale and convective heating shows that the spin-up is mainly a tropical problem. Closer study of the geographical distribution of excess precipitation in the tropics shows that it is not confined to one specific area; it rains excessively over the major convective regions, particularly Indonesia, the Indian Ocean and Southern America. In the first few days the convective rain tends to be too widely spread and does not exhibit the typical banded structure of the tropical forecast. Only after 3 days does the rainfall pattern show a more organised structure.

The characteristic signature of the spin-up hardly appears to have changed over the years, although there are some noticeable differences from earlier versions of the forecast model (Fig. 3). In the previous model (T63 and original parametrisation), the hydrological cycle was initially much too weak and quickly spun up to its balanced state (Fig. 3a). In the present model (T106 with modified physics) the hydrological cycle, despite starting at a higher but more realistic level, still spins up as before but falls later to reach a balance by day 3 (Fig. 3c). The introduction of a stronger horizontal diffusion into the previous model in March 1984 had little effect on the spin-up other than lengthening the spin-up time from 2 to 5 days (Fig. 3b). In the following, the hydrological budget will be used as a measure of the sensitivity of the spin-up to changes in the initial state and the model formulation. A series of sensitivity experiments has been carried out to test how the "spin-up" problem is affected by initialisation, the use of data and model physics. These experiments have shown that the hydrological cycle is insensitive to the initialisation procedure, shows rather more sensitivity to the use of various data types in the analysis, especially moisture data, but is most sensitive to the convective parametrisation scheme. Each convective scheme has its own characteristic signature in the spin-up. The time-scale over which a hydrological balance is eventually reached is a function of the parametrisation scheme used (and its tuning). The operational version of the KUO-scheme (Fig. 2) develops rather widespread convective rain, particularly between 24-36 hours. On the other hand, when other convection schemes such as the "adjustment scheme" are used, the model tends to adjust on a much shorter time-scale, but more vigorously. Fig. 4 shows a hydrological budget typical of an "adjustment" forecast; it tends to give excessive rainfall in the first 12 hours, but adjusts quickly to a balance. Although the time scale is much shorter than in the operational KUO, there is still evidence of an adjustment process. Other more complex convection schemes such as the new Massflux scheme, behave differently again (Fig. 5). The excess of precipitation in the first few days is no longer present and a balance is reached rather quickly. On the other hand, in the later stages of the forecast, the model precipitation tends to be too low with respect to climatology. In summary, then, the "spin-up" as seen in the hydrological budget is very sensitive to the type of convection scheme used. This suggests that a vigorous spin-up may be due to an inconsistency between the thermodynamic structure as defined both by the data and the analyses and the thermodynamic structure typical of the forecast, which is determined largely by the convection scheme. Further studies are planned to isolate the types of data and the manner in which they are used in the analysis, leading to this inconsistency. A more detailed account of some of the major aspects of this complex problem will be found in ECMWF Technical Memorandum No. 137.

Fig. 1: The area averaged specific humidity as a function of forecast time over 30°S to 30°N and between 1000 and 500 mb.

Fig. 2 : A typical hydrological budget obtained from a forecast from 12 GMT, 15.12.85.

THE DATA HANDLING SYSTEM, PHASE 2

New data handling hardware was installed at the end of June, as a result of a tendering exercise which took place at the end of 1986/beginning of 1987 and following Council approval of the equipment selected, at its 25th session (11-12 June). Contracts for the acquisition of the new systems were signed on 22 June. The equipment comprises an IBM 3090 model 150E processor with a vector facility, an IBM 3380 disk system and an IBM 3480 cartridge tape system; a diagram of the new configuration is given overleaf.

IBM 3090 model 150E processor with a vector facility

The single CPU model 150E processor has 16 channels and 32 Megabytes of memory and is rated at approximately 11.5 MIPS.

The vector facility is an attached array processor which will be used for the manipulation and conversion of MARS archive data. Initial calculations indicate that the vector facility should be capable of processing the MARS data at up to 70 MFLOPS.

IBM 3380 disk system

This comprises four double density disk units, giving a total capacity of 20 Gigabytes of disk storage, and two disk controllers.

