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Review of Freak Wave Research at ECMWF

Abstract

The ECMWF freak wave warning system is based on a random time series analysis using the enve-
lope wave height. The key quantity of interest is the maximum envelope wave height distribution
which for (weakly) nonlinear systems depends on envelope skewness and kurtosis. Expressions for
skewness and kurtosis for general spectra are presented, but they are very cumbersome. Therefore,
a simple parametrization of skewness and kurtosis of the bound waves and the contribution of the
free waves to kurtosis is presented. These parametrisations are validated against computations us-
ing the theoretical expressions of the statistical parameters. By adjusting a few parameters in the
parametrizations a good agreement with the ’exact’ computations is found. These parametrizations
have been introduced in the operational version of ECMWF’s freak wave warning system.

Plain Language Summary

An ocean wave event becomes extreme when a sufficient number of wave components of the sea state
are coherent, i.e. have more or less the same phase so that the corresponding contribution to the surface
elevation of the different components goes up at the same time and location. The rare event of a coherent
sea state can be caused by linear effects such as constructive interference while also nonlinear four-wave
interactions, where one wave becomes big because it receives energy from the neighbouring waves, may
give rise to large amplitude waves.

However, modern wave prediction systems only predict the energy of the individual waves and not their
phase. Attempts to predict the phases of the individual waves fail because after a few hundred periods the
sea state becomes chaotic. Therefore, one can only hope that statistical prediction methods may provide
information on the likelyhood that extreme events occur.

The envelope of the sea surface elevation is a measure for the local energy of the waves and in first ap-
proximation the statistics of the envelope obeys Gaussian statistics (Linear Theory). This approximation
has been used sofar to provide estimates of likelyhood of extreme events. Nevertheless, recently it has
been realized that nonlinear effects, such as the generation of bound waves and four-wave interactions
may give rise to a considerable increase in the likelyhood of extreme events. For particular events, such
as the Draupner case or the Andrea wave, the increase is about a factor of 10, while on average the
increase is a factor of two to three.

In this Technical Memorandum a description is given of the development of the ECMWF Freak Wave
Warning system where, in particular, the focus is on the introduction of a number of nonlinear effects in
the calculation of the likelyhood of extreme events.

1 Introduction.

Recently, there has been considerable progress in the understanding of the occurrence of freak waves, a
notion which was first introduced by Draper (1965). Freak waves are waves that are extremely unlikely
as judged by the Rayleigh distribution of wave heights (Dean, 1990). In practice this means that when

Technical Memorandum 930 1



Review of Freak Wave Research at ECMWF

one studies wave records of a finite length (say of 10-20 min), a wave is considered to be a freak wave
if the wave height H (defined as the distance from crest to trough) exceeds the significant wave height
HS by a factor 2. It should be clear that it is hard to collect evidence on such extreme wave phenomena
because they occur so rarely. Nevertheless, observational evidence from time series collected over the
past decades does suggest that for large surface elevations the probability distribution for the surface
elevation may deviate substantially from the one that follows from linear theory with random phase,
namely the Gaussian distribution (cf. e.g. Wolfram and Linfoot, 2000). Also, there are now a number of
recorded cases which show that the ratio of maximum wave height and significant wave height may be
as large as three (Stansell, 2005).

Our present-day understanding of the generation of extreme events follows to a considerable extent from
recent developments in (weakly) nonlinear waves. Apart from the field of ocean waves, Freak waves have
been reported in, for example, liquid helium, in nonlinear optics, and in microwave cavities. The common
denominator between these fields is that they all concern the spatio-temporal dynamics of narrow-band
wave packets in a nonlinear dispersive medium which can be modelled by the nonlinear Schrödinger
equation.

Here, we will concentrate on ocean waves. Extreme events can be simulated by means of the Zakharov
equation (Zakharov, 1968, Janssen, 2003), which is the prototype equation for nonlinear four-wave inter-
actions. Yasuda et al (1992), Trulsen and Dysthe (1997) and Osborne et al (2000) studied narrow-band
versions of the Zakharov equation which are closely related to the nonlinear Schrödinger equation and it
was found that these extreme waves can be produced by nonlinear self modulation of a slowly varying
wave train. An example of nonlinear modulation or focussing is the instability of a uniform narrow-band
wave train to side-band perturbations. This instability, known as the Benjamin-Feir (1967) instability,
will result in focusing of wave energy in space and/or time as is illustrated by the experiments of Lake et
al (1977).

Nowadays, we judge extreme events by means of the probability distribution function (p.d.f.) of wave
height and maximum wave height. Although for linear ocean waves the surface elevation p.d.f. will
be close to a Gaussian, finite amplitude ocean waves give rise to deviations from Normality. There are
two reasons for this. First of all, finite amplitude waves generate bound waves such as second and third
harmonics which gives finite skewness (connected with sharper crests and wider troughs) and kurtosis,
which is a unique function of the square of the skewness: for narrow-band, deep-water waves one finds
that kurtosis equals twice the square of the skewness. The resulting deviations from Normality will
always occur as long as the waves are sufficiently steep.

However, there is another reason why there may be large deviations from Normality but this will only
occur when the sea state is coherent, corresponding to a narrow spectrum in frequency and direction.
Under those circumstances there is possibly a strong four-wave interaction which may result in quite
large amplitude waves corresponding to large values of kurtosis and therefore to considerable deviations
from Normality in such a way that extreme events become more likely. Compared to the first reason,
this dynamic mechanism is really rare because it only occurs for nonlinear coherent sea states. This
mechanism provides a plausible explanation for freak wave formation, which is in the present context
definitely a rare event. It should be noted that Toffoli et al. (2024) have recently in quite some detail
analyzed a case in the Southern Ocean which was shown to be exceptional because the ratio of kurtosis
and the square of the skewness was much larger than according to well-know statistical relations for the
bound waves, suggesting that four-wave interactions were the cause of the generation of this extreme
event.

In ocean wave forecasting practice one follows a stochastic approach because the phase of the individual
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waves is unknown. And if the phases of the waves were known, the prediction horizon is very much lim-
ited because the phase shows a sensitive dependence on errors in the initial condition leading to chaotic
behaviour (Annenkov and Shrira, 2001). Here, we therefore concentrate on a probablistic approach, in
particular we try to utilize results from a random time series analysis. It is assumed that the frequency-
direction spectrum F(ω,θ) is given and that we know relevant statistical moments such as the variance,
the skewness and the kurtosis of the time signal. Noting that maximum wave height is the parameter
of first choice to characterize extreme events, the important question then is whether it is possible to
obtain knowledge of the the maximum wave height distribution for given spectral shape and statistical
moments.

The answer to this question depends on the choice of analysis technique: traditionally, in the field of
ocean waves one analyzes time series in terms of wave height, defined through the zero-crossing method.
However, modern wave prediction systems do not predict the zero-crossing wave height. These mod-
els determine the evolution of the frequency-direction spectrum, and the significant wave height HS is
defined in such a way that it is directly connected to the energy of the waves, i.e. HS = 4

√
m0 with m0

the wave variance which is the zeroth moment of the two-dimensional wave spectrum. The wave energy
then equals ρgm0, with ρ the water density and with g acceleration of gravity. It is customary to omit
the factor ρg in the discussions regarding wave forecasting and here this custom is followed so that the
terms wave energy and wave variance can be used interchangeably.

Consistent with present-day modelling practice, Janssen (2014) has shown that an alternative technique,
which makes use of the envelope of the time series, may have certain advantages. First, the square of the
envelope equals the local (linear) energy of the waves, which is a more interesting quantity then the zero-
crossing wave height if one is interested in the impact of waves on a marine structure or a ship. Secondly,
in linear theory it is straightforward to show that the p.d.f. of the envelope height follows the Rayleigh
distribution, which only depends on the zeroth moment m0. However, no such simple functional form
for the p.d.f. of the zero-crossing wave height is known. From Monte Carlo simulations for linear waves
it is shown that the envelope wave height indeed follows the Rayleigh distribution, while the p.d.f. of
zero-crossing wave height depends on spectral shape and only approaches the Rayleigh distribution from
below for narrow spectra. Given the p.d.f. for envelope wave height a theoretical expression for the
maximum wave height p.d.f. is derived and this expression is validated against results from Monte Carlo
simulations.

In this review, a description is given of the work that has been done to use the theoretical approach to
estimate extreme events into a practical application which can be used in, for example, the ECMWF freak
wave warning system. In §2 a brief overview of the method is given. Starting point for this is Janssen
(2014) which develops an analysis of time series based on the envelope ρ . For convenience, and in order
to stay close to oceanographic practice, the envelope wave height h is introduced which is defined to be
twice the envelope height, i.e., h = 2ρ . If the effects of nonlinearity are small, the envelope wave height
p.d.f. may be obtained by means of a Taylor expansion of the logarithm of its generating function. This
basically gives an expansion around the Rayleigh distribution where the relevant expansion coefficients
are the third-order (skewness) and fourth-order (excess kurtosis) cumulants of the random envelope.
Following this approach, envelope skewness and excess kurtosis for the bound waves can be obtained
from the wave spectrum following a procedure described in Janssen (2009), who applied it to obtain the
surface elevations statistics, while the contribution from the free waves is obtained from Janssen (2003),
Mori and Janssen (2006), and Janssen and Janssen (2018).

This approach works well as follows from comparisons with p.d.f.’s observed in the laboratory and from
comparisons with Monte Carlo simulations. Nevertheless, this statistical theory has a restricted range
of validity. This follows from a comparison with maximum wave height data obtained in the field by
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Janssen and Bidlot (2009) (see their Fig. 8) where it is evident that the theoretical p.d.f. starts to deviate
from the observed one for extreme sea states with hmax/HS > 2.5. Since extreme events, such as the
Draupner wave, have a maximum envelope wave height that is about three times the significant wave
height, it follows that this event is clearly outside the range of validity of the nonlinear approach and an
extension of the domain of validity is required. Nowadays there is evidence that for very extreme states
the p.d.f. has an exponential tail. Particularly convincing evidence is found from experimental work in
nonlinear optics and liquid crystals. The work of Montina et al. (2009) suggests that the statistics of the
fluctuations can be approximated by a simple empirical form, a stretched exponential distribution. Using
this distribution to model the tail of the p.d.f., Janssen (2015b) has shown that this results in a satisfactory
agreement with Monte Carlo simulations of a random weakly nonlinear Stokes wave down to values of
the simulated p.d.f. of order 10−7.

Given the form of the p.d.f. of envelope wave height, the next step is to establish the maximum envelope
wave height probability distribution. In the field of ocean waves, the maximum wave height distribution
proposed by Goda (2000) has been used frequently. In Goda’s approach an important parameter is the
number of events N, of which a choice needs to be made which introduces some arbitrariness. An
alternative has been suggested by Naess (1982). His method is based on the reasonable assumption that
for envelope time series the number of level upcrossings by the envelope ρ(t) is asymptotically Poisson
distributed when the level height increases. In Janssen (2015a) it has been shown that, in particular
for the tail of the maximum wave height distribution, Naess’s idea yields for linear waves a very good
agreement with Monte Carlo simulations of the p.d.f. of maximum envelope wave height. Therefore, it
was decided to use the Naess approach in the operational implementation.

Finally, work is presented that is required to develop an operationally feasible warning system. It should
be realized that the expressions for skewness and kurtosis introduced by Janssen (2003, 2009) involve
the evaluation of four and six dimensional integrals which would result in far too long operational run
times. For this reason, simple parametrizations of envelope skewness and kurtosis are introduced, which
are based on results obtained from the narrow-band version of the theoretical expression for skewness
and kurtosis. These parametrizations are validated against exact computations of the relevant statistical
parameters for the Draupner wave and the Andrea Storm, and a reasonable agreement has been obtained.

2 The Envelope method.

Following Janssen (2014) a time series analysis based on the envelope wave height will be used. Al-
though this method is not so popular in the field of ocean waves it should be pointed out that in other
fields, such as communication theory and nonlinear optics, this approach is found to be very useful.
This method, introduced by Rice (1945), Gabor(1946) and Longuet-Higgins (1983), will be called the
envelope method and in Janssen (2014) it is shown that this method gives an accurate estimation of the
joint p.d.f. of wave height and period for linear waves and that it is possible to extend the approach into
the weakly nonlinear regime. To make things more quantitative let us introduce the local variance of
the surface elevation time series η , i.e. E = ⟨η2⟩ where the brackets denote an ensemble average. In
addition, introduce the envelope ρ defined according to η = ρ cosφ . In practice, ρ is obtained from the
timeseries of the surface elevation η and its Hilbert transform ζ = H(η) = ρ sinφ , according to

ρ =
√

η2 +ζ 2, (1)
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where for stationary signals surface elevation and its Hilbert transform have the same variance. In terms
of the envelope one finds for the local variance

E =
1
2

ρ
2, (2)

while the normalized local variance is given by E = E /σ2 with σ 2 = m0 the averaged variance of the
surface elevation and m0 the zeroth moment of the frequency spectrum. The value E = 1 then corresponds
to the case that the local wave variance equals the average wave variance in the domain of interest. Events
such as the Draupner wave event and the Andrea storm have E ≃ 20 which illustrates that at the focal
point there was a considerable amplication of wave energy, therefore these events are quite extreme.
As an alternative measure, introduce the envelope wave height as twice the envelope height ρ and the
normalized envelope wave height h becomes

h =
2ρ

4σ
(3)

and the relation between normalized envelope wave height and local energy is E = 2h2 so that for the
Draupner event hmax = 3.1, while for the Andrea event hmax = 3.26. For linear waves that obey Gaussian
statistics it can be shown that the envelope wave height distribution is the Rayleigh distribution. In terms
of the normalised envelope wave height (3) one finds

p(h) = 4he−2h2
. (4)

The Rayleigh distribution is the starting point of further developments of the p.d.f. of weakly nonlin-
ear ocean waves. Before we continue the discussion it is time to introduce some important quantities
that characterize the sea state as determined by e.g. the angular frequency spectrum E(ω). One then
introduces the spectral moments mn

mn =
∫

dω ω
n E(ω), (5)

and using these moments one may introduce measures for significant wave height HS = 4σ with the
variance σ determined by the zero moment, i.e. σ =

√
m0, while there are two definitions for the mean

angular frequency, namely one based on the first moment, i.e. ω1 = ⟨ω⟩ = m1/m0 while an alternative
mean frequency may be introduced using the second moment, i.e. ω2 = ⟨ω2⟩1/2 =

√
m2/m0. Fur-

thermore, spectral shape can be measured by means of the spectral width parameter ν , introduced by
Longuet-Higgins (1983). It is defined as

ν =
√

m0m2/m2
1 −1. (6)

and this parameter is connected to ω1 and ω2 in the following manner: ω2 = ω1(1+ν2)1/2.

2.1 Comparison with the Zero-Crossing method.

Traditionally, a key parameter to express the severity of the sea state has been related to the wave height,
which for a single wave is defined as the distance between the crest and the trough of the wave. As
typically many waves with different frequency and direction are present at sea, a statistical approach is
usually followed. In practice, the wave height distribution is obtained by means of the zero-crossing
method. This is a very elegant method, which can be easily used and implemented. One just searches for
two consecutive zero-upcrossings in the time series and one determines the zero-crossing wave height
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hzc from the difference of the maximum and the minimum of the surface elevation η in the correspond-
ing time interval. Thus, the zero-crossing wave height is basically determined by sampling with the
zero-crossing frequency (m2/m0)

1/2, and to quantify the severity of the sea state one determines the
probability distribution function of the zero-crossing wave height. By applying the zero-crossing method
to time series of the surface elevation it turns out that the resulting p.d.f. is a Rayleigh distribution with
a variance which depends on spectral width. This follows from Naess (1985) who found an approxi-
mate expression for the zero-crossing wave height distribution in the narrow-band limit which will be
confirmed by Monte Carlo simulations of linear ocean waves presented here. In particular, for a narrow-
band spectrum the zero-crossing wave height p.d.f. is found to be close to the Rayleigh distribution with
variance given by σ 2 = m0 while for broad-band spectra the effective variance is reduced so that extreme
waves are, when compared to the standard Rayleigh distribution, less likely to occur.

In more detail, let tmax and tmin = tmax + τ be the times dat surface elevation has a maximum and a
minimum respectively in the interval between two succesive zero-crossings of interest. The zero-crossing
wave height hzc is then given by hzc = η(tmax)−η(tmin) and it is assumed that the statistics of hzc is
stationary so that parameters such as variance, skewness, etc, only depend on the time difference τ . It is
then straightforward to obtain the variance σ2

hc = ⟨h2
zc⟩. One finds

σ
2
hc = ασ

2, α =
1
2
(1− r(τ)) , τ = T1/2, (7)

where the factor α gives the departure of the effective variance from the narrow-band case, while
r(T1/2) = R(T1/2)/R(0) = R(T1/2)/σ2 is the normalised autocorrelation function of the surface wave
elevation η , and T1 = 2π/ω1 s the dominant wave period1. Note that in the limit of narrow-band waves,
the normalised correlation r(T1/2) approaches -1 so that the variance of zero crossing height becomes
identical to the variance of the envelope height shown in Eq. (3).

Introducing the normalised zero-crossing wave height

ĥ =
hzc

4σhc
(8)

Naess (1985) has shown that the p.d.f. of zero-crossing wave height follows in the narrow-band approx-
imation the Rayleigh distribution

p(ĥ) = 4ĥe−2ĥ2
. (9)

However, only in the narrow-band limit, when the normalised correlation r(T1/2) approaches -1 and
α → 1, the zero-crossing wave height p.d.f. equals the distribution for the envelope wave height.

It is emphasized here that the alternative technique, namely the envelope method, shows a different
picture as theoretically and from Monte Carlo simulations (see e.g. Janssen, 2014) one finds that for
a Gaussian sea state the p.d.f. of envelope wave height always follows the Rayleigh distribution, with
variance independent of spectral shape.