IBM 3480 cartridge tape system

Eight of the newly available cartridge tape drives and two controllers comprise this system.

These 3480 cartridges contain 18 track tape with a linear density of 38,000 bytes per inch. Each cartridge measures 4 inches by 5 inches by 1 inch and has a data capacity of 200 Megabytes.

The new equipment was installed on 26 June and a 30 day acceptance period began on 29 June; it ended successfully on 29 July.

The new data handling processor and storage will provide the power and reliability required to support the full meteorological archiving and permanent file management which are planned for 1988.

The cartridge tapes are already being used via the IBM 4341 for all new MARS archive data. The 3090 processor and vector facility will be used for system trials until they fully replace the 4341 processor in October.

• Tony Stanford

Data Handling System Configuration as in October 1987

COMPUTER USER INFORMATION

Number 39 - September 1987 Page 14

STILL VALID NEWS SHEETS

Below is a list of News Sheets that still contain some valid information which has not been incorporated into the Bulletin set or republished in this Newsletter series (up to News Sheet 207). All other News Sheets are redundant and can be thrown away.

No. Still Valid Article

16 56	Checkpointing and program termination DISP
67	Attention Cyber BUFFER IN users
73	Minimum Cyber field length
89	Minimum field length for Cray jobs
93	Stranger tapes
118	Terminal timeout
120	Non-permanent ACQUIRE to the Cray
121	Cyber job class structure
127	(25.1.82) IMSL Library
135	Local print file size limitations
136	Care of terminals in offices
140	PURGE policy change
152	Job information card
158	Change of behaviour of EDIT features SAVE, SAVEX.
	Reduction in maximum print size for AB and AC
164	CFT New Calling Sequence on the Cray X-MP
172	Change to CFT Compiler default parameter (ON=A)
176	Archival of Cyber permanent files onto IBM mass storage
177	RETURNX, REWINDX
178	TIDs on Cray include 2 chara. TID plus 3 chara. source computer ID.
	Caution with ACQUIRE on RERUN jobs
183	NEXT version of Cray ECLIB and CONVERT
	DAYFILE/DAYFIL commands
186	PROCLIB changes
187	CFT 1.14. Bugfix 4
	Maximum memory size for Cray jobs
189	ROUTEDF
190	Using ROUTE to direct RJE output to the Centre
194	NOS/BE level 664
	Preventive maintenance schedules
197	MARSINT - subroutines for transformation from spectral to Gaussian or
	regular latlong. grid, and Gaussian to/from regular latlong. grid
	PROCLIB changes
198	Using the MOHAWK printer
201	New Cray job classes
203	Magnetic tape problems and hints on avoiding them
204	VAX disk space control
205(8/7	/) Mispositioned cursor under NOS/VE full screen editor
206	MARSINT software changes
207	FORMAL changes under NUS/VE
	Job submission from within a Cray Job, using LAUNCH

ECMWF CALENDAR 1987

7-11 September Seminar: "The nature and prediction of extra tropical weather systems 14-16 September 15th session of the Scientific Advisory Committee 16-18 September 12th session of the Technical Advisory Committee 29 September-1 October 39th session of the Finance Committee 2-4 November Workshop on Numerical Methods 25-26 November 26th session of the Council 30 November-2 December Workshop on Diabatic Forcing 7-11 December Workshop on Meteorological Operational Systems 14-16 December ECMWF/WMO Workshop on Radiosonde Data Quality and Monitoring

* * * * * * * * * * * *

ECMWF PUBLICATIONS

TECHNICAL MEMORANDUM N° 133: ECMWF monitoring tools and their application to North American radiosonde data

TECHNICAL MEMORANDUM N° 134: Decoding data represented in FM 94 BUFR

FORECAST REPORT N° 37

Forecast and Verification Charts to 30 June 1987

Daily Global Analysis: January-March 1986 and April-June 1986

INDEX OF STILL VALID NEWSLETTER ARTICLES

This is an index of the major articles published in the ECMWF Newsletter plus those in the original ECMWF Technical Newsletter series. As one goes back in time, some points in these articles may have been superseded. When in doubt, contact the author or User Support.

		Newsletter	
	No.*	Date	- Page
CRAY			
Bi-directional memory	25	Mar. 84	11
Buffer sizes for jobs doing much sequential I/O	14	Apr. 82	12
CFT 1.11 Subroutine/function calling sequence change	19	Feb. 83	13
CFT 77	36	Dec. 86	12
CFT 1.14	32	Dec. 85	22
COS 1. 14	32	Dec. 85	22
Cray X - MP/48 - description of	30	June 85	15
Cray $X = MP/22$ = hints on using it	26	June 84	10
Dataset storage	13	Feb 82	11
Multifile tapes - disposing of	17	$\begin{array}{c} 1eb & 82 \\ 0ct & 82 \end{array}$	12
Multitasking ECMWE spectral model	29	Mar 85	21
Multitusking Demmi spectrui moder	27	Mar 86	21
	s 37	Mar 87	5
Public Libraries	α 37 Ͳ5	$\begin{array}{c} \text{Mat} \cdot & 07 \\ \text{Oct} & 79 \end{array}$	5
	15	000.75	Ū
CYBER			
Arithmetic instructions - comparative speeds of			
execution on the Cyber front ends	14	Apr. 82	17
Cyber front ends - execution time differences	15	June 82	9
Buffering or non-buffering on Cyber?	15	June 82	10
CMM-Fortran interface	10	Aug. 81	11
Cyber 855 - description of	2 1	June 83	18
Dynamic file buffers for standard formatted/			
unformatted data	3	June 80	17
Formatted I/O - some efficiency hints	4	Aug. 80	9
FTN5 - effective programming	9	June 81	13
	& 10	Aug. 81	13
- optimisation techniques	14	Apr. 82	13
▲ –	& 1 5	June 82	10
Graphics - hints on memory and time saving	т6	Dec. 79	20
- a summary of planned services	17	Oct. 82	10
Magnetic tapes - hints on use	Т2	Apr. 79	17
- making back-up copies	1	Feb. 80	9
- stranger tapes: slot numbers	36	Dec. 86	15
Public libraries	Т5	Oct. 79	6

GENE	RAL
------	-----

<u>N</u>			<u>r</u>
GENERAL	No*	Date	Page
COMFILE	11	Sept.81	14
Data handling sub-system	22	Aug. 83	17
ECMWF publications - range of	26	June 84	16
MAGICS - the ECMWF meteorological applications	35	Sept.86	20
graphics integrated colour system			
Magnetic tapes - various hints for use of	31	Sept.85	17
MARS - the ECMWF meteorological archival and	32	Dec. 85	15
retrieval system	& 33	Mar. 86	12
Member State TAC and Computing Representatives			
and Meteorological Contact Points	37	Mar. 87	17
Output files - controlling destination of, in Cray			
and Cyber jobs	14	Apr. 82	20
Resource allocation in 1987	37	Mar. 87	10
Resource distribution rules	18	Dec. 82	20
"Systems" booking times	27	Sept.84	
Telecommunications - description of new system	31	Sept.85	13
Telecommunications schedule	32	Dec. 85	19
Upper and lower case text files	11	Sept.81	15

METEOROLOGY

ALPEX: the alpine experiment of the GARP mountain			
sub-programme	14	Apr. 82	2
Alpex data management and the international Alpex			
data centre	11	Sept.81	1
Cloud Cover Scheme	29	Mar. 85	14
Diurnal radiation cycle - introduction of	26	June 84	1
Envelope orography - discussion of its effects	33	June 86	2
ECMWF Analysis and Data Assimilation System	Т3	June 79	2
ECMWF Analysis System - new version	35	Sept.86	16
ECMWF Limited Area Model	16	Aug. 82	6
ECMWF Operational Schedule, Data and Dissemination	12	Dec. 81	1
ECMWF Production Schedule	6	Dec. 80	5
Facilities to verify and diagnose forecasts provided			
by the Data & Diagnostics Section	8	Apr. 81	3
Forecast products of various centres decoded and			
plotted at ECMWF	9	June 81	3
Forecast model - T106 high resolution	29	Mar. 85	3
CTS. ECMWF arid code product distribution	27	Sept.84	6
Operational Archive Access facilities	16	Aug. 82	14
Operational Forecast Suite (EMOS)		-	
- general description	т1	Feb. 79	6
- data acquisition and decoding	Т6	Dec. 79	1
- initialigation	т6	Dec. 79	4
- mulity control	1	Feb. 80	3
- quality control	2	Apr. 80	1
- bulletin corrections (condol)	3	June 80	4
- archiving	4	Aug. 80	3
- post processing	12	Dec. 81	3
- significant change made	. 2		5