We have illustrated these findings on the statistics of zero-crossing wave height and envelope wave height
in Fig. 1. The details of the Monte Carlo simulations are given in Janssen (2014). Essentially, linear
theory is assumed and the surface elevation for a spectrum of waves is obtained where the amplitudes are
drawn from a given frequency spectrum using a Rayleigh distribution while the phases are drawn ran-
domly. The case of a narrow-band spectrum, with ν = 0.12 corresponds to a wavenumber cut-off of 21/2

1Naess (1985) suggests to use as time scale T2 = 2π/ω2, but I found a slightly better agreement with the Monte Carlo
simulations by choosing T1.
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Figure 1: Comparison of p.d.f. of zero-crossing wave height (labelled ZCM) with p.d.f. of envelope wave height
for different spectral width parameter ν . The envelope p.d.f. does not depend on ν , whilst the zero-crossing height
p.d.f. does. For broad spectra (ν large) probabilities are underestimated by a factor of 10.

times the peak wave number while the broad-band case with ν = 0.4 corresponds to a cut-off wavenum-
ber of 64 times the peak wavenumber. As already discussed in Janssen (2014) the envelope method
results in an almost continuous representation of wave height while with the zero-crossing method wave
height is only sampled with the zero-crossing frequency. Therefore, in order to obtain stable results with
the zero-crossing method the number of members of the ensemble was chosen to be 50,000 while the
length of the time series of each member was 100 peak periods. Clearly, it takes many observations
to obtain a reliable estimate of the zero-crossing waveheight, so this is definitely a weak point of this
approach.

From Fig. 1 it is clear that the p.d.f. of zero-crossing wave height is a sensitive function of spectral width
which, compared to the envelope waveheight results, underestimates for broad spectra the probability
of extreme events by an order of magnitude. On the other hand, the p.d.f. of envelope wave height
is independent of spectral width and is given by the Rayleigh distribution. There is a preference for
the envelope method because it measures potential energy of the waves, information which is vital for
determining extreme forces on oil rigs and ships. The zero-crossing waveheight would understimate
these forces on structures. Therefore, from now onwards we concentrate on the envelope method.

We conclude the discussion by remarking that recently evidence has been presented by Häfner et al
(2021), that the correlation between crest and trough, i.e. r(T1/2), is a good predictor for the presence
of extreme Rogue waves (defined by the criterion that zero-crossing wave height hzc normalised by
significant wave height HS is larger than 2). In view of the result of Naess (1985) this finding is fairly
trivial because zero-crossing wave height will always depend on r(T1/2) whether there are extreme
events or not. In fact, it is straightforward to determine from (8) and (9) the probability that hzc/HS > 2.
One finds

P(hzc > 2HS) = e−16/(1−r(T1/2)). (10)

and clearly this probability depends explicitely on r(T1/2). However, once more, it is argued that zero-
crossing wave height is not the most appropriate measure to characterize the impact of an extreme event
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on structures such as oil rigs and ships at sea. The envelope wave height seems to be a better indicator.
For linear waves the probability that envelope wave height is larger than twice significant wave height is
given by P(henv > 2HS) = e−8 and is, of course, independent of the correlation between crest and trough.
This result follows from Eq. (10) for r(T1/2) = −1, which corresponds to the limit of narrow-band
waves. Thus the envelope provides an upper-bound to the probability of extreme events. This choice
follows the old adage that it is better to be safe than sorry.

2.2 Statistics in the weakly nonlinear regime.

In Janssen (2014) the envelope wave height p.d.f. for a weakly nonlinear sea state has been obtained
assuming the simple time series description that η = ρ cosφ where envelope and phase φ are obtained
from the surface elevation η and its orthogonal complement ζ which follows from the Hilbert transform
of η . The envelope wave height distribution is then obtained from the joint p.d.f. of η and ζ .

As a brief intermezzo it is noted that in statistics, a central role is played by the so-called generating or
characteristic function G(µ), which is defined as the Fourier transform of the joint p.d.f. p(x) where
x = (x1,x2, ...,xN) represents N parameters, i.e.

G(µ) = ⟨expiµ ·x⟩=
∫

dx p(x)exp(iµ ·x)

and the parameter µ represents the counterpart of x in Fourier space. The generating function contains
all the statistical information on the stochastic process x, e.g. the moments of the p.d.f. are related to
derivatives of G with respect to µ at the origin. Hence, the moments are related to the coefficients of the
Taylor expansion of G around the origin. This expansion is, however, not very useful because it does
not bring out the significance of a special characteristic function, the one corresponding to a Gaussian
distribution, which is great importance as linear waves have a normal distribution. Here, using from
now onwards the Einstein summation convention, i.e. summation over repeated indices, the Gaussian
characteristic function is given by

G0 = e−
1
2 µiµ jBi j ,

and by expanding G around G0 the so-called cumulants of the distribution function are introduced. These
are the coefficients of the Taylor expansion of the logarithm of G, i.e.

G = exp{−1
2

µiµ jBi j −
i

3!
µiµ jµkCi jk +

1
4!

µiµ jµkµlDi jkl + ...},

where Bi j is the second-order cumulant, Ci jk is the third-order cumulant, related to the skewness and,
finally, Di jkl is the fourth-order cumulant which is connected to the excess kurtosis. Consistent with the
small amplitude expansion for waves with a small steepness ε , there is an ordering in the magnitude of
the cumulants, i.e.

Bi j = O(ε2),Ci jk = O(ε4),Di jkl = O(ε6),

and the hope is that for sufficiently small ε the expansion converges. In order to obtain the required
p.d.f. the Fourier transform of G is required, which for the above expresion for G is not straightforward.
Therefore the exponential function is Taylor expanded. Adopting the above ordering one finds to fourth
order in ε , thus retaining effects of skewness and kurtosis,

G ≃ G0

{
1− i

3!
µiµ jµkCi jk +

1
4!

µiµ jµkµlDi jkl −
1
72
(
µiµ jµkCi jk

)2
}
.
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The corresponding expansion for the pdf p(x) then follows from the Fourier transform of G, i.e.

p(x) =
1

(2π)N

∫
dµG(µ)exp(−iµ ·x).

Noting the usual rule for Fourier transformation, namely that each factor µi corresponds to i∂/∂xi and
denoting the Fourier transform of G0 by Φ0 where

Φ0 =
1

(2π)N/2|B|1/2 exp(−1
2

xix jB−1
i j )

the expansion for the pdf p(x) becomes

p(x) =

{
1−

Ci jk

3!
∂ 3

∂xi∂x j∂xk
+

Di jkl

4!
∂ 4

∂xi∂x j∂xk∂xl
+

C2
i jk

72

(
∂ 3

∂xi∂x j∂xk

)2
}

Φ0(x) (11)

which is known as the Edgeworth expansion. Compared to the well-known Gram-Charlier expansion,
used by e.g. Tayfun and Lo (1990), the difference is the additional term which is proportional to the
square of the skewness parameter Ci jk. According to the order of magnitude of skewness and kurtosis, the
last term of the Edgeworth expansion is, at least in the tail of the distribution on the scale xi = O(1/ε),
as important as the term involving the kurtosis Di jkl . Therefore, it should be retained and it gives an
important contribution to the tail of the wave height distribution as will be seen in a moment.

Two applications of the Edgeworth expansion are now given. The first one concerns the derivation of
the p.d.f. of the surface elevation. This is the most simple case to deal with because only one variable
is considered so that N = 1. Performing the differentiations for this case one finds as p.d.f. for the
normalised surface elevation x = η/σ

p(x) =
1√
2π

e−x2/2
(

1+
C3

6
H3(x)+

C4

24
H4(x)+

C2
3

72
H6(x)

)
(12)

where the Hermite polynomials are given by

H3(x) = x3 −3x, H4(x) = x4 −6x2 +3, and H6(x) = x6 −15x4 +45x2 −15,

while the cumulants are normalised with the variance ⟨η2⟩, i.e. the skewness C3 and excess kurtosisis C4
are given by

C3 =
⟨η3⟩

⟨η2⟩3/2 , C4 =
⟨η4⟩
⟨η2⟩2 −3.

It is clear from Eq. (12) that for the surface elevation p.d.f. the main effect of nonlinearity is given by the
skewness of the sea state while effects of kurtosis are relatively minor. In sharp contrast, we will see in a
moment that the envelope wave height p.d.f. has a completely different dependence on nonlinear effects
as the envelope is symmetric with respect to the mean sea surface so that there is no first order effect of
skewness.

The second application concerns the derivation of the envelope wave height p.d.f., which follows from
the joint p.d.f. p(η ,ζ ), so now N = 2. Recall that η = ρ cosφ while ζ = ρ sinφ , hence ρ is the envelope
while φ is the phase of the surface elevation time series. After some straightforward algebra (for some
details see Janssen (2014)) and an integration of the joint p.d.f. over φ from 0 to 2π (which cancels the
term proportional to the skewness C3), the p.d.f. of the envelope wave height h = ρ/2σ becomes:

p(h) = 4he−2h2 {
1+C4

(
2h4 −4h2 +1

)
+C2

3
(
4h6 −18h4 +18h2 −3

)}
. (13)
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where the parameters C4 and C2
3 are obtained from knowledge of the two-dimensional wave spectrum

and are related to the kurtosis and skewness of the sea state. Here

C4 =
κ4

8
, (14)

with κ4 = κ40 +2κ22 +κ04 the envelope kurtosis, while the skewness factor becomes

C2
3 =

κ2
3

72
, with κ

2
3 = 5(κ2

30 +κ
2
03)+9(κ2

21 +κ
2
12)+6(κ30κ12 +κ03κ21).

In Janssen (2015b) it was shown that the skewness factor may be simplified because it was found that for
general spectra κ21 = κ03 = 0 while κ12 = κ30/3. As a consequence the skewness factor becomes

C2
3 =

κ2
30
9

. (15)

The κ’s refer to a number of cumulants of the joint distribution of the surface elevation η = ρ cosφ and
its Hilbert transform ζ = ρ sinφ . Introducing the normalized moments

λmn =
⟨ηmζ n⟩

⟨η2⟩m/2⟨ζ 2⟩n/2 ,

the normalized skewness elements become

κmn = λmn, m+n = 3

while the normalized kurtosis elements become

κmn = λmn +(m−1)(n−1)(−1)m/2, m+n = 4

In addition, it is noted that both free and bound waves may contribute to the cumulants. The general
expressions for skewness and kurtosis parameters in terms of the wave spectrum are given in Appendix
A, which also provides explicit expressions for the case of a narrow-band wave train.

From the wave height p.d.f., Eq. (13), one may then immediately obtain the p.d.f. of wave energy, since
p(h)dh = p(E)dE with E = 2h2. The result is

p(E) = e−E [1+C4A(E)+C2
3B(E)

]
, (16)

where

A(E) =
1
2

E2 −2E +1, B(E) =
1
2

E3 − 9
2

E2 +9E −3. (17)

Finally, for the purpose of estimating the maximum wave height distribution the exceedance probability
P(E > Ec) is required. It follows from an integration of the p.d.f. (16) from E to infinity, with the result

P(E) = e−E [1+C4A(E)+C2
3B(E)

]
, (18)

where

A(E) =
1
2

E(E −2), B(E) =
1
2

E(E2 −6E +6). (19)

It should be realized, however, that the expressions for the p.d.f. and c.d.f. have only a restricted range
of validity. For example, for given skewness and kurtosis the p.d.f. (13) underestimates the true p.d.f. for
large envelope wave heights in the range h > 2.5. In other words, the theoretical approach fails just in the
wave height range where a number of extreme events, such as the Draupner wave and the Andrea storm,
have been reported. The range of validity of the theoretical approach therefore needs to be extended and
this will be discussed next.
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2.3 Behaviour of the tail of the p.d.f.

Nowadays there is ample evidence that for very extreme (sea) states the envelope wave height p.d.f. has
an exponential tail, resulting, compared to the present theory, in much larger probabilities for extreme
events. Evidence for an exponential tail follows from numerical simulations (e.g. Montina et al. (2009),
Walczak et al. (2015), Janssen (2014), Janssen (2015b)), and comparison with field data (Janssen and
Bidlot, 2009). Also, in nonlinear optics and liquid crystals a considerable amount of experimental evi-
dence is available that suggests that this tail is exponential. It is therefore important to modify the present
approach by adding an exponential tail.

For extreme waves in a nonlinear optical cavity Montina et al. (2009) have noted that the observed
probability distribution function for intensity E can be well approximated by a stretched exponential
form, involving a number of fitting parameters. Following this idea, it was realized, after some trial and
error, that by using a stretched exponential to approximate the cumulative distribution function only one
fitting coefficient was needed. The general form used to extend the range of validity of the theoretical
c.d.f. (16) for normalised wave energy reads

P(E) =
∫

∞

E
dx p(x) = e−z, z =−α +

√
α2 +βE, (20)

where (see Janssen (2015b)) β = 2(α +1) from the condition that the ensemble average wave variance
should equal the average in the domain of interest. Therefore, for matching purposes one only needs to
determine the parameter α . The idea of using (20) was suggested to me by Residori (2015). Unfortu-
nately, this form is not so easy to justify although the most simple nonlinear system that has a similar
c.d.f. for wave energy is one that only has a first and second, bound harmonic (Janssen, 2017).

This simple form has some interesting properties. First of all, the condition P(E = 0)= 1 is automatically
satisfied so that the underlying p.d.f. p(E) is normalized to 1. Second, for small E Taylor expansion of z
gives z = βE/(2α) hence

lim
E→0

P(E) = e−
β

2α
E , (21)

while for large E one finds

lim
E→∞

P(E) = e−
√

βE . (22)

Realizing that E = 2h2 this means that in terms of envelope wave height we have for small E a Gaussian
distribution while for large E the distribution is exponential.

By differentiation of the c.d.f. (20) it is straightforward to obtain the p.d.f. p(E). By definition

p(E) =−∂P
∂E

so that

p(E) =
β

2(z+α)
e−z, z =−α +

√
α2 +βE.

It is then straightforward to obtain the envelope wave height p.d.f. from the condition p(h)dh = p(E)dE
and the result is

p(h) =
2βh

(z+α)
e−z. (23)
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In a moment it will be seen that this form of the envelope wave height p.d.f. is an adequate approximation
for both the weakly nonlinear regime and for the tail of the distribution.

A relation for α is now obtained by matching the empirical c.d.f. (20) with the theoretical one, given
in Eq. (16), which is denoted by Pth. The fitting constant α then follows from the condition that at the
edge of the range of validity, taken as Eb = 10 (corresponding to h = 2.2), the empirical c.d.f. equals the
theoretical one, i.e. P(Eb) = Pth(Eb). This gives for α ,

α =
f 2
b −2Eb

2(Eb + fb)
, fb = logPth(Eb). (24)

where fb is the logarithm of the theoretical c.d.f. at the boundary given by E = Eb. In this manner
a connection between skewness and kurtosis of the sea state, via fb, and the fitting parameters of the
empirical c.d.f. has been established. For relatively small values of C4 and C3 this matching procedure
works well, as reported in Janssen (2015b).

0 0.5 1 1.5 2 2.5 3 3.5 4
h

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

p
(h

)

Monte Carlo
Nonlinear with exp. tail

Nonlinear
Linear

Figure 2: Probability distribution function of envelope wave height for a significant steepness of 0.06 and a dimen-
sionless depth of 1.45, mimicking the Draupner wave event. The Monte Carlo simulation shows clear evidence that
the tail of the distribution is exponential. Nonlinear theory combined with the stretched exponential of Residori is
in good agreement with the simulation.

It is important to check the validity of the statistical distribution presented in this section by means of a
Monte Carlo simulation, and this subject has been more extensively discussed in Janssen (2015b). Since
the interest is in extreme events with probabilities of the order 10−6 the number of ensemble members
Nens needs to be quite large. By trial and error, Nens = 50,000,000 is taken, in order to obtain smooth
results for the p.d.f.. Assuming that the envelope wave height p.d.f. is determined by the skewness factor
C3 and the kurtosis factor C4 only, one may use any nonlinear system in the numerical simulation as
long as it has the same statistical parameters. For this reason a Monte Carlo simulation is performed
with a Stokes wave train, where the amplitude a is drawn from a Rayleigh distribution while the phase
is drawn from a uniform distribution. We have studied the statistical properties of the envelope wave
height of this nonlinear system. The envelope wave height p.d.f., as obtained from the Monte Carlo
Simulation, is shown in Fig. 2. Over a wide range of values, between 10−6 and 10−2, the logarithm of
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the p.d.f. behaves as a straight line, hence the p.d.f. follows an exponential law. For comparison, also
shown are results according to linear theory, and it is clear that this gives a large underestimation of the
frequency of extreme events. The nonlinear theory discussed by Janssen (2014) shows good agreement
with the simulation up to a wave height of h = 2.5, but the probability of extreme events such as the
Draupner case with h = 3.1 is considerably underestimated. The approach that adds, using the method
detailed here, an exponential tail is found to agree very well with the numerical simulation. In fact, the
violet line, labeled Nonlinear with exp. tail, corresponds to Eq. (23) with fitting parameter given in (24),
therefore the stretched exponential captures both the weakly nonlinear regime with h < 2.5 and the tail
region with h > 2.5. From now onwards the stretched exponential form wil be used for describing the
statistical distribution of envelope wave height.

2.4 Maximum envelope wave height distribution: linear theory.

In order to derive the p.d.f. of maximum envelope wave height information is needed on the statistics of
the envelope wave height time series and on the length TL of the time series. The relevant statistics are
the envelope wave height distribution p(h), the cumulative wave height distribution (or the cumulative
distribution function, c.d.f.)

P(h) =
∫

∞

h
dh p(h),

and the joint p.d.f. of envelope wave height h and its time derivative ḣ. Here, we concentrate on linear
theory firstly and in the next subsection we sketch how to extend results for weakly nonlinear theory.
As according to linear theory the envelope wave height distribution is given by the Rayleigh distribution
(see Eq. (12)),

p(h) = 4he−2h2
, (25)

the cumulative distribution function becomes

P(h) = e−2h2
. (26)

Again assuming linear waves, the joint probability distribution (j.p.d.) of envelope wave height h and its
time derivative ḣ is given by

p(h, ḣ) =
8h√
2π

e−2(h2+ḣ2), (27)

where ḣ has been normalized by means of the parameter m1/2
0 νω̄ with ω̄ = m1/m0 the mean angular

frequency while ν = (m0m2/m2
1−1)1/2 is the width of the frequency spectrum. Note that by considering

the j.p.d. of h and ḣ the frequency scale νω̄ is introduced in a natural way which corresponds to the
inverse of the relevant timescale of the wave groups. As time has been made dimensionless with this
frequency scale the length TL of the timeseries has to be scaled accordingly, hence the dimensionless
length is T ∗

L = TL × νω̄ . The result (27) is valid for a Gaussian sea state and can be obtained in a
straightforward manner from the well-known expression of the j.p.d. of envelope ρ and phase φ and its
time derivatives (see e.g. Janssen (2014)). Integration over phase φ and its derivative φ̇ and introduction
of the envelope wave height which is twice the envelope then results in (27). Alternatively, one may argue
that h and ḣ are independent and that the joint p.d.f. of h and ḣ is simply the product of the marginal
distributions of h and ḣ, i.e. the product of a Rayleigh distribution for h and a Gaussian distribution for
ḣ.
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In an earlier version of the ECMWF Freak Wave Warning system Goda’s maximum wave height dis-
tribution has been used. Goda (2000) obtained the maximum wave height distribution from a surface
elevation time series of N independent wave events. The number of waves would be obtained from the
ratio of the length TL of the time series divided by either the mean zero-crossing frequency or the peak
frequency. A similar approach was already followed by Davenport (1964) in the problem of estimating
the maximum gust. Here we start with Goda’s (2000) approach but now applied to time series of the
envelope wave height. Clearly, when obtaining the envelope wave height time series from the surface
elevation signal the mean or peak oscillation frequency will be removed from our considerations and this
will affect the estimate of the number of events. It will now involve the frequency scale νω̄ . This fre-
quency scale can be rewritten as νω̄ = (m2/m0−ω̄2)1/2 which illustrates that for the envelope timeseries
indeed the mean oscillation frequency is removed from the signal.

Now, the maximum envelope wave height distribution pmax(hmax) is the probability that a certain event
attains the maximum value multiplied by the probability that all other events are below the maximum
value while realizing that there are N possibilities. Therefore

pmax(hmax) = N[1−P(hmax)]
N−1 p(hmax), (28)

where for linear wavess P is the c.d.f. given in Eq. (25). It is straightforward to implement this expression
for the p.d.f. of maximum envelope wave height, but we are also interested in deriving simple, accurate
expressions for parameters such as the expectation value of maximum wave height. In this case we need
an approximate form of pmax(hmax), which is obtained from the large N limit of (28). From experience it
is known that this approximation works well for N > 10.

In the continuum limit, i.e. for large N, the maximum wave height distribution assumes, with G (h) =
−NP(h), the simple form

pmax(h = hmax) =
dG

dh
exp(G ) = N p(hmax)exp[−NP(hmax)], (29)

where p(h) is the p.d.f. of envelope wave height and P(h) is the corresponding exceedance probability.
Then, the probability that maximum envelope wave height is larger than a given value, say hc, becomes
for large N,

P(hmax > hc)≃ 1− exp(G (hc)) = 1− exp(−NP(hc)).

For linear waves the statistics are Gaussian and the exceedance probability is given in (26) resulting in
the well-known double exponential law

P(hmax > hc) = 1− exp{−Ne−2h2
c}

for the maximum envelope wave height probability. Note that in Goda’s method the number of events N
is independent of the exceedance level hc.

So the question now is how to choose the number of independent events. It is customary to define an
event with respect to a chosen reference level hc. An event is then a part of a time series of length TL

that starts where the envelope has an upcrossing at level hc and that finishes at the next upcrossing. The
frequency of events is then determined by the upcrossing frequency. The total number of events in a time
series of length TL then determines the number of degrees of freedom N. For a more complete discussion
see Elgar et al. (1984), where it follows that N and also parameters such as the number of waves in
a group depend on the chosen reference level, but it is not clear which level to choose. Therefore, in
order to make Goda’s method work, which relies on a constant number of degrees of freedom, it may be
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appropriate to introduce an average upcrossing frequency. The first measure of frequency that came to
mind is basically the average of the rate of change of h with time, ḣ normalized with h itself. Hence, the
average frequency of events, determined by the average upcrossing frequency, becomes

⟨ fup⟩= ⟨ḣ/h⟩=
∫

∞

0
dh
∫

∞

0
dḣ p(h, ḣ) ḣ/h

where p(h, ḣ) is the joint p.d.f. of h and ḣ. For upcrossings ḣ is positive so that the integration over ḣ is
restricted to positive values only. Making use of the joint p.d.f. of h and ḣ in Eq. (26) and performing
the integrations one immediately finds the simple result

⟨ fup⟩= 1

and, defining the dimensionless length T ∗
L = νω̄TL, the average number of events becomes

N = ⟨ fup⟩T ∗
L = T ∗

L .

This result reflects that the number of degrees of freedom is determined by the number of wave groups. It
is emphasized that it has only been made plausible how N depends on the relevant parameters. To some
extent the result is uncertain because the choice has been made to connect the number of events with the
average upcrossing frequency.

An alternative method to obtain the maximum envelope wave height distribution has been suggested by
Naess (1982). His approach is based on the reasonable assumption that for envelope time series the
number of level upcrossings by the envelope ρ(t) is asymptotically Poisson distributed when the level
height increases. In Janssen (2015a) it has been shown that, in particular for the tail of the maximum
wave height distribution, Naess’s idea results for linear waves in very good agreement with Monte Carlo
simulations of the p.d.f. of maximum envelope wave height.

Naess (1982) states, based on Cramér’s theorem, that if η(t) is a stationary Gaussian process, satisfy-
ing certain mild restrictions, then the number of level upcrossings by η(t) is asymptotically Poisson
distributed when the level height increases. Naess assumes that this then also holds for the associated
envelope process. Let fup be the mean frequency of upcrossings of the level hc, then for a Poisson process

P = Prob{h ≤ hc;0 ≤ t ≤ T ∗
L }= e− fupT ∗

L .

The average frequency with which h(t) crosses a reference level hc with a positive slope, hence positive
ḣ, is then given by

fup =
∫

∞

0
dḣ ḣp(hc, ḣ),

and substitution of (27) and carrying out the integration gives

fup =
2hc√

2π
e−2h2

c .

We now fix T ∗
L and denote by H = max(h) for time t ∈ (0,T ∗

L ). Using this in the c.d.f. P one finds

PH(h) = exp{−hNslce−2h2}, (30)

where PH denotes the probability distribution function of maximum wave height H, and,

Nslc = 2T ∗
L /

√
2π (31)
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is the number of (up)crossings at the significant level h= 1 (Here, the subscript ’slc’ stands for significant
level crossings). This parameter is a measure for the number of degrees of freedom. The maximum
envelope height distribution then follows from pmax(h) = dPH/dh, or,

pmax = (4h2 −1) Nslc e−2h2
PH(h), where h ≥ 1

2
. (32)

The restriction h≥ 1
2 is added in order to prevent the p.d.f. from becoming negative. In addition, note that

the approach by Naess is only valid for large level crossings, presumably because for large levels the level
upcrossings are statistically independent since these are rare events. An important point to make is that in
the present result the dependence of the average number of wave groups N on the reference level has been
taken into account, while in the result (29) N has been assumed a constant. As a consequence, the large
h behaviour of (32) differs from (29) because it involves an additional factor h. This different asymptotic

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
h

0.01

0.1

1

p
(h

)

MC Envelope (windsea nu = 0.40)

Goda (Eq.  (29))

Naess (Eq. (32))

Figure 3: The p.d.f. of maximum envelope wave height for ’old’ wind sea (γ = 1). The duration of the time series
is 10 wave periods. Shown is the comparison between results from Monte Carlo simulations, and the theoretical
result from Eq. (29) and Naess’ (1982) Eq. (32). In the Monte Carlo simulations both amplitude and phase of the
waves are regarded as stochastic variables.

behaviour of the two results for maximum wave height distribution is born out by a comparison of (32)
and (29) with Monte Carlo simulations of the sea state with a Pierson-Moskovitz spectrum, as shown in
Fig. 3. Here, it is important to point out that a Monte Carlo simulation was performed where amplitudes
are drawn randomly from a Rayleigh distribution while phases were drawn from a uniform distribution.
Fig. 3 shows clearly that the Naess expression for the maximum envelope wave height distribution is in
better agreement with the Monte Carlo result, in particular for the tails of the distribution.

2.5 Maximum envelope wave height: nonlinear extension and expectation value.

In the previous sections we have found that for linear waves Naess’ expression is adequate in describing
the maximum envelope wave height distribution. The extension towards nonlinear waves is not trivial,
however, because it requires deriving the joint probability distribution of h and ḣ in the weakly nonlinear
case. In principle this can be done but it is simply a matter of a lot of work. Therefore, at the moment an
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educated guess is being made of the form of a maximum envelope wave height p.d.f., based, of course,
on the findings thus far.

The following discussion will be done both in terms of the wave energy E = 2h2, and in terms of the enve-
lope wave height h. Based on Eq. (29) it is posited that the maximum envelope wave height distribution
has the form

pmax(h) =
dG

dh
exp(G ), (33)

where G involves the stretched exponential

G =−N exp(−z), z =−α +
√

α2 +βE. (34)

and, in keeping with Naess’ approach, the number of degrees of freedom depends on the reference level,
i.e.

N = Nslc

(
E
2

)1/2

(35)

where Nslc is given by (31). Finally, the parameters α and β follow, see Eqns. (20-24), from matching the
stretched exponential distribution with the weakly nonlinear c.d.f. of (16) so that the fitting parameters
depend on skewness and kurtosis of the envelope time series.

An important quantity to measure the extremity of an event is the exceedance probability that energy or
wave height is larger than a critical value. Using (33) one finds

P(h > hc) =
∫

∞

hc

dh pmax(h) = 1− exp(G ). (36)

This quantity is very sensitive to the tail of the maximum envelope wave height distribution, but it gives
important information on, for example, the probability that waves hit the lower deck of an oil rig.

A more robust indicator of extreme events is the expectation value of maximum envelope wave height.
It is here defined using the expectation value of maximum wave energy ⟨Emax⟩, defined as

⟨Emax⟩=
∫

∞

0
dE E pmax(E), (37)

with

pmax(E) =
dG

dE
expG . (38)

Now, the expected maximum wave height is defined as

⟨hmax⟩=
√

1
2
⟨Emax⟩, (39)

and this definition of maximum wave height emphasizes the idea that wave energy is the key parameter
in assessing damage to vessels and oil rigs.

Now it should be realized that the maximum energy distribution pmax(E) is, as shown below, a narrow
distribution. For example the dependence of the number of degrees of freedom N(E) on energy E is
fairly weak compared to the stretched exponential function exp(−z). As a consequence, the function
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N(E) of (35) may be approximated by N(⟨E⟩) and is regarded as a constant in the integration. In that
event, for large N the integral may be evaluated almost exactly (with error of O(exp−N)) with the result

⟨Emax⟩=
1
β
[G2 −2G1 (α + logN)+ logN (2α + logN)] , (40)

where N = Nslc
√

⟨Emax⟩/2, hence Eq. (40) is an implicit relation for ⟨Emax⟩. The symbols Gn, n = 1,2,
denote integrals involving exponentials and logarithms. These are related to the Gamma function Γ(1+z)
and its derivatives,

Γ(1+ z) =
∫

∞

0
tze−tdt =

∫
∞

0
ez log te−tdt,

and therefore

Gn =
dn

dzn Γ

∣∣∣∣
z=0

=
∫

∞

0
logn t e−tdt,n = 1,2,3, ...

It may be shown that G1 = Γ′(1) = −γ , while G2 = Γ′′(1) = γ2 + π2/6, where γ = 0.5772 is Euler’s
constant.

Although (40) is an implicit equation for the expectation value of maximum wave energy, it is straight-
forward to solve it by iteration. In practice, this iteration scheme converges very quickly, only 5 iteration
are needed at the most. This follows from a comparison with results from a numerical computation of
the integral (37) where after 5 iterations agreement up to four digits was achieved.

Furthermore, it is emphasized that the maximum envelope wave height is a random variable and therefore
it is important to have knowledge of the width of the maximum envelope wave height distribution. The
width σhmax is defined as

σ
2
hmax

= ⟨h2
max⟩−⟨hmax⟩2

It is straightforward, but tedious, to obtain ⟨hmax⟩ and as a result one finds for sea states that are close to
a Gaussian, hence α is large, that to lowest order the square width of the maximum height distribution
becomes

σ
2
hmax

=
απ2

β

(
1

24logN
+

1
16α

)
(41)

For typical values of maximum wave height, i.e. ⟨hmax⟩ ≃ 2 and for a length TL = 1800s and a typical
value of Nslc of around 400 one finds that σhmax is of the order of 18% of significant wave height. Since
maximum wave height is about twice significant wave height this means that the ’error’ in the expectation
of maximum wave height is only 9%.

Finally, it should be emphasized that the expression (40) is very elegant, and, compared to previous
work (cf. Janssen, 2015a), it is much simpler. This is, of course, because of the use of the stretched
exponential for the ’parent’ distribution for envelope wave height. In addition, it should be noted that for
a Gaussian sea state, which is achieved by taking the limit of α → ∞ (while realizing that β = 2(α +1))
the expression for maximum wave energy simply becomes

⟨Emax⟩= γ + logN. (42)

This is an implicit relation for the average maximum wave energy as the number of degrees of freedom
N = Nslc(⟨Emax⟩/2)1/2 depends on ⟨Emax⟩, and a definite answer is only found by iteration. In practice, it
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Figure 4: Left Panel: Expected maximum wave height versus number of upcrossings Nslc according to the numer-
ical simulations for two spectral widths. The green line shows the theoretical result based on Eq. (39)-(40). For
comparison, the maximum wave height (ZCMC) according to the zero crossing method as function of Nslc is shown
as well. In the right panel the same parameters are shown as in the left panel but now as function of the number of
waves Nw = TL/TP.

is found that this linear result already gives a reasonable approximation (with a systematic error of 20%),
so let us explore its properties in a bit more detail. The expectation value of maximum wave height
turns out to be a robust measure for extreme seas, being relatively insensitive to how the tail of the pdf
is represented by the numerical simulations. Therefore, in order to produce the results displayed in Fig.
4 only 1,000 member ensembles were required. In order to generate more cases the number of waves in
the timeseries was varied between 50 and 500 and we took two truncation limits in the wave spectrum,
namely a wavenumber cut-off at 64 times the peak wavenumber and a wavenumber cut-off at

√
2 times

the peak wavenumber, representing a broad (ν = 0.40) and a narrow (ν = 0.12) spectrum. In Fig 4 we
have plotted in the left Panel the expectation value of maximum wave height as a function of Nslc. From
the comparison between the Monte Carlo results and theory (Eq. (42)) it is clear that the agreement is
excellent and it seems that the approach sketched in this paper works for a wide range in the number
of degrees of freedom, even, surpisingly for small values of Nslc. In addition, although widely differing
spectral widths have been chosen, it is clear from the universal behaviour displayed in the left Panel of
Fig. 4 that the choice of νω̄ for scaling of the number of degrees of freedom is essentially correct. This is
obvious as the procedure to produce the envelope of a timeseries essentially removes information on the
peak frequency. An alternative choice, e.g. the number of waves Nw = TL/TP (with TP the peak period),
does not give rise to proper scaling behaviour as is plainly clear from the right panel of Fig. 4. On the
other hand, from the Figure it is also clear that the maximum zero-crossing wave height shows universal
scaling when using the Nw parameter. In addition, especially in case of broader spectra, the popular
maximum zero-crossing wave height is considerable smaller than the maximum envelope wave height.
For example, for a typical Nslc ≃ 300 maximum zero-crossing wave height is about 1.6 while maximum
envelope wave height is of the order of 1.8. Nonlinear effects due to skewness and kurtosis will increase
the expected maximum wave height values by about 10-20 % only. On the other hand, probabilities of
extreme events are much more sensitive to nonlinear effects and they may increase results by an order of
magnitude in exceptional circumstances, see e.g. in Fig. 2 for the envelope wave height distribution at
dimensionless envelope wave height of the value of order 3.

The dependence of the average maximum envelope wave height on Nslc and hence on the spectral width
ν has consequences for observations of maximum envelope wave height. This implies that the timeseries
should be sampled with sufficiently high frequency in order to accurately represent the width ν which
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depends on the second moment of the wave frequency spectrum. Considering once more the right Panel
of Fig. 4 we see that for fixed Nw the envelope method may underestimate maximum wave height
by about 25% when the observations do not represent the high frequency part of the wave spectrum.
However, the truncation of the wave spectrum at 1.5 times the peak wavenumber is quite extreme. Some
additional experiments were run for a fixed number of waves (Nw = 200) for truncations of 4 times, 16
times and 64 times the peak wavenumber resulting in an average normalized maximum envelope wave
height of 1.83, 1.90 and 1.91. Therefore, in practice a reduction of maximum envelope wave height of
only 4% or less is to be expected due to undersampling.

In order to close this Section it should be mentioned that it is not trivial to perform Monte Carlo integra-
tions for the nonlinear case. In that case this requires to generate results from a large (Nens = 50,000,000)
ensemble of integrations of the two-dimensional Zakharov equation for a sufficient number of typical pe-
riods and the canonical transformation has to be evaluated to third order in steepness in order to capture
the effects of the bound harmonics on skewness and kurtosis. An alternative, as discussed in §2.3, is to
perform ensembe simulations using a Stokes wave train. As shown in Fig. 2 this works very well for
checking the theoretical envelope wave height distribution. Unfortunately, it does not work for checking
the theoretical maximum envelope wave height distribution. The reason is that a Stokes wave train pro-
duces a periodic signal with period equal to the inverse of the nonlinear frequency. Hence, the number
of degrees of freedom equals 1. Referring to Eq. (28), for N = 1 the maximum envelope wave height
distribution equals the envelope wave height distribution p(hmax), therefore for typical large numbers of
degrees of freedom the theoretical maximum wave height distribution cannot be checked using a Stokes
wave train.