ENERAL

		Newsletter	2
METEOROLOGY (cont.)	No*	Date	Page
Pseudo "satellite picture" presentation of model			
results	1	Feb. 80	2
Spectral model	7	Feb. 81	4
- development of	15	June 82	1
- as new operational model	20	Apr. 83	1
- Gaussian grid and land-sea mask used	21	June 83	8
- increased resolution - studies of	38	June 87	10
 parameterisation of gravity wave drag 	35	Sept.86	10
- surface and sub-surface scheme revised	38	June 87	3
- T106 high resolution version	31	Sept.85	3
- vertical resolution increased from 16 to 19 levels Systematic errors - investigation of, by	34	June 86	9
relaxation experiments	31	Sept.85	9

* * * * * * * * * * *

.

^{*} T indicates the original Technical Newsletter series

USEFUL NAMES AND PHONE NUMBERS WITHIN ECMWF

		Room*		om*	<u>Ext.</u> **	
Director	-	Lennart Bengtsson	OB	202	200	
Head of Operations Department	-	Daniel Söderman	OB	010A	373	
ADVISORY OFFICE - Open 9-12, 14-17 daily	Y	malax (No. 847908)	СВ	Hall	309	
other methods of quick contact:	_	Telex (NO: 847900)	n١			
	_	COMPTLE (See Bulled	-in	B1.5	(1)	
REGISTRATION	-	COMPTINE (BEE DUITE)	- 11	D1. J/	•••	
Project Identifiers		Pam Prior	ОВ	016	355	
Intercom & Section Identifiers	-	Tape Librarian	CB	Hall	332	
COMPUTER OPERATIONS						
Console	-	Shift Leaders	СВ	Hall	334	
Reception Counter)	_	Tane Librarian	CB	Hall	332	
Tape Requests)	_	Tape morarian	CD	marr	552	
Terminal Queries	-	Norman Wiggins	СВ	028	454	
Operations Section Head	-	Bruno Baumers	СВ	023	351	
Telecoms Fault Reporting	-	Michael O'Brien	CB	035	209	
	_	Dam Drior	ΩR	016	355	
Distribution	-	Fla Kooji-Connally	OB	316	422	
DISCIDUCIÓN		EIS ROOIJ Connaily	СD	510	726	
LIBRARIES (ECLIB, NAG, CERN, etc.)	-	John Greenaway	OB	017	354	
METEOROLOGICAL DIVISION						
Division Head	-	Horst Böttger	ОВ	008	343	
Applications Section Head		Rex Gibson	OB	101	369	
Operations Section Head	-		OB	004	347	
Meteorological Analysts	-	Taskin Tuna	OB	005	346	
	-	Alan Radford	OB	006	345	
	-	Liam Campbell	OB	003	348	
Meteorological Operations Room	-		СВ	Hall	328/443	
COMPUTER DIVISION						
Division Head	-	Geerd Hoffmann	OB	009A	340/342	
Operating Systems Section Head	-	Claus Hilberg	СВ	133	323	
User Support Section Head	-	Andrew Lea	OB	018	353	
Communications & Graphics Section Hea	d-	Peter Gray	OB	227	448	
Broject Leader	-	Jens Daabeck	OB	013	358	
FIOJECT Deader		Jelis Daabeek	UD UD	015	330	
RESEARCH DEPARTMENT						
Head of Research Department	-	David Burridge	OB	119A	399	
Computer Co-ordinator	-	David Dent	OB	123	387	
* CP - Computer Plack						
- CB = Computer Brock $OB = Office Block$						

** The ECMWF telephone number is READING (0734) 876000
international +44 734 876000