3 Theory and Parametrization of skewness and kurtosis.

Ocean waves may be regarded most of the time as weakly nonlinear, dispersive waves. Because of
this there is a small parameter ε , i.e. the wave steepness, which permits the systematic study of the
effect of nonlinearity on wave evolution by means of a perturbation expansion with starting point linear,
freely propagating ocean waves. In addition it should be pointed out that the subject of nonlinear ocean
waves has conceptually much in common with nonlinear wave phenomena arising in diverse fields in
physics. Rapid developments in, say, nonlinear physics, started in the 1960’s with the work of K.F.
Hasselmann (1960) on resonant four-wave interactions in the context of a stochastic prescription of
the sea state (the so-called Hasselmann equation), and with the work of V.E. Zakharov (1968) on a
Hamilton description of water waves resulting in an approximate third order deterministic equation for
the amplitude of the free-wave action density. The narrow-band limit of this so-called Zakharov equation
was shown to result in the nonlinear Schrödinger (NLS) equation, which describes in the frame moving
with the group velocity a balance between dispersion and nonlinear focussing. The NLS equation was
the common thread between the diverse fields of nonlinear optics, plasma physics and surface gravity
waves. In one dimension this nonlinear partial differential equation could be solved exactly, and for
initial conditions of compact support it was shown by Zakharov and Shabat (1972) that the solution
would evolve towards a series of envelope solitons. These solitons were ideal candidates for freak waves
and therefore researchers focussed on (numerical) studies of the NLS equation. A very first attempt to
exploit this knowledge in the context of a stochastic description of the sea state was described in Janssen
and Komen (1982). As a guess it was assumed that the endstate of the solution of the NLS equation is
a modulated wave train where the nonlinear modulation is given by an elliptic function. The resulting
probability distribution for the envelope shows considerable deviations from the Rayleigh distribution
(the one for linear waves), in particular for large envelope wave height. Additional (numerical) studies
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by researchers such as Tanaka (1992), Trulsen & Dysthe (1997), Osborne et al. (2000), Onorato et al.
(2001) followed which concentrated on individual events while Mori & Yasuda ((2002) tried to obtain
the p.d.f. of wave height in the case of steep waves suggesting that the kurtosis of the surface elevation
may play an important role. Finally, an important advance was reported by Janssen (2003) who started
from the Zakharov equation to obtain a kinetic equation for the ensemble mean of the action density
spectrum that includes both the resonant four-wave interactions introduced by Hasselmann (1962) ànd
quasi-resonant four-wave interactions. The quasi-resonant four-wave interactions give rise to a time-
dependent contribution to the kurtosis of surface gravity waves which is proportional to the square of
the so-called Benjamin-Feir Index (BFI). This contribution will be called dynamic kurtosis from now
onwards. Results on kurtosis and the surface elevation p.d.f. for 1-dimensional waves in the narrow-band
approximation are further discussed in Mori & Janssen (2006), while Mori et al (2011) study for two
dimensional propagation the dependence of kurtosis on the Benjamin-Feir Index and directional width.
Note that the Benjamin-Feir Index basically measures the importance of wave nonlinearity compared to
wave dispersion. For narrow-band waves the effects of the dynamic kurtosis can be quite important as it
is basically the ratio of wave steepness ε to the angular width σω of the wave spectrum, i.e. the ratio of
two small parameters. Therefore, dynamic kurtosis can in principle give an O(1) contribution.

The estimation of the expectation value of maximum envelope wave height and of the probabilities for
extreme events requires the knowledge of skewness and kurtosis of the bound and free waves. Expres-
sions of these statistical parameters for arbitrary spectra have been obtained for surface elevation statistics
by Janssen (2009) and for envelope wave heights by Janssen (2015b). These general formulae involve
the evaluation of four- and six-dimensional integrals which are too time consuming in an operational
context. Therefore, parametrizations of skewness and kurtosis need to be developed, for deep and shal-
low water. A shallow water parameterization is highly desirable because most off-shore operations take
place in finite depth. It is tried to find these parametrizations by assuming, on the one hand, that the stats
obtained from the general formulation for arbitrary spectra is the truth, while the approximate formulae
for skewness and kurtosis are obtained by adjusting parameters in the corresponding narrow-band ap-
proximations in such a way that a reasonably good agreement with the truth is obtained. For a recent,
alternative approach to parametrisation of the skewness and kurtosis see the work of Gramstad and Lian
(2024).

Let us first discuss results for skewness and kurtosis using the general formulation for arbitrary spec-
tra, which is then followed by a presentation of the simple parametrisations of the statistics of waves.
Simulated WAM spectra were taken from two shallow water cases where freak wave events have been
observed, namely the Draupner freak wave event from the 1rst of January 1995, occurring at 15:20, and
the Andrea storm which occurred on midnight of the 9th of November 2007. For some details on the
Draupner event see Haver (2004) while this event was hindcasted by Cavaleri et al. (2016) using a fairly
recent version of the ECMWF coupled ocean-wave, weather forecasting system which has a resolution
of 10 km in the horizontal and has 137 layers in the vertical. Some time later, L. Bertotti and L. Cavaleri
have produced, in addition, a simulation for the Andrea storm with the same coupled system. A detailed
description of this storm is given by Magnusson and Donelan (2013). In both cases the water depth at
the location where the freak wave events occurred was 70 m and the dimensionless depth k0D, with k0
the peak wave number and D depth, was during the extreme event in the intermediate depth regime as
the range of dimensionless depth varies between 1.45 and 1.9.

The simulated spectra have, for an operational system, a fairly high resolution of 36 frequencies and 36
directions, where the frequencies are on a logarithmic grid and the directions are on a linear grid. In Fig.
5 a few examples of spectra are shown, one at the time of the Draupner event, one at the time of the
Andrea freak wave event and one example of a broad spectrum taken from the Andrea storm at noon on
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the 8th of November 2007, illustrating that both narrow and broad-band spectra are present in the time
series.
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Figure 5: Left panel: Wave spectrum for the Draupner event at 16:00 hrs on 1-1-1995; Middle panel: Andrea
main event at midnight of 9-11-2007; Right panel: broad-band spectrum 12 hrs before the Andrea event.

An important point to note is that the wave spectra at the time of the extreme events have a more narrow
directional distribution than a typical wind sea in deep water. In order to appreciate this point, in Fig. 6
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Figure 6: Left panel: Wave spectrum after one day wind forcing in shallow water; Middle panel: Wave spectrum
after one day forcing in deep water; Right panel: Shallow water run with bottom friction switched off.

the wave spectrum is shown as obtained from a one-gridpoint model run after 24 hours forcing with a
wind speed of 18.45 m/s. The left panel shows the result when depth D = 70 m, which corresponds to
k0D = 1.9, while the middle panel shows the result for deep water. Clearly, the deep water run gives a
broader spectrum.

An interesting question to ask is which physical process is responsible for the narrowing of the directional
spectrum in shallow water. In the context of a single gridpoint model it is fairly straightforward to
investigate this issue. Several candidate source functions were scrutinised, e.g. the nonlinear transfer
which contains a depth dependent amplification factor. Switching off the amplification factor did not
result, however, in an appreciable change of the width of the directional spectrum. It turned out, as
shown in the right panel of Fig. 6, that switching off the bottom friction source function in the shallow
water run explains to a large extent the reason why in shallow water the directional spectrum is narrower.

In order to quantify the differences there is a need to introduce a robust measure of directional width
near the peak of the spectrum. Usually, the directional width σθ is estimated using frequency dependent
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moments, i.e.

m0 =
∫

dθ F(ω,θ), m1 =
∫

dθ cos(θ −θ)F(ω,θ),

with θ the mean direction and F(ω,θ) the two-dimensional wave spectrum. However, this is not such a
robust measure and therefore the frequency dependent moments are integrated over a region around the
angular peak frequency ωp of width 2∆ω , with ∆ω = ωp/2, i.e.

m0 =
∫

ωp+∆ω

ωp−∆ω

dω

∫
dθ F(ω,θ), m1 =

∫
ωp+∆ω

ωp−∆ω

dω

∫
dθ cos(θ −θ)F(ω,θ), (43)

and the measure of directional width becomes

σθ =
√

2(1−R1), R1 = m1/m0 (44)

The above definition of directional width will also be used in a simple parametrisation of dynamic kur-
tosis. Using the measure in (44) it is found that for the Draupner spectrum in Fig. 5 σθ = 0.32 while for
the deep-water case of Fig. 6 σθ = 0.55, so there is a considerable difference in width. This difference
is quite important for the estimation of the value of the dynamic kurtosis, as it depends on the square of
directional width.

3.1 Results for skewness and kurtosis from exact computations.

Using the exact expressions given in the Appendix, i.e. for dynamic kurtosis in (A7), for skewness in
(A26) and for bound kurtosis in (A31), time series for skewness and kurtosis have been obtained from
the simulated spectra for the Draupner and Andrea case. They are displayed in Fig. 7.
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Figure 7: Evolution in time of skewness factor C3 and kurtosis factor C4 for the Draupner case (left panel) and
the Andrea storm (right panel).

Noting that the Draupner freak wave occurred at 16:00 hrs while the Andrea event occured at 24 hrs,
there is a striking difference between the two cases. During the Andrea event there is a clear sign that
skewness and kurtosis have a maximum at the time of the freak wave event whereas for the Draupner
wave this is only marginally evident for the skewness. In particular, the time series for kurtosis is fairly
featureless.
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Figure 8: Evolution in time of dynamic and bound-wave part of the kurtosis factor C4 for the Draupner case (left
panel) and the Andrea storm (right panel).

Realizing that kurtosis consists of a dynamic part and a bound-wave part it is therefore also of interest to
study their respective timeseries. They are displayed in Fig. 8.

The Figure shows that for both the Draupner event and the Andrea wave the bound-wave part of kurtosis
reached an extremum at the time of the occurrence of the freak wave, while the dynamic part of the
kurtosis only reached a maximum for the Andrea freak wave event. For the Draupner time series the
dynamic kurtosis is fairly flat and even reaches a minimum at the time of the freak wave event. To
conclude the discussion of the kurtosis time series it is noted that for the Andrea storm the range of
kurtosis is quite large and even becomes slightly negative at 12 hrs. At that time the angular width of the
wave spectrum is quite large as shown in the right panel of Fig. 5. Therefore, dynamic kurtosis has a
sensitive dependence on angular width, much more so than the bound-wave part.

Finally, as discussed further in the Appendix, there is a marked difference between the statistical informa-
tion derived from the free waves and the bound waves. For given wave spectrum, bound-wave skewness
and kurtosis are independent of time, whereas the dynamic kurtosis evolves in time. This is shown in
Fig. A1 (see Appendix A) which displays the evolution in time of dynamic kurtosis for a narrow-band
wave train, but it is also very much the case for the Draupner freak wave and the Andrea storm using
the expression for the kurtosis valid for arbitrary spectra. In Fig. 9, the evolution of dynamic kurtosis as
function of the dimensionless time τ = δ 2

ωωpT is shown where δω = σω/ωp. This evolution time scale
is obtained from the narrow-band considerations in the Appendix. Because realistic spectra are not quite
narrow-band a relative width of the spectrum is chosen which is representative for the whole spectrum as
defined in Eq. (6), i.e. δω = (m0m2/m2

1 −1)1/2. Since in practice δω is of the order of 0.3, the time scale
of 200 units in the graph corresponds to 300 wave periods. It is seen that on this relatively long time
scale the solution is still smooth, but for longer time scales the solution becomes erratic. In agreement
with an earlier remark it is seen that the range in kurtosis values for the Draupner event is fairly small
since the left panel of Fig. 9 shows a surprisingly universal time behaviour. However, this is much less
the case for the Andrea storm, shown in the right panel, hence the range of kurtosis values is much wider.

The question now is how to deal with the time dependency of the dynamic kurtosis, because it would be
convenient to have a simple measure for estimating the severity of the sea state. The most straightforward
way to deal with this is to take the mean value of the kurtosis obtained from an average over the whole
period shown in the Figure. Note that in the calculations the assumption has been made that initially the
dynamic kurtosis vanishes, and, therefore, the Figure basically gives the response of the dynamical wave
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Figure 9: Evolution of dynamic kurtosis Cdyn
4 = κ

dyn
40 /3 as function of the dimensionless time τ = σ2

ω ωpT , where
σω is the relative width of the frequency spectrum and ωp is the angular peak frequency. The different curves
correspond to different hours during the coupled simulation. The Left panel shows the Draupner case while the
right panel shows the Andrea storm.

system to rapid pertubations caused by e.g. a rapid increase of wind or the passage of a frontal system.

3.2 Probability estimates of extreme events using exact computations.

Let us now try to establish how extreme the Draupner and Andrea freak waves are. For the Andrea storm
I had no access to time series so the maximum envelope wave height was estimated by taking twice
the maximum crest height, which amounts to 3.26 times the significant wave height (Magnusson and
Donelan, 2013). Clearly, we are dealing here with a very extreme event.

For the Draupner case Miguel Onorato provided me with the actual timeseries for the surface elevation
η = ρ cosθ . The orthogonal complement ζ = ρ sinθ was obtained from the surface elevation timeseries
using the Hilbert transform H, i.e. ζ = −H(η). The envelope ρ then follows from ρ =

√
η2 +ζ 2.

Timeseries of the surface elevation η , its orthogonal complement ζ and its corresponding envelope are
shown for the period close to the extreme event in Fig. 10. A number of measurements from the time
series can be obtained. First, using the definition that envelope wave height is twice the envelope it was
found that the observed maximum envelope wave height was 3 times the significant wave height, or in
real terms hmax = 37.02 m. Secondly, it is straightforward to obtain from the timeseries of η and ζ

relevant statistical information as introduced in §2.1 and defined in Appendix C.1.

Table 1:
Relevant parameters that characterise the Draupner freak wave event
N = 2560
DT = 0.46875
XM0_OBS = 8.878 KAPPA11 = 0.000 KAPPA4 = 1.954
HS = 11.918 KAPPA02 = 1.000 KAPPA40 = 1.038
KP = 0.017 KAPPA30 = 0.408 KAPPA22 = 0.244
EPS_W = 0.052 KAPPA21 = -0.011 KAPPA04 = 0.428
RATIO = 11.749 KAPPA12 = 0.136 C4_OBS = 0.244
C3_OBS = 0.136 KAPPA03 = -0.030 KP*D = 1.208
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Figure 10: Time series η of the Draupner freak wave event (black). The envelope time series ρ is shown in blue,
while the phase of the wave train θ is shown in red. It is clearly evident that the event at time t = 264 s is extreme
because envelope ρ is maximal while phase θ vanishes. The corresponding local wave energy at the maximum is
about 20 times the average wave energy.

For a timeseries length of 1200 s with a sampling period of dt = 0.46875 s statistical results are given
in Table 1. Both skewness factor Cobs

3 = 0.136 and the kurtosis factor Cobs
4 = 0.244 are, compared to

the results of the ensemble mean simulations displayed in Fig. 7, considerably larger. At the time
of the Draupner event the ensemble mean simulation gives Cens

3 = 0.0678 while Cens
4 = 0.0219 so the

difference in skewness is a factor of two while the difference in kurtosis is a factor of ten. In sharp
contrast, the significant wave height, based on the second moment ⟨η2⟩, turns out to be a relatively
robust parameter as the observed significant wave height is 11.92 m while the modelled wave height
is 11.23 m. This suggests that, compared to higher order moments such as skewness and kurtosis,
significant wave height is much less sensitive to the phase distribution over a 20 minute period. On the
other hand, as shown in Appendix C, modelled wave spectrum differs from reality to some extend. For
example, the modelled peak wavenumber equals k0 = 0.021 while the observed peak wavenumber is
15 % lower, i.e. k0 = 0.018. Therefore modelled dimensionless wavenumber k0D is about 1.45 while
observed dimensionless wavenumber, as given in Table 1, equals 1.208, hence in reality shallow water
effects are more pronounced. For a uni-directional spectrum this difference in peak-wavenumber would
even signal a dramatic change in the stability of a uniform wavetrain from unstable (model) to stable
(observed) modulations, but for finite directional width the differences are much less dramatic and there
is no change of stability properties for k0D = 1.383. For details on this see Appendix B1 and Fig. B1.

In Appendix C we perform a more detailed study of the issue of the representativeness of observations
of higher moments of the surface elevation. Simulations with the one-dimensional Zakharov equation
show that when as initial condition one takes observed Draupner spectrum and observed phases of the
wave components then the kurtosis of the surface elevation is of similar order of magnitude as observed.
However, if one performs a Monte Carlo simulations with the observed spectrum and random phase then
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kurtosis of the sea surface is similar in magnitude as found by the ensemble mean simulations reported in
Fig. 7. Therefore it is not meaningful to compare directly freak wave observations with ensemble mean
results. This is clearly a limitation of ensemble approach.

In order to understand these discrepancies it should be realized that a wave model gives the ensemble
mean of the sea state in a box surrounding the point of interest. This remark is also valid for the proba-
bilities of events, we only know the ensemble average probability distribution function for the envelope
wave height, therefore it is not possible to provide estimates of probabilities at a specific location. As
a consequence, the statistics (e.g. skewness and kurtosis) derived from a short observed time series are
not representative for the statistics of a domain of the size of the chosen resolution. This is readily seen
from the estimates of the kurtosis factor C4 from the Draupner timeseries. Note that such large discrep-
ancies for other sea state parameters such as significant wave height or wave-induced stress are not to
be expected, as already suggested above. It follows that freak wave formation and statistical parameters
such as kurtosis and to a lesser extent the skewness are sensitive to the distribution of the phases of the
individual waves. Only for a coherent sea state nonlinear focussing is to be expected to occur. But when
this focussing process occurs at a certain location, this process is not representative for the averaged sea
state as produced by a wave model which gives the (ensemble) average over a spatial domain of, in this
case, 14×14 km.

Remark:
Finally, returning to Table 1 the parameter Ratio should be explained: it gives an indication of the importance of
effects of four-wave interactions compared to the effect of the bound waves. For a freak wave warning system in
which the statistics of the envelope of the waves plays a central role the Ratio parameter is defined by Renv = κ4/κ2

30,
where κ4 is the envelope kurtosis and κ30 is the skewness of the sea surface. For deep-water waves in the narrow-
band approximation one finds (see Appendix A) simple expressions for skewness and kurtosis, i.e. κ30 = 3ε while
κ4 = 24ε2 with ε = k0m1/2

0 the steepness of the narrow-band wave train. In that event the Ratio parameters becomes
a constant given by Renv = 8/3. If, in case of deep-water, the observed Renv is much larger than 8/3 then it may be
concluded that also four-wave interactions play an important role in the formation of the observed freak wave (see
e.g. Toffoli et al. (2024) who applied this argument for the surface elevation statististics). Unfortunately, in shallow
water the Ratio parameter has an additional dependence on dimensionless depth k0D and, as detailed in Appendix
A, it tends to increase for shallower water if dimensionless depth is larger than 1. From Table 1 it is seen that the
dimensionless depth equals 1.20 so that according to the single mode results displayed in Fig. A3 the envelope
Ratio for bound waves only is about 4.6. As according to Table 1 the observed Ratio is 11.8 which is considerable
larger than the estimate involving only bound-wave statistics, it is suggested that the contribution of the four-wave
interactions to the formation of freak waves for Draupner freak wave event may be considerable. There is a caveat,
however, as the theoretical results for the bound wave statistics only hold for an ensemble and not for an individual
case. Therefore, the estimation of the Ratio parameter may be flawed because theoretical estimates of bound-wave
κ4 and κ30 are inaccurate, but it may be argued that the ratio κ4/κ2

30 might be more accurate.

Now the question is whether and how one can establish the likelyhood of an event, given the spatial
resolution of the wave model (in this case 14 km) and given the present knowledge of the physics of freak
wave generation. For this reason attention is concentrated on the maximum wave height distribution and
the exceedance probability Pmax(hmax ≥ hobs) is determined that in a domain of 14×14 km over a time
span of the integration timestep ∆t = 450 s such an extreme event occurs. This requires that one needs
to be able to count the number of events in a spatial domain over a certain time span. This is not a trivial
matter and at the moment results are only known for the surface elevation of a linear sea state which has
a Gaussian p.d.f. See for this the work of J. Adler (1981) which has been further discussed by Baxevani
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and Rychlik (2006) and implemented by Fedele (2012) and Benetazzo et al. (2015). In the present
case an estimation of the number of events is required for a different problem, namely for the maximum
envelope wave height which obeys in the lowest approximation a Rayleigh distribution, but higher order
corrections caused by nonlinear effects measured by skewness and kurtosis may be important as well.
Such an estimate is not available at the moment. For lack of alternatives the Baxevani and Rychlik
estimates have been used as given in Benetazzo et al. (2015), and they give for a domain of 14×14 km
× 450 s a surprisingly large number of events, in the order of 300,000 or more.
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Figure 11: Evolution in time of simulated exceedance probability Pmax(hobs
max) for hobs

max = 35 m (Draupner, left
panel) and for hobs

max = 31.8 (Andrea storm, right panel). For comparison the corresponding results from linear
theory are shown, whereas by comparing curves labelled Nonlinear and Exponential tail the impact of the expo-
nential tail is depicted. Finally the impact of dynamic kurtosis is found by comparing curves labelled ignore dyn
C4 and Exponential tail.

In Fig. 11 the timeseries of exceedance probability Pmax(hmax ≥ hobs
max) for the Draupner freak wave

(left panel) and the Andrea storm (right panel) are shown. It is clear that when all nonlinear effects
are included that these events are rather plausible as the probabilities are already of the order of 20-30
%, while according to linear theory these extreme events are quite improbable. In the Figure is also
shown exceedance probabilities when the exponential tail is not used in the calculation. In particular
in the case of the Andrea storm this would result in a considerable reduction of probabilities. For the
Andrea storm the reduction is a factor of 4 while for the Draupner freak wave the reduction is a factor
of three. In addition, it is clear that linear theory would seriously underestimate the occurrence of these
events. Finally, the impact of the dynamic contribution to the kurtosis is depicted as well. Omitting this
effect gives about a factor of two reduction in the probabilities. All this suggests that it is important
to include deviations from Normality related to finite skewness and kurtosis, including the effect of the
near-resonant interactions.

3.3 Parametrisation of the bound skewness and kurtosis.

The parametrisations for the bound-wave skewness and kurtosis factors Cbound
3 and Cbound

4 have been
guided by the narrow band expression (A28) and (A33), presented in Appendix A. This approach seems
to work quite well, as will be seen in a moment, because the bound-wave stats are insensitive to the
directional width of the wave spectrum. This has been checked numerically for JONSWAP spectra with
a variable directional width.

After some trial and error the following parametrisation for the skewness factor C3 and kurtosis factor C4
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was found:

Cbound
3 = 2.24m1/2

0 (α +0.9∆) , Cbound
4 = 7.0m0

{
γ +α

2 +(α +∆)2
}
, (45)

where the wavenumber and depth dependent parameters α , γ and ∆ are defined in Eq. (A20) and m0 is
the zeroth moment of the frequency spectrum.

It is noted that it is important to choose as wavenumber a characteristic wavenumber that reflects that
the wave spectrum is to some extent broad-banded. As a first guess a characteristic wavenumber k̄ was
chosen that follows from the inverse of the dispersion relation aω̄ = ω(k̄,h), where ω̄ = m0/m−1 and a
is a tuning parameter. Results for skewness and kurtosis are very sensitive to the choice of this tuning
parameter. In the end a = 0.89 was chosen which, for deep-water waves, implies that the characteristic
wavenumber k̄ is larger by about 20% when compared to the peak wavenumber k0. Thus, in the formulae
for α , γ and ∆, for example, the wave number k0 is replaced by k̄, while, to be consistent, this is also
done for all wavenumber dependent factors in the dynamic kurtosis parametrisation of the next section.

These parametrisations compare very favourably with the exact computations from the Draupner and
Andrea cases, as shown in the scatter plots of Fig. 12.
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Figure 12: The left panel shows the comparison of parametrized skewness factor Cbound
3 against exact computation

from the Draupner and Andrea events, while the right panel shows the comparison for the kurtosis factor Cbound
4 .

Quantitatively, the agreement is impressive as follows from a linear fit of the parametrized results against
exact computations which gives correlations of more than 96%. Nevertheless, it is noted that the scatter-
plot of the skewness factor shows two modest outliers which correspond to the broad angular distribution
cases of the Andrea storm.

3.4 Parametrisation of the dynamic kurtosis.

The parametrization of the dynamic part of the kurtosis has been guided by the definition (A15) and
the narrow-band result (A17), which is strictly speaking only valid for Gaussian spectra and gives an
estimate of the maximum of dynamic kurtosis. Rather then the maximum value to estimate the severity
of the sea state, its average value over a time span of about 300 wave periods will be chosen, as already
suggested when discussing Fig. 7. In order to obtain a simple parametrization it was attempted to stay
as close as possible to the narrow-band result, and in particular attention was paid to the replacement of
the definitions of the Benjamin-Feir Index and the ratio of the square of directional width and frequency
width to appropriate forms for broad-banded spectra.
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After some extensive trial and error the following results were obtained. The dynamic kurtosis factor is
given by

Cdyn
4 = J(R)BFI2, (46)

where the form of the the factor J(R) is based on a mathematical analysis given in Janssen & Janssen
(2018) regarding the behaviour of the exact narrow-band result around R = 0 and R = 1. It reads

J(R) ≈ π

3
√

3

(
1−α

√
R+β R+δR2

)
, 0 < R < 1, (47)

where α = 4
√

3/π and β = (1/3+2
√

3/π), and δ is chosen such that J(R) at R = 1 satisfies the exact
result that J(R) vanishes. This gives the condition 1−α +β +δ = 0 from which δ = 2

√
3/π −4/3 =

−0.2307. The expression for J(R) for R > 1 follows from the condition J(R) =−J(1/R)/R.

In the narrow-band approximation, the evolution of the kurtosis is determined by two dimensionless
parameters. The first one is the Benjamin-Feir Index. Introducing the wave steepness ε = k0

√
m0 with

m0 the variance of the surface elevation, while δω is the relative frequency width of the wave spectrum,
the deep-water version of the Benjamin-Feir Index BFI is defined as,

BFI =
ε
√

2
δω

(48)

Its shallow water extension is obtained from Eqn. (A13). The relative frequency width is obtained from
Goda’s peakedness factor Qp defined as

Qp =
2

m2
0

∫
D

dω ωE2(ω), (49)

with E(ω) the angular frequency spectrum and the integration domain D consists of all frequencies
for which E(ω) > E(ωp)/4 (Janssen and Bouws, 1986). The relative angular frequency width δω then
follows from

δω =
1

Qp
√

π
. (50)

This definition of width emphasizes the peak region of the wave spectrum, which is thought to control
the Benjamin-Feir instability.

The second dimensionless parameter measures the importance of directional width δθ with respect the
frequency width νω . In deep water it is defined as

R =
δ 2

θ

2ν2
ω

(51)

while the shallow water version is defined in Eqn. (A14). It is important to note that the damping of the
Benjamin-Feir instability is caused by the broad-band aspects of the wave spectrum, hence the relative
frequency width is given by νω , defined in Eq. (6).

A comparison of the results obtained from the dynamic kurtosis parametrization and the exact computa-
tions using spectra from the Draupner and Andrea events is shown in the left panel of Fig. 13. There is
a fair agreement but, clearly, compared to for example the bound-wave kurtosis, the agreement is not as
good. Fortunately, the probability calculations only involve the total kurtosis, and as shown in the right
panel of Fig. 13, this shows a better agreement with correlations of 96%.
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Figure 13: The left panel shows the comparison of parametrized dynamic kurtosis factor Cdyn
4 against exact

computations using spectra from the Draupner and Andrea events, while the right panel shows the comparison for
the total kurtosis factor C4.

4 Examples of Results.

4.1 An example of operational results.

Here, a synoptic example obtained from ECMWF operations is discussed. It concerns an extreme event
that was reported by Guidhir et al. (2022) in the Irish sea at buoy M4 occuring on the 21rst of February
2022. Datawell and Fugro Wavesense systems recorded, using the zero-crossing method, maximum
wave heights of 29.5 m and 28.1 m, respectively. The sample period of the instruments is different
(TL = 30 min for Datawell and 17 min for Fugro), and this affects the estimation of maximum wave
height as the number of degrees of freedom Nslc is proportional to the timeseries length (see Eq. (31)).
Operationally at ECMWF, freak wave products are generated assuming a sample period of 20 min. but it
is straightforward to calculate from the archived products maximum wave height for a different sample
period. In this case the sample period of the Datawell system was taken, i.e. TL = 30 min.

The global maximum wave height map of the 27 hour forecast from the analysis of the 20th of February
2020 at 00 hours is shown in Fig. 14. For the seastate on the 21rst of February at 3 am it is clear that the
extreme event at the M4 buoy location (10◦W, 55◦N) can be regarded as exceptional.

Table 2:
PARAMETERS AT EXTREME WAVE EVENT: PARAMETERS AT FIELD MAXIMUM:

LAT = 55.0 LONG = 350.0 LAT = 55.5 LONG = 350.0
HMAX = 29.8 +/- 3.0 HMAX = 31.9 +/- 3.4
HS = 14.89 HS = 15.66
FP = 5.99E-002 FP = 5.83E-002
C3 = 5.89E-002 C3 = 5.81E-002
C4 = 3.23E-002 C4 = 7.01E-002
BFI = 0.49 BFI = 0.93
R = 0.35 R = 0.42
U10 = 25.2 U10 = 24.2
AGE = 1.03 AGE = 1.10

In Table 2 values for parameters such as Hmax,HS,FP,BFI,U10 and wave age χ are given for the location
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Figure 14: Spatial distribution of maximum wave height Hmax at the time of an extreme wave height event near
wave buoy M4 north west of Ireland.

where according to the observations the extreme wave event occurred. In order to get an impression
of how sensitive the parameters of such an extreme event depend on location, also the corresponding
parameters at the field maximum for the maximum wave height is shown. This field maximum is just 1/2
degree North of the location of the M4 buoy and comparing parameters such as BFI and C4 a sensitive
dependence of these parameters on location is to be noted resulting in a increase in maximum wave
height of 2 m over a distance of around 50 km. Nevertheless, realizing that the observed maximum wave
height is obtained with the zero-crossing method and the operational maximum wave height is based on
the envelope wave height there seems to be a reasonable agreement between the two.

As a final illustration of the properties of the ECMWF freak wave warning system, some additional
global results of a 27 hour forecast of the 20th of February 2022 will be briefly discussed. A number of
integral parameters such as significant wave height and several versions of mean period were retrieved
which allowed the determination of the moments m−1,m0,m1,m2 needed for the specification of the
spectral frequency width parameters. In addition, parameters such as the Benjamin-Feir Index and the
angular width were retrieved, enabling the determination of the skewness and kurtosis at every gridpoint
and also the determination of the expectation value of maximum envelope wave height. In Fig. 15,
results for skewness and kurtosis from a half-degree retrieval are plotted as function of a parameter
measuring the stage of development of the sea state, namely the wave age χ = cp/U10. For young waves,
with χ < 1 the envelope skewness C3 reaches values of 0.1 which corresponds to a surface elevation
skewness which is three times larger. The behaviour of the kurtosis parameter C4 which is the sum of
bound-wave kurtosis and dynamic kurtosis is somewhat more complex. Although the bound-wave part
of kurtosis is always positive, dynamic kurtosis may become negative, which occurs for spectra with
a broad directional distribution. As a consequence, in a number of cases (2% or more) kurtosis turns
out to be negative, giving compared to the Gaussian sea state a reduced risk of the occurence of freak
waves. On the other hand, for narrow directional spectra, kurtosis is positive, reaching values of up to
0.1, resulting in an enhanced risk for freak waves. Note that these large values of kurtosis are caused by
the dynamic part of kurtosis. If one would disregard the dynamic part in the kurtosis calculation than
kurtosis would always be positive but would reach at most values of 0.02.
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Figure 15: Skewness factor C3 (left panel) and kurtosis factor C4 (right panel) versus wave age parameter
χ = cp/U10. Note that there are a number of occasions where the directional wave spectrum is so broad that
kurtosis is slightly negative.
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Figure 16: Left Panel: Dependence of expectation value of normalized maximum wave height on the square of
the Benjamin-Feir Index (left panel) and on normalized directional width R (right panel). The error bars give the
width of the maximum wave height distribution at the BFI2 or R value of interest

In the next plot, Fig. 16, shows the expectation value of maximum envelope wave height for a 20 min.
time series and consider its dependence on parameters such as the square of the Benjamin-Feir Index,
BFI2, and the dimensionless directional width R. These relations are obtained by collecting maximum
envelope wave height data as function of a discretized version of the independent parameter and by
plotting the bin-average. In agreement with expectations and with results of Burgers et al. (2008),
based on observations of normalized maximum wave height obtained from AUK platform in the central
North Sea, the expectation value of maximum envelope wave height is seen to increase with increasing
Benjamin-Feir Index. On the other hand, maximum wave height is seen to decrease, as expected, with
increasing dimensionless directional width.

Furthermore, in Janssen and Bidlot (2009) a detailed comparison between observed and modelled distri-
bution of maximum envelope wave height has been made. As argued by these authors, a way to simulate
the observed maximum wave height distribution is to start from the theoretical pdf of maximum wave
height, the explicit form of which is given in Eqns. 33-35. One then generates from the pdf (33) for
given number of waves Nslc and given skewness C3 and kurtosis C4 a random draw of maximum wave
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Figure 17: Global maximum wave height distribution obtained by a random draw of Hmax for given number of
waves and given skewness and kurtosis. Including skewness and kurtosis shows that the tail of the distribution is
exponential. The distribution according linear theory is shown as well.

height. The usual procedure for this is that one obtains a random draw of maximum envelope wave
height from the condition that the cumulative distribution is a random number between 0 and 1. The
resulting modelled distribution function is plotted in Fig. 17. It is remarked that the tail of the maximum
wave height distribution is basically the number of degrees of freedom N (see (35)) times the envelope
wave height p.d.f. (33). Therefore, for large values of maximum envelope wave height the distribution
function is an exponential. As can been seen from the present fit, the simulated maximum wave height
distribution closely follows the exponential fit, which on a logarithmic plot is a straight line. In order
to illustrate effects of nonlinearity, also simulated maximum wave height distribution without nonlinear
effects is shown, and clearly, nonlinear effects are seen to play an important role for the extreme events.

Finally, the present approach has been based on an analysis of time series using the envelope. This differs
from the usual method whereby one considers wave height or crest height. In these latter approaches an
extreme event is called a freak if wave height is larger than 2.2 times the significant wave height or,
alternatively, if the crest height is larger than 1.25 times the significant wave height. In my opinion, the
envelope wave height follows closely the crest of the waves and therefore, in the context of the envelope
approach, I would call an extreme event a ’freak’ if the maximum envelope wave height is 2.5 times
the significant wave height HS = 4

√
m0 with m0 the zeroth moment of the wave spectrum. Adopting

this definition of a freak wave it is therefore of interest to determine the probability that maximum
normalized envelope wave height is larger than 2.5. Based on the Global distribution shown in Fig. 17,
this probability is according to linear theory about 4× 10−3 while according to nonlinear theory, this
probability is a factor of 2 larger, namely 9×10−3.
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4.2 Verification against buoy observations.

An early version of the results of the envelope method, which was already implemented at ECMWF in
the mid 2000’s, was validated against Canadian buoys over the two-year period of February 2006 until
January 2008. Twenty years ago it was not customary to obtain maximum envelope wave height from
buoys timeseries. Janssen and Bidlot (2009) resorted to a procedure that over a given sampling period the
maximum of the surface elevation was determined and maximum wave height was then given by twice
the maximum of the surface elevation. However, this choice gave rise to some uncertainty and basically
the length TL of the timeseries was used as a tuning parameter to obtain an optimal fit between observed
and modelled maximum wave height.

Figure 18: Left Panel: Comparison of ERA5 significant wave height HS with observed wave height at Ocean
Weather Station Papa over a 4 year period. Right Panel: Comparison of ERA5 maximum envelope wave height
Emax with observed maximum envelope wave height at station Papa.

For the expectation value of maximum wave height over a sampling period of 30 minutes it was found that
the bias between modelled and observed was about 10 cm while, with an observed mean value of 3.92 m,
the scatter index (defined as the ratio of the standard deviation of error normalised by the mean observed
value) was about 16 %, giving a standard deviation of error of 0.63 m. The number of collocations was
30,000. Although tuning was involved this gave a promising agreement as the corresponding scatter
index for significant wave height was 13%.

Recently, Barbariol et al. (2019) revisited the verification of maximum envelope wave height against
buoy observations by considering observed time series of surface elevation η at Ocean Weather Station
Papa over the period June 2010 until December 2014. This is a deep water station with a depth of more
than 4000 m. The Hilbert transform was applied to these timeseries resulting in an explicit determination
of the envelope ρ using Eq. (1). The length of the time series was 20 minutes. These observed max-
imum wave heights were compared with results from the reanalysis ERA 5, which used regarding the
determination of maximum wave height a deep-water version of the statistical model described in this
review. Results of the comparison are shown in Fig. 18, and for comparison purposes also the compari-
son between observed and modelled significant wave height is shown. The bias is about - 0.32 m while
the standard deviation of error is 0.59 m, and with a mean observed maximum wave height of 6.21 m the
scatter index is 9.5 %. It is remarked that the value of the scatter index is of the same order of magnitude
as the estimated ’error’ in the expectation value of maximum wave height as obtained from the width of
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the p.d.f. of maximum wave height (see discussion around Eq. (41)).

Therefore, also without any tuning there is now a fair agreement between observed and modelled max-
imum wave height. In closing it is noted that for an accurate estimation of maximum wave height the
wave prediction system should produce an accurate value for significant wave height. This is indeed the
case as can be inferred from the left panel of Fig. 18, where with a mean observed of 3.33 m and a
standard deviation of error of 0.31 m a scatter index of 9.3 % is found. Compared to the routine oper-
ational ECMWF wave forecasting verification these are exceptionally accurate estimates of significant
wave height as an average scatter index over many northern hemisphere buoys of the wave analysis is
typically 13-14 %.

5 Conclusions.

An overview is presented of the theoretical probablistic approach of extreme events, which focusses on
the statistical properties of wave energy. Here, wave energy is measured from timeseries of the wave
envelope, where the wave envelope is obtained from the surface elevation time series η and the corre-
sponding Hilbert transform ζ . For such a signal, the envelope wave height distribution may be obtained
using as starting point the characteristic function of surface elevation and its Hilbert transform. This
approach has a restricted range of validity and in order to capture really extreme events an exponential
tail has to be added. A procedure to accomplish this has been proposed and results have been validated
against Monte Carlo simulations (Janssen, 2015b).

A key quantity to characterize extreme events is the p.d.f. for maximum envelope wave height. Here
it is shown that, based on a comparison with Monte Carlo simulations, for envelope wave height the
most appropriate approach is the one suggested by Naess (1982). This approach has the added advantage
that with the stretched exponential distribution a really simple expression for the expectation value of
maximum envelope wave height may be obtained.

In the Appendix a brief overview is given of the analytical formulation of statistical quantities such as
skewness and kurtosis in terms of multi-dimensional integrals involving the combination of interaction
coefficients and wave spectra. Numerical evaluation of these integrals is in principle possible but requires
a considerable amount of computing power. For an operational implementation parametrization of the
skewness and kurtosis is highly desirable. In this note I have developed such a parametrization of the
wave stats and a satisfactory agreement with the computations using the analytical theory has been ob-
tained. Just recently Gramstad and Lian (2024) have proposed an alternative parametrization of skewness
and bound kurtosis using the same exact calculations method for the Jonswap spectrum. No comparison
between results has been made so far.

The time series for the exceedance probabilities of maximum wave envelope height suggest that for an
area of the size of the resolution of the wave model it is plausible that the Draupner wave and the Andrea
event did happen. In addition, knowledge of the deviations from Normality as expressed by skewness
and kurtosis play an important part in ’explaining’ these events. It is emphasized once more that for
a quantity such as envelope wave height it is essential that effects of both bound-wave and dynamic
kurtosis need to be included.

In fact, at first it came as a surprise that dynamic kurtosis played such an important role in the freak wave
events discussed in this review. First of all, with the work of Janssen and Onorato (2007) in mind, one
would expect that the Benjamin-Feir instability plays a relatively minor role for surface gravity waves
in intermediate water depth, because the relevant interaction coefficient vanishes for kD = 1.363 and
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changes sign for even lower dimensionless depth. However, this is only true for one-dimensional mod-
ulations. As reminded by Victor Shrira to the author, Hayes (1973) has shown that for two-dimensional
modulations there is always instability, though in practice growthrates are vanishingly small for kD< 0.5.
The consequences of this are discussed in Appendix B, resulting in a parametrization of the nonlinear
interaction coefficient that depends explicitely on spectral width in frequency direction space. The up-
shot is that even for shallow water waves Benjamin-Feir instability may exist and may give a positve
contribution to the kurtosis of the sea state.

Secondly, in intermediate water depth wave spectra are much more narrow in direction than in the deep
water case. This follows from a plot of the spectra which suggests that the directional distribution of the
spectra in waters with dimensionless depth k0D = 1.5−2 is much narrower. And experimentation with
the single-gridpoint model suggests that the cause for the narrower spectra is connected to the bottom
friction term. Perhaps, bottom friction, which mainly affects and removes energy from the long waves,
disrupts the normal nonlinear energy fluxes in the spectrum to the the long waves to such an extent
that the widening of the angular distribution by the nonlinear transfer is halted. However, more work is
required to better understand the role of bottom friction in the formation of the directional distribution.

Before closing, it should be pointed out that, if desired, a very similar approach may be applied to obtain
the statistical properties of the surface elevation. However, the details will be different. For example, the
maximum surface elevation distribution can be described adequately by means of the method suggested
by Goda (2000) but it is still not clear yet how to add an exponential tail to the nonlinear p.d.f. of the
surface elevation. Clearly, more research is required to accomplish this.

We conclude with a remark about operational practice. For verification purposes we have concentrated
on a time series analysis since most observations that are available are observations of surface elevation
in time. Typically, the length of the timeseries is about 20 minutes therefore one deals with around 100
waves. The linear result (41) for maximum wave energy would give a value for normalized maximum
wave height of the order of 1.70, whereas using nonlinear effects and the observed values of C3 and C4,
normalised maximum wave height from the Draupner time series would become about 1.92. Hence,
nonlinear effects may have a considerable impact on the expected values for normalised wave height.

However, wave modelling based on the energy balance equation is about predicting the average sea state
in a grid box of size ∆x×∆y by integrating the wave spectrum using a time step ∆t. Therefore modern
wave prediction can only provide predictions of the sea state in an average grid box. For this reason the
most consistent measure one can take is to provide an estimate of the probability of the occurence of
extreme events over the ’volume’ of the size ∆x×∆y×∆t. As suggested by Fig. 11 there is potential
for a sensitive indication of extreme events. However, forecasters will need to adjust their expectations
regarding the ’forecast’ magnitudes of the normalised maximum wave height. For the Draupner and
Andrea cases one typically has normalised maximum wave heights of the order of 3, simply because the
number of events is much larger, of the order of 500,000 or more.

Finally, it would be of interest to try to find a simple measure for extreme wave heights given the wave
spectrum. In §C.4 I have discussed extensively that for extreme waves the phase information of the
individual wavenumber components plays an important role in how extreme the sea state may become
by means of constructive interference. Comparing results obtained from the Zakharov equation with
random phase and with observed phase of the wave components shows big differences in the kurtosis of
the sea state. Therefore, I have tried to introduce an estimate of the severity of the sea state by taking the
expression of the surface elevation, estimating the amplitude of the waves using the wave spectrum and
giving all wave components the same value of the phase φ , i.e, cosφ = 1/3. Inspecting the increment plot
( see Appendix C5) it was a big surprise to see the agreement with the increments to the surface elevation
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produced by the observed phase for all wave numbers. Apparently, extreme events are be connected to
a coherent sea state. This is most likely related to focussing of wave energy. Of course, focussing may
be caused by dispersion giving constructive interference. As is well known, however, the modulational
instability which generates wave groups may contribute to focussing as well.
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Appendices.

A Skewness and Envelope kurtosis.

A brief summary of the statistical properties of weakly nonlinear, random ocean waves, including shallow
water waves is now presented following the work of Janssen (2003), Mori and Janssen (2006), Janssen
(2009) and Mori et al. (2011). In this approach skewness and kurtosis consists of two contributions, one
from the free waves and one from the bound waves. The properties of these contributions differ from
each other and therefore they will be discussed separately. For example, while it is straightforward to
obtain the narrow-band limit of the bound-wave part of skewness and kurtosis, this is not possible for the
free-wave part of the (envelope) kurtosis as for the latter the narrow-band limit does not exist. Therefore,
a different approach needs to be followed in order to obtain simplified expressions for the free-wave part
of the kurtosis. In contrast to the bound-wave case, it is found that the free-wave contribution to kurtosis
has a sensitive dependence on spectral shape, it depends, in particular, on the directional and frequency
width.

Following Janssen (2014) a time series analysis is performed in order to evaluate quantities such as the
variance of the surface elevation η and its Hilbert transform ζ and a number of skewness terms and the
envelope kurtosis. The starting point of the analysis is the Zakharov equation which gives the evolution
of the action variable a(k, t) of the free surface gravity waves as caused for four-wave interactions. The
form of the Zakharov equation is

∂a1

∂ t
+ iω1a1 =−i

∫
dk2,3,4T1,2,3,4a∗2a3a4δ1+2−3−4

where ω1 gives the dispersion relation for surface gravity waves and is a positive function of acceleration
of gravity g, wave number |k| and depth D. Furthermore, T1,2,3,4 is a four-wave interaction coefficient
which depends on wave numbers k1, k2 etc., the correct form of which was first obtained by Krasitskii
(1994). The complete solution, including the bound waves, is obtained by evaluating the canonical
transformation. Recall that

η =
1
2
(Z +Z∗), and ζ =

1
2i
(Z −Z∗),

where (see Janssen, 2014) the complex function Z is obtained from the canonical transformation by
collecting together terms of similar large time behaviour, i.e. Z contains all the terms that vanish for
ℑ(t) → −∞. The canonical transformation is only known as an expansion in steepness ε so we write
Z = εZ1 + ε2Z2 + ε3Z3 with

Z1 = 2
∫

∞

−∞

dk1 f1a1 eiθ1 , (A1)

where f1 = (ω1/2g)1/2, θ1 = k1 ·x, and

Z2 = 2
∫

∞

−∞

dk1,2,3 f2 f3 eiθ1 {A2,3a2a3δ1−2−3 +2B2,3a∗2a3H3−2δ1+2−3} , (A2)

while

Z3 = 2
∫

dk1,2,3,4 f2 f3 f4eiθ1 {D1,2,3,4a2a3a4δ1−2−3−4 +C1,2,3,4a2a3a∗4δ1−2−3+4H2+3−4

+C−1,2,3,4a∗2a∗3a4δ1+2+3−4H4−3−2} . (A3)
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The interaction coefficients A ,B,C , and D are given in Janssen (2009). The Heaviside function H(x)
is defined in such a way that H(0) = 1/2 and in the above formulae the argument of the Heaviside
function is a sum of angular frequencies, e.g. H3−2 = H(ω3 −ω2). Note that the term Z1 represents
the contribution of the free waves to the surface elevation, while the terms Z2 and Z3 represent the
contributions by the bound waves. Therefore, the free-wave contribution to skewness and kurtosis is
determined by the statistical properties of Z1, while the other two terms are required to determine the
contributions to bound-wave statistics.

The third and fourth cumulants of surface elevation η and its Hilbert transform ζ are defined as follows:
The third cumulants are

κ30 =
⟨η3⟩

⟨η2⟩3/2 , κ21 =
⟨η2ζ ⟩

⟨η2⟩⟨ζ 2⟩1/2 , κ12 =
⟨ηζ 2⟩

⟨η2⟩1/2⟨ζ 2⟩
, κ03 =

⟨ζ 3⟩
⟨ζ 2⟩3/2 , (A4)

while the relevant fourth cumulants are given by

κ40 =
⟨η4⟩
⟨η2⟩2 −3, κ22 =

⟨η2ζ 2⟩
⟨η2⟩⟨ζ 2⟩

−1, κ04 =
⟨ζ 4⟩
⟨ζ 2⟩2 −3, (A5)

The procedure to obtain explicit expressions for the cumulants is straightforward but laborious. One
substitutes the expressions for η and ζ into the above definitions and evaluates for the bound waves the
relevant integrals under the assumption of a homogeneous, Gaussian ocean surface. In order to find a
non-trivial result for the free waves one needs to obtain from the Zakharov equation an equation for the
free waves contribution of the fourth order cumulants, as detailed in Janssen (2003).

A.1 Free Waves.

The free wave case has been discussed extensively by Mori and Janssen (2006). For the free waves the
skewness vanishes while the kurtosis enjoys certain symmetry properties in such a way that κ04 = κ40
while κ22 = κ40/3. Therefore, using (15) one finds

C f ree
4 =

1
3

κ
dyn
40 , (A6)

where κ
dyn
40 is explicitely given by Janssen (2003) in terms of the directional angular frequency spectrum

E(ω,θ), i.e.

κ
dyn
40 =

12g
m2

0

∫
dθ1,2,3dω1,2,3T1,2,3,4

√
ω4

ω1ω2ω3
×G(∆ω, t)E1E2E3. (A7)

Here, G(∆ω, t) is the time-dependent real part of the resonance function, defined by

G(∆ω, t) =
1− cos(∆ωt)

∆ω
,

while the frequency mismatch ∆ω is given by ∆ω = ω1 +ω2 −ω3 −ω4, and the fourth wave number
follows from the resonance condition in wave number space, i.e. k4 = k1 +k2 −k3. The frequency ω4
is obtained by evaluating the dispersion relation at the fourth wavenumber. Eq. (A7) gives the evolution
in time of the dynamic part of the kurtosis for given wave spectrum. In general no analytic solution is
known so a numerical evaluation of this six-dimensional integral is required. Software has been written
to calculate κ

dyn
40 for arbitrary spectra and arbitrary depth D under the restriction that k0D > 1. The
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software has been validated for a number of special cases of which the solution is known, namely for
Gaussian spectra in the narrow-band approximation.

It should be realized that Eq. (A7) is quite expensive to evaluate because it involves a six-dimensional
integral. With a resolution of 36 frequencies and 36 directions the number of evaluations of the transfer
coefficient is 366 = 2.18 Billion, which is quite substantial. For this reason the simulated spectra of the
Draupner case were inspected before hand. It turns out that a large part of the frequency-direction space
contained small values so that the contribution of these small values could be ignored. This filtering
operation reduced the number of evaluations of the transfer coefficient to about 11 million. Therefore,
for a limited number of spectra, the filtering operation makes numerical evaluation of the free wave
kurtosis feasible.

Another point to mention is that the evaluation of the integral involving a rapidly varying resonance
function G is very difficult. For large times the time behaviour becomes erratic but there is, in the case
of general spectra, no criterium available which indicates when the numerical solution becomes chaotic.
In practice, the solution as a function of time was simply plotted and checked by eye to see whether the
solution was smooth or not.

A.1.1 The narrow-band approximation.

Nevertheless, in operational applications the numerical evaluation of the six-dimensional integral is far
too expensive, and an efficient approximation is highly desirable. This efficient approximation is found
using the narrow-band approximation applied to Eq. (A7). In this approximation most of the wave
energy is concentrated around the carrier wave number k0, so that the wave spectrum has a small relative
frequency width δω = σω/ω0 and a small angular width δθ . For surface gravity waves on water of finite
depth D the dispersion relation for the carrier reads

ω0 =
√

gk0T0, T0 = tanhx, x = k0D, (A8)

while the first and second derivative become

vg = ω
′
0 =

1
2

c0

{
1+

2x
sinh2x

}
, c0 =

ω0

k0
, (A9)

and

ω
′′
0 =− g

4ω0k0T0
×Ω

′′, (A10)

with

Ω
′′ =

{
T0 − x

(
1−T 2

0
)}2

+4x2T 2
0
(
1−T 2

0
)
. (A11)

Note that for any value of the depth D the second derivative is always negative. Finally, the narrow-band
limit of the normalised nonlinear interaction coefficient Xnl = T0,0,0,0/k3

0 is given by

Xnl =
9T 4

0 −10T 2
0 +9

8T 3
0

− 1
x

{
(2vg − c0/2)2

c2
S − v2

g
+1

}
+

κ1ν1

µ1k3
0

δ 2
θ

δ 2
θ
+αωδ 2

ω

(A12)

with κ1, ν1 and µ1 = c2
S wavenumber and depth dependent coefficients given in (B6), cS =

√
gD the

shallow water wave velocity and

αω =
c2

0
v2

g

(
1−

v2
g

c2
S

)
.
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Note that the interaction coefficient consists of three terms. The first two terms are well-known (see e.g.
Whitham, 1974) as the first term is connected with the nonlinear dispersion relation for surface gravity
waves, while the second term is due to effects of wave-induced current caused by one-dimensional,
longitudinal modulations. These two terms are of definite sign so they may cancel each other, which, in
fact, happens for x = k0D = 1.363. The third term is new and is connected to the wave-induced current
caused by two-dimensional modulations. It also has a definite sign and tends to reduce the dimensionless
depth where the nonlinear interaction coefficient vanishes. A complete derivation of this new term and
some discussion is presented in Appendix B. Hence, for intermediate water depth waves the nonlinear
interactions are, because waves are two-dimensional, still expected to play a relatively important role.

In the narrow-band approximation, the evolution of the kurtosis is determined by two dimensionless
parameters. The first one is the shallow water extension of the Benjamin-Feir index. Introducing the wave
steepness ε = k0

√
m0, with m0 the variance of the surface elevation, while δω is the relative frequency

width, the Benjamin-Feir Index BFI is defined as

BFI2 =
8ε2

δ 2
ω

×
(

vg

c0

)2

× T0

Ω′′ ×Xnl (A13)

Note that in the deep-water limit one recovers the usual expression for the Benjamin-Feir Index, as
limk0D→∞ BFI2 = 2ε2/δ 2

ω .

The second dimensionless parameter measures the importance of directional width δθ with respect the
frequency width δω . In deep water it is defined as R = δ 2

θ
/2δ 2

ω while in general one has

R = 4
δ 2

θ

δ 2
ω

×
(

vg

c0

)3

×
T 2

0
Ω′′ (A14)
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Figure A1: Evolution of normalized kurtosis versus time for different values of R. Results using the numerical
solution of (A15) are shown as the full lines, while the circles denote the analytical solution from Fedele (2015).

Applying now the narrow-band approximation to Eq. (A7) the parameter C f ree
4 becomes

C f ree
4 = J(R,τ)BFI2, (A15)

where
J(R,τ) = 2

∫
dν1,2,3dφ1,2,3E1E2E3G(∆ω,τ), (A16)
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with resonance function G(∆ω,τ) = (1− cos(∆ωτ)/∆ω . Here, τ = δ 2
ωω0t is dimensionless time, and

∆ω = (ν3 −ν1)(ν3 −ν2)−R(φ3 −φ1)(φ3 −φ2). The frequency parameter ν and direction parameter φ

have been made dimensionless by means of the frequency width and the directional width.

For a Gaussian spectrum

E1 =
1

2π
e−

1
2 (ν

2
1+φ 2

1 ),

the integral in Eq. (A16) may be solved exactly (see e.g. Fedele (2015), and Janssen & Janssen (2018))
and the resulting solution for different values of R as a function of dimensionless time τ has been plotted
in Fig. A1. Note that in the plot the parameter J has been normalized with the factor N(orm) = π/3

√
3

which is the time-asymptotic value of J for R = 0.

From the plot it is clear, that, except for the case of uni-directional propagation (i.e. R= 0), the parameter
J and therefore the kurtosis parameter C f ree

4 has a maximum at the finite time τmax = 1/(3R)1/2 after
which it decays to zero for large times. As an indicator of the severity of the weakly nonlinear sea state
one could use the maximum value of J. In Fig. A2 the maximum of J as function of R is plotted as
obtained from the exact solution. Janssen & Janssen (2018) obtained an approximate expression for J
using the behaviour of the exact narrow-band result around R = 0 and R = 1. It reads

J
N

= 1−α
√

R+βR+δR2, N =
π

3
√

3
, (A17)

where α = 4
√

3/π and β = (1/3+2
√

3/π), and δ is chosen such that J(R) at R = 1 satisfies the exact
result that J(R) vanishes. This gives the condition 1−α +β + δ = 0 from which δ = 2

√
3/π −4/3 =

−0.2307. The expression for J(R) for R > 1 follows from the condition J(R) =−J(1/R)/R. As evident
from Fig. A2 the fit (A17) approximates the exact results very well.
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Figure A2: Maximum value of J versus R. “New” refers to the fit (A17) while “old” refers to an earlier attempt.

A.2 Bound Waves.

The case of bound waves has been extensively discussed by Janssen (2015b). The result for general
spectra will be briefly recorded, and also the corresponding results for the case of a single wave train
are recorded. It turns out, namely, that, in practice, the narrow-band limit serves as a reasonable approx-
imation to the case of general spectra, so that these simplified results may be used in the operational
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implementation of the p.d.f. of extreme events. The wave train is given by the Stokes wave solution up
to third order in amplitude that is consistent with the narrow-band approximation for the general case of
arbitrary spectra.

The narrow-band limit follows in a straightforward fashion from the complex function Z by using a
wavenumber spectrum with a Dirac delta function, i.e. E(k) = m0δ (k−k0) where m0 is the variance of
the sea surface, and k0 is the peak wave number. In effect, all the interaction coefficients are replaced by
their value at the peak wave number. Writing

A0,0 = 2α,B0,0 = 2∆,C0,0,0,0 = 4γ, and D0,0,0,0 = 4β , (A18)

the complex function Z becomes

Z = m0D+m1/2
0 Aeiθ +m0Be2iθ +m3/2

0 Ce3iθ , (A19)

with D = ∆(a2 −⟨a2⟩), A = a(1+ γε2a),B = αa2,C = βa3, and θ = k0x−ω0t +φ , with ω0 the angular
peak frequency and φ an arbitrary phase. The coefficients α,β ,γ and ∆ are known functions of peak
wavenumber and depth D and they read

∆ =−k0

4
c2

S

c2
S − v2

g

[
2(1−T 2

0 )

T0
+

1
x

]
+

k2
0κ1

2ω0µ1

δ 2
θ

δ 2
θ
+αωδ 2

ω

,

α =
k0

4T 3
0

(
3−T 2

0
)
, β =

3k2
0

64T 6
0

[
8+
(
1−T 2

0
)3
]
, γ =−1

2
α

2, (A20)

where x = k0D, T0 = tanhx, c2
S = gD, vg = ∂ω/∂k, and ω0 = (gk0T0)

1/2. The second contribution to the
mean sea level term ∆ is new and is calculated in Appendix B. This additional contribution illustrates
nicely that the narrow-band limit of the mean sea level is not unique as it depends on the order in which
the limit of vanishing width is taken.

The form (A19) has been used to calculate explicitely all the relevant statistical moments following the
method in Janssen (2009, Appendix A.3). Note that in these calculations a certain ordering of the contri-
butions to the surface elevation. has been used. Using the significant steepness ε = k0m1/2

0 , with typical
magnitude in the range 0.01-0.05, one finds that the constant term in (A19) is of order ε2 while the first,
second and third harmonic are of order ε , ε2 and ε3 respectively. Calculations of the statistical moments
have been performed up to lowest significant order, which means that the calculation is continued up to
the first nontrivial contribution of nonlinearity.

A.2.1 Variance.

It is straightforward to express the variances ⟨η2⟩ and ⟨ζ 2⟩ in terms of the complex envelope function Z.
The result becomes

⟨η2⟩= 1
2
(
⟨|Z|2⟩+ ⟨Z2⟩

)
, ⟨ζ 2⟩= 1

2
(
⟨|Z|2⟩−⟨Z2⟩

)
. (A21)

For a homogeneous, Gaussian sea state the variances become to lowest significant order

⟨η2⟩=
∫

dk1 E1 +
∫

dk1,2E1E2
{
A 2

1,2 +B2
1,2 +2C1,1,2,2

}
,
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⟨ζ 2⟩=
∫

dk1 E1 +
∫

dk1,2E1E2
{
A 2

1,2 +B2
1,2(H1,2 −H2,1)

2 +2C1,1,2,2
}
. (A22)

The expression for the variance ⟨η2⟩ agrees with an earlier result obtained in Janssen (2009, Eq. (50)).
Note that formally the variance of ζ may differ from the variance of η , because of the presence of the
additional factor F1,2 = (H1,2−H2,1)

2. The function F1,2 equals 1 everywhere except when its arguments
are equal. In that event F1,1 vanishes. However, if the remainder of the integrand is continuous then
removing one point from an integral should not affect the result. Hence, for continuous spectra the
variance of η and ζ are the same. The exception is when the remainder of the integrand is singular at the
point that is being removed. An example of this is the case of a single wave which has a delta function
spectrum. As a consequence, for the single wave case the variances of η and ζ are different. In fact,
taking the narrow-band limit of (A22) one finds using Eq. (A18)

⟨η2⟩= m0 +4m2
0
(
2γ +α

2 +∆
2) , ⟨ζ 2⟩= m0 +4m2

0
(
2γ +α

2) , (A23)

and the variances differ by the amount 4m2
0∆2. Expression (A23) is in agreement with the single mode

results using Eq. (A19). Note that from the expression of the single mode complex envelope function it
is immediately clear that the variance of ζ cannot depend on the parameter ∆, since the Hilbert transform
of a constant vanishes.

A.2.2 Skewness.

We need to evaluate skewness terms for the surface elevation η and its Hilbert transform ζ . In terms of
the complex function Z one finds

⟨η3⟩= 1
8
(
{⟨Z3⟩+3⟨|Z|2Z⟩

}
+ c.c., ⟨η2

ζ ⟩= 1
8i

{
⟨Z3⟩+ ⟨|Z|2Z⟩− c.c.

}
,

while

⟨ηζ
2⟩= 1

8
{
⟨|Z|2Z⟩−⟨Z3⟩

}
+ c.c., ⟨ζ 3⟩= i

8
{
⟨Z3⟩−3⟨|Z|2Z⟩− c.c.

}
.

so we only have to evaluate the moments ⟨Z3⟩ and ⟨|Z|2Z⟩. To lowest significant order in ε we only
need the first two terms of the complex function Z, i.e. (A1)-(A2), Then, by invoking the random phase
approximation it is straightforward to establish that

⟨Z3⟩= 0+O(ε5), ⟨|Z|2Z⟩= 4
∫

dk1,2 (A1,2 +B1,2)E1E2 +O(ε5), (A24)

where A1,2 and B1,2 are given in Janssen (2009). Hence, the Z-moments either vanish or are real.
The direct consequence is that the surface elevation moments involving odd powers of ζ vanish, i.e.
⟨η2ζ ⟩= ⟨ζ 3⟩= 0. The remaining moments become

⟨η3⟩= 3
∫

dk1,2E1E2 (A1,2 +B1,2) , ⟨ηζ
2⟩= 1

3
⟨η3⟩. (A25)

The eventual result is

κ30 =
3

m3/2
0

∫
dk1,2E1E2 (A1,2 +B1,2) , κ12 =

κ30

3
, (A26)
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while κ21 and κ03 vanish. Hence, the skewness terms for general spectra share the same properties as the
skewness terms for a single wave train in deep water (Janssen, 2014). Note that in the narrow-band limit
the skewness term κ30 assumes the simple form

κ30 = 6m1/2
0 (α +∆) , (A27)

a result which is in agreement with Janssen (2009).

Finally, in the envelope wave height pdf we have introduced a skewness factor C3 according to Eq. (15).
Making use of the properties of the skewness terms one finds eventually

C3 =
κ30

3
, (A28)

and this expression for C3 has been used to determine the skewness factor in the wave height pdf from
the simulated spectra. In Fig A3 we shown the dependence of the skewness factor C3 as a function
of dimensionless depth for the one-dimensional case and for the two-dimensional case which has a
pronounced impact on the mean elevation ∆ (see Appendix B) and on the skewness factor.
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Figure A3: Dependence of skewness factor C3 and kurtosis factor C4 on dimensionless depth x according to the
single mode results with a significant steepness of 0.1. The difference between 1D and 2D is quite substantial for
the skewness factor C3.

A.2.3 Envelope kurtosis.

The procedure to obtain the fourth cumulants of surface elevation η and its Hilbert transform ζ , i.e.
κ40,κ22, and κ04 is formally the same as the one used to obtain the third cumulants such as the skewness
of the surface elevation. Again, one introduces the complex function Z but it is now more involved
because of third-order nonlinearity, i.e. Z = εZ1 + ε2Z2 + ε3Z3, where Z1, Z2 and Z3 are given by (A1),
(A2) and (A3) respectively.

The main purpose is to calculate the envelope kurtosis κ4. It is defined as

κ4 = κ40 +2κ22 +κ04, (A29)
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where the surface elevation kurtosis terms are given by Eq. (A5).

In passing, it is of interest to explain why κ4 is called the envelope kurtosis. This is most easily illustrated
for the case that η and ζ have the same variance, which is true for continuous spectra. From the definition
(A29), while using the definitions of κ40,κ22, and κ04 it is then straightforward to show that the envelope
kurtosis κ4 is just given, as expected, by the normalized fourth moment of the envelope ρ =

√
η2 +ζ 2,

i.e.

κ4 =
⟨ρ4⟩
⟨η2⟩2 −8 =

⟨|Z|4⟩
⟨η2⟩2 −8 (A30)

hence, in order to obtain the envelope kurtosis one only needs to determine the fourth moment ⟨|Z|4⟩.

It is now a straightforward but very laborious task to evaluate the above Z-moment for a homogeneous,
Gaussian sea state. This detail is discussed in Janssen (2015b) where also the evaluation of the moments
κ40,κ22 and κ04 is described in some detail. The eventual result for the envelope kurtosis κ4 becomes

κ4 =
32
m2

0

∫
dk1,2,3E1E2E3

{
A1,2A2,3 +A1,2B2,3 +

1
2
C1+2−3,1,2,3H1+2−3 +B1,3B3,2H1,2,3

}
(A31)

where, H1,2,3 = [H3−2H3−1 +H2−3H1−3] while the coupling coefficients are given in Janssen (2009).
Then, the bound-wave part of the kurtosis factor C4 follows from Eq. (14), hence

Cbound
4 =

κ4

8
. (A32)

Inspecting the expression for the envelope kurtosis it is seen that κ4 does not depend on the matrix D
which represents the contribution of third harmonics. For equal variance of η and ζ one may give an even
more general argument why the envelope kurtosis is independent of the third harmonics. This is related
to Eq. (A30) which shows that the envelope kurtosis depends on ⟨|Z|4⟩ only and it is straightforward to
prove that to lowest significant order third harmonics cannot contribute to this fourth moment of Z.

Finally, the general results for the kurtosis were checked by taking the limit of a narrow-band wave train.
Using (A18) one finds that the envelope kurtosis becomes

κ4 = 64m0
(
γ +α

2 +(α +∆)2) , (A33)

and exactly the same results for the kurtosis parameters are found when one starts from the single mode
representation (A19) following the method in Janssen (2009). Again the envelope kurtosis does not
depend on the amplitude of the third harmonic, which is given by β . The kurtosis elements κ40 and κ04
do depend on the third harmonic, however. For completeness, therefore, also the narrow-band results for
the other kurtosis elements are given. According to Janssen (2015b) they become

κ40 = 24m0
(
γ +β +2(α +∆)2) ,

κ22 = 8m0
(
γ +α

2 +(α +∆)2) , (A34)

κ04 = 24m0
(
γ −β +2α

2) ,
and, indeed, both κ40 and κ04 depend on the the contribution by the third harmonic but with opposite
signs and therefore, according to Eq. (A29), the envelope kurtosis κ4 does not depend on the third
harmonic.

The single mode results give a reasonable approximation to the statistics of the case of a wind sea
spectrum. We use these results to illustrate for a significant steepness of ε = k0m1/2

0 = 0.1 the dependence
of the skewness factor C3 = κ30/3 and the kurtosis factor C4 = κ4/8 on dimensionless depth k0D. This
is shown in Fig. A3. Note the sensitive dependence of these statistical factors on dimensionless depth in
the range of 1-2.
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B Shallow water effects revisited.

B.1 Introduction.

The Benjamin-Feir (B.F.) instability is thought to play a key role in the formation of freak waves, re-
sulting in a considerable amount of research on the properties of this instability. In this Appendix we
would like to concentrate on the shallow-water effects. Janssen and Onorato (2007) studied the shallow-
water case and found, in agreement with Benjamin (1967), Whitham (1974), Hayes (1973), that for
one-dimensional propagation the B.F. instability disappears for kD < 1.363. This property was also
shown to follow from the narrow-band version of the Zakharov equation (Zakharov, 1968) by taking
appropriate limits in order to avoid apparent singularities in the nonlinear transfer coefficients. Also, the
numerical solution of the Zakharov equation showed that for kD > 1.363 the kurtosis was positive, while
in the opposite case the sign of kurtosis changed, suggesting that there is a direct connection between the
B.F. instability and the generation of freak waves.

In the present version of the ECMWF freak-wave warning system the B.F. instability is taken into account
by using the narrow-band approximation of the Zakharov equation. For example, the nonlinear transfer
function becomes for 1-D propagation

T0,0,0,0/k3
0 =

9T 4
0 −10T 2

0 +9
8T 3

0
− 1

x

{
(2vg − c0/2)2

c2
S − v2

g
+1

}
+Extra. (B1)

where x = k0D, T0 = tanhx, c0 is the phase speed ω0/k0, ω0 = (gk0T0)
1/2, vg is the group velocity

∂ω0/∂k0, and cS is the wave speed in shallow water, c2
S = gh. In the 1-D case the Extra term vanishes.

Numerically, it can be shown that the 1-D version of (B1) vanishes for k0D = 1.363 (because Extra
vanishes) and that for k0D < 1.363 the nonlinear transfer coefficient becomes negative suggesting that
there is no freak wave formation in that case. However, this is not correct for 2-D propagation. Taking
into account 2-D modulations there is instability even for k0D < 1.363 as shown by Hayes (1973) and
later by Davey and Stewartson (1974).

Thus, one needs to consider in detail the case of 2-dimensional modulations in shallow water. However,
this is not so straightforward when starting from the Zakharov equation because the narrow-band limit of
the nonlinear transfer coefficient is awkward. Nevertheless, Onorato and Janssen (2024) have shown that
the non-uniqueness of the narrow-band approximation is connected to the initial condition for the current
and therefore the narrow-band version of the Zakharov equation is equivalent to the Davey Stewartson
equations. Here, the Davey-Stewartson equations are used to obtain an extra contribution to the nonlinear
transfer function of the form

Extra =
1

4T0

[2c0 + vg(1−T 2
0 )]

2

c2
S − v2

g

δ 2
θ

δ 2
θ
+αωδ 2

ω

. (B2)

which is always positive, therefore this tends to enhance the nonlinear transfer. Here, δθ and δω are the
relative spectral widths in θ−space and ω−space, respectively. Note that the dependence on the width
of spectrum is rather peculiar: the limiting value depends on the order in which the limits of δθ and δω

are taken. Therefore, in the presence of the wave-induced current induced by modulations that have a
transverse wavenumber dependence the narrow-band limit is not unique. This is a problematic feature
when one is interested in the narrow-band limit of the nonlinear transfer coefficient, but this problem can
be resolved by explicitely taking into account the dependence on the modulation wavenumbers in the
along and the cross direction with respect the propagation direction.
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Figure B1: Nonlinear transfer coefficient T0,0,0,0/k3
0 with and without transverse modulations as a function of

dimensionless depth k0D.

The importance of the transverse effect is illustrated in Fig. B1 which shows the nonlinear transfer coef-
ficient T0,0,0,0 normalised with the factor k3

0 as a function of dimensionless depth k0D for two cases. The
first case has equal width in frequency and direction, while the second case is for vanishing directional
width. The last case has a vanishing nonlinear transfer for k0D = 1.363 as is indicated by the cross in the
figure. It is clear that directional effects in shallow water play an important role, resulting in modulational
instability far beyond the one-dimensional threshold value of 1.363.

B.2 Derivation of narrow-band nonlinear transfer coefficient.

The starting point are the Davey-Stewartson equations. There are several forms of this equation available.
Here, we take the set which is based on the action variable. Introduce the action variable A(k) defined in
such a way that the surface elevation η reads

η =
∫

dk
(

ω

2g

)1/2

(A(k)+A∗(−k))exp(ik ·x) . (B3)

For a single mode A(k) = Aδ (k− k0), assuming without loss of generality that the carrier wave with
wavenumber k0 propagates in the x-direction, one then finds

η =

(
ω0

2g

)1/2(
Aeik0x +A∗e−ik0x

)
. (B4)

The Davey-Stewartson equations for the envelope A and wave-induced current Q, caused by transverse
modulations, then become
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i
∂A
∂τ

+λ
∂ 2A
∂x2 +µ

∂ 2A
∂y2 = ν |A|2A+ν1QA

λ1
∂ 2Q
∂x2 +µ1

∂ 2Q
∂y2 = κ1

∂ 2|A|2

∂y2 (B5)

where

λ =
1
2

ω
′′(k0), µ = vg/2k0, c0 = ω0/k0,

ν = k3
0

[
9T 4

0 −10T 2
0 +9

8T 3
0

− 1
x

{
(2vg − c0/2)2

c2
S − v2

g
+1

}]
,

ν1 =
k4

0
2ω0vg

{
2c0 + vg(1−T 2

0 )
}
, λ1 = c2

S − v2
g, µ1 = c2

S,

κ1 =
1
2

c0

T0
c2

Svg
2c0 + vg(1−T 2

0 )

c2
S − v2

g
. (B6)

The basic solution of Eq. (B5) is the uniform Stokes solution

A = a0e[−i(νa2
0+ν1Q0)τ], Q = Q0 = constant, (B7)

and to test the stability of this traveling wave one introduces modulations according to

A = a0{1+ εa(x, t)}e[−i(νa2
0+ν1Q0)τ],

Q = Q0(1+ εq(x, t)) (B8)

with a = a+E +a−E−1, q = q+E +q−E−1, where E = exp i(lx+my−Ωτ).

Linearizing Eqns. (B5) while using the form (B8) the resulting dispersion relation for Ω as function of
wavenumber l and m becomes

Ω
2 =

(
λ l2 +µm2)[2ν̃a2

0 +(λ l2 +µm2)
]

(B9)

where

ν̃ = ν +ν1κ1m2/(λ1l2 +µ1m2). (B10)

From (B9) Hayes (1973) and Davey and Stewartson (1974) showed that the wave train is unstable if

ν̃(λ l2 +µm2)< 0. (B11)

Note that λ is always negative, µ is positive and ν changes from negative to positive as k0D increase
beyond k0D = 1.363 (Hasimoto and Ono, 1972).

Hayes (1973) has shown that it is always possible to choose l and m in such a way that the instability
criterion (B11) is satisfied, but instability is practically non-existent for shallow water waves in the range
0 ≤ k0D ≤ 0.5.
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The severity of the sea state is usually estimated by means of the Benjamin-Feir Index which measures
the balance of nonlinearity and dispersion. Here, the measure of importance of nonlinearity is given by
the coefficient ν̃ in the dispersion relation (B10), Note that in the one-dimensional shallow water case
one finds ν̃ = ν as m then vanishes. This is the expression that has been used so far in the ECMWF freak
wave warning system. The 2-D effect is entirely caused by the term ν1κ1m2/(λ1l2 + µ1m2). Clearly,
the narrow-band limit of this term is not unique as it depends on the order in which the limits l → 0
and m → 0 are taken. Therefore, in this extra contribution spectral width needs to be taken into account
explicitely.

In the next step one needs to estimate the size of the modulation wavenumbers l and m. This will be done
in terms of the frequency and directional width σω and σθ . Writing the original wave numbers kx and ky

in terms of the polar coordinates k and θ the modulation wave numbers l and m become

l = kx − k0 = k cosθ − k0, m = ky = k sinθ ,

and expanding around the values k = k0 and θ = 0 one finds in lowest order

δ l = δk, δm = k0δθ ,

therefore

⟨δ l2⟩1/2 = σk, ⟨δm2⟩1/2 = k0δθ .

Finally, introducing the relative frequency width δω using the relation δω = σω/ω0 = vg/c0 ×σk/k0 the
extra term becomes

Extra =
κ1ν1

µ1

δ 2
θ

δ 2
θ
+αωδ 2

ω

with αω = λ1c2
0/µ1v2

g. This parametrization of the effects of 2D modulations has the desirable property
that for a narrow directional distribution with δθ → 0 the extra contribution vanishes. The front factor
κ1ν1/µ1 and the factor αω can be written more explicitely using the expressions for κ1, ν1, µ1 and λ1.
Then αω becomes

αω =
c2

0
v2

g

(
1−

v2
g

c2
S

)
(B12)

and the extra term becomes explicitely

Extra =
k3

0
4T0

[
2c0 + vg(1−T 2

0 )
]2

c2
S − v2

g

δ 2
θ

δ 2
θ
+αωδ 2

ω

(B13)

In principle, the extra term depends on the ratio δθ/δω which can be eliminated in favour of the ratio R
defined in (A14).

Note that the additional contribution to the nonlinear transfer coefficient is associated with a finite value
of the wave-induced current caused by the two-dimensional modulations, hence a finite value of Q. In
terms of the amplitude a of the surface elevation (here action variable A = (g/2ω0)

1/2a) the above result
implies that

Q =
κ1g

2ω0µ1

δ 2
θ

δ 2
θ
+αωδ 2

ω

|a|2 (B14)
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and the additional contribution to the wave-induced current is given by k2Q/vg. This will give rise to an
additional contribution to the mean sea level. Using Eq. (2.13c) of Davey and Stewartson (1974) one
then finds for the mean sea level η20 the explicit expression

η20 =−
k0c2

S

4(c2
S − v2

g)

(
2(1−T 2

0 )

T0
+

1
x

)
|a|2 +

k2
0κ1

2ω0µ1

δ 2
θ

δ 2
θ
+αωδ 2

ω

|a|2 (B15)

Clearly, also the narrow-band limit of the mean sea level is not unique and therefore one has to take
explicit account of the spectral widths.

C The Draupner freak wave and the role of phase information.

C.1 Introduction.

In this Appendix I would like to present some of the details of my analysis of the Draupner Freak
Wave. A method is proposed to obtain from the observed timeseries of the surface elevation η the wave
envelope, the wave spectrum and statistical parameters such as the second, third and fourth moment in
such a way that aliassing is avoided. In addition, also the phases of the wave components are obtained
and the important role played by these phases is studied in the evolution of the wave spectrum and in the
magnitude of the third and fourth moment. Of course, because of the assumption of homogeneity, the
wave phase drops out of the second moment and therefore they play no role in the actual magnitude of the
surface wave variance. It is also shown how by using theoretically derived properties of the bound-wave
and free-wave kurtosis their respective contributions may be obtained.

C.2 Envelope method to analyse timeseries.

Let us now discuss the application of the envelope method to the analysis of time series, in particular
the time series of the sea surface elevation at the time an extreme freak wave event occured. As far as I
am aware, this method has been introduced for the first time by Gabor in 1946 in the context of a theory
of communication and in the ocean wave context it has been applied by Longuet-Higgins (1983) and
Shum and Melville (1984) in the context of the joint probability of wave periods and amplitudes, while
Janssen (2014) used it in an attempt to better understand freak waves. A physical interpretation of the
envelope of two-dimensional ocean waves as well as a method for wave group analysis was presented by
Bitner-Gregerson and Gran (1983).

The envelope method is, in principle, very straightforward to implement. Given a discrete time series
produced by sampling the sea surface elevation η(t) every ∆t seconds over a given period of TL seconds,
so the number of samples is N = TL/∆t, one determines the Fourier series of η . Then, the orhogonal
complement of η , denoted by ζ , equals to minus the Hilbert transform H of η , i.e. ζ = −H(η). If
the Fourier expansion of η is known than it is straighforward to obtain its Hilbert transform because
H(eiωt) =−isgn(ω)eiωt . The definition of the envelope ρ is then given by

ρ =
√

η2 +ζ 2 (C1)

and the square of the envelope is basically the potential energy of a wave train. The envelope is therefore
an attractive quantity to use in the study of freak wave events. In addition, for linear ocean waves the
probability distribution function of the envelope ρ is the Rayleigh distribution.
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Let us now become more specific. Introduce the complex function

Z =
N̂

∑
n=1

ane−iωnt (C2)

with ωn = 2πn/TL while the value N̂ will be discussed in a moment, it is found that

η =
1
2
(Z +Z∗) . (C3)

The amplitudes an are basically the projection of η on the basis functions, i.e.

an =
2
TL

∫ TL

0
dt η(t)e+iωnt , n ≤ N (C4)

The orthogonal complement then immediately follows from the relation ζ =−H(η) and the result is

ζ =− i
2
(Z −Z∗) . (C5)

Inspecting Eqns. (C3) and (C5) it is realized that the role of the pair (η ,ζ ) is very similar to the role of
the canonical variables in the Hamiltonian of surface gravity waves, hence ζ is closely connected to the
potential at the sea surface.
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Figure C1: Amplitude spectrum from the Draupner timeseries. Aliassing is clearly evident as the spectrum is
symmetric with respect to f = 1.066.

It is straightforward to apply this method to a time series. The timeseries from the Daupner freak wave
event was obtained from Miguel Onorato. In this case the sampling frequency is 2.1333 Hz and the
length of the timeseries is 1200 s so the number of samples N = 2560. However, there is, of course an
aliassing problem. If one generates from the Fourier coefficients the timeseries of η and ζ using N̂ = N,
then, initially to my great surprise, the so-generated function ζ vanishes! The reason is aliassing which
is immediately evident if one plots the amplitude spectrum |an|2 as function of frequency as shown in
Fig. C1. The usual rule is that, at least for quadratic quantities, two samples per wave period are required
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to resolve the aliassing. The two samples per wave period corresponds to the vertical green line in
the Figure. Around the green line of symmetry, however, the spectrum is clearly polluted because it
is anomously high. Nevertheless. now choosing N̂ = N/2 we got a realistic function ζ and a realistic
looking envelope ρ , although it still seems a noisy. This is shown in the left panel of Fig. C2. In
particular, the envelope at the time ≈ 264 of the freak wave event has two peaks which is a sign of
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Figure C2: Left Panel: Timeseries of surface elevation η , orthogonal complement ζ and envelope ρ at the time
(t ≈ 264 s) of the Draupner freakwave event. Left panel N̂ = N/2, Right panel N̂ = N/4. Black line: η , Red line:
ζ , Blue lines: ±ρ .

noisy behaviour. In addition, it should be emphasized that there is not only interest in second moments
such as the wave variance but also a reliable estimate of higher order moments such a skewness (a third
moment) and kurtosis (a fourth moment) is required. In order to avoid aliasing effects in the fourth
moment it is clear that there is a need to truncate even more severily, i.e. one should choose N̂ = N/4.
The consequences of this choice are shown in the right panel of Fig. C2. It is concluded that the more
severely truncated option is to be preferred because the envelope is smoother and does not have a double
peak at the extreme event. Therefore, from now on N̂ = N/4 is chosen.

In closing this subsection we briefly discuss the relation between the time series of the surface elevation
and the wave spectrum assuming stationary conditions. We start once more with the complex function
given by Eq. (C2) and the surface elevation is given by Eq. (C3). The wave spectrum is basically the
Fourier transform of the correlation function R(τ) = ⟨η(t + τ)η(t)⟩ which, on the scale of the period
the wave field, is assumed to be stationary. In terms of the complex function Z the correlation function
becomes

R(τ) =
1
4
⟨(Z(t + τ)+Z∗(t + τ))(Z(t)+Z∗(t))⟩ (C6)

Now, the stationary assumption gives the following condition on the complex amplitudes amplitudes,
namely

⟨aia j⟩= 0,⟨aia∗j⟩= |ai|2δi− j (C7)

As a consequence one finds that ⟨Z(t + τ)Z(t)⟩ and ⟨Z∗(t + τ)Z∗(t)⟩ vanish while

⟨Z(t + τ)Z∗(t)⟩=
N̂

∑
i=1

|ai|2eiωiτ , and ⟨Z∗(t + τ)Z(t)⟩=
N̂

∑
i=1

|ai|2e−iωiτ . (C8)
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As a result, the correlation function becomes

R(τ) =
1
4
⟨

N̂

∑
i=1

|ai|2
(
eiωiτ + e−iω1τ

)
(C9)

Now, the wave spectrum E(ω) is defined as the Fourier transform of the auto correlation function, i.e.

E(ω) =
1

2π

∫ TL

0
dτeiωτR(τ) (C10)

Inserting (C9) into (C10 gives for large times TL the discrete spectrum

E(ωi) =
1
2
|ai|2

∆ω
(C11)

with ∆ω = 2π/TL. Clearly, the wave spectrum E(ω) is independent of the phase of the individual waves,
and conversely, Eq. (C11) determines for given wave spectrum the amplitude of the waves, but, of course,
not the phases.

C.3 Method to determine dynamical Kurtosis from timeseries.

We now discuss how one can utilize the knowledge on skewness and kurtosis caused by the bound
waves to determine whether free-wave dynamics plays a role in the formation of freak wave events in
the field. This idea was suggested and applied to a freak wave event that occurred in the Southern Ocean
as reported by Toffoli et al. (2024). Let us assume that only bound waves give rise to kurtosis of the sea
surface. In those circumstances there is a direct connection between kurtosis and skewness of the sea
surface in particular for deep-water conditions. Let us introduce the surface elevation ratio Rη = κ40/κ2

30,
which is the ratio of surface elevation kurtosis over the square of the skewness. From the narrow-band
expressions given in Appendix A one may infer immediately that these ratios are independent of the
signficant steepness ε . In fact, in deep water this ratio becomes a constant, i.e. Rη = 2. Therefore, if an
analysis of an observed timeseries showing a freak wave would reveal that Rη is significantly larger than
2, then this is an indication that free-wave dynamics/ four-wave interactions play an important role in the
formation of the relevant freak wave event.

Unfortunately, in shallow water things are more complicated as the ratio Rη also depends on dimen-
sionless depth as is illustrated in Fig. C3. The dimensionless depth for the Draupner case is about 1.2
and is close to the maximum of Rη . Now observed Rη ≃ 6.9 is far above the maximum as found from
the narrow-band approximation of the two statistics, which supports the conclusion that in the Draupner
freak wave case four-wave interactions are expected to play a significant role.

The objection could be made that this approach is only valid for narrow-band spectra. However, a similar
conclusion follows from the exact computations of Gramstad and Lian (2024) using Jonswap spectra with
a wide range of values for the overshoot parameter γ and the Phillips parameter αp. Computations of Rη

for the bound-waves gave on average Rη = 2.2, which for dimensionless depths k0D > 4 is already close
to the values for Rη shown in Fig. C3. Likewise, a similar conclusion follows from the computations
presented here using WAM model spectra.

Let us now give a more detailed discussion. In particular, we would like to obtain some general properties
of the skewness and kurtosis parameters that allows us to obtain from observed time series information
on whether quasi-resonant interactions play a role in freak wave formation. Once more it is noted that
skewness is only determined by the bound waves, while the kurtosis κ4 depends on both quasi-resonant
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four-wave interactions and effects by the bound waves. Therefore, we introduce superscripts d and b to
denote the dynamical part of the kurtosis and the bound-wave part respectively, hence,

κ4 = κ
d
4 +κ

b
4 , (C12)

where

κ
d
4 = κ

d
40 +2κ

d
22 +κ

d
04, and κ

b
4 = κ

b
40 +2κ

b
22 +κ

b
04. (C13)

Let us first concentrate on the properties of the dynamical parts of the kurtosis. Mori and Janssen (2006)
have shown that for general spectra the following relations hold

κ
d
40 = κ

d
04, while κ

d
22 =

1
3

κ
d
40 (C14)

hence κd
4 becomes

κ
d
4 =

8
3

κ
d
40. (C15)

The proof of this is fairly straightforward, when using the expressions for η and ζ in terms of the complex
function Z as given at the beginning of Appendix A, i.e. η = (Z +Z∗)/2 and ζ = (Z −Z∗)/2i. As a
consequence, introducing the complex quantities

A = ⟨|Z|4⟩, and B = ⟨Z3Z∗+Z∗3Z⟩ (C16)

while realizing that for a homogeneous system the moment ⟨Z4⟩ vanishes one finds (see also Janssen
(2015b))

κ40 =
3
8

(
A+

2
3

B
)
−3, κ22 =

1
8

A−1, κ04 =
3
8

(
A− 2

3
B
)
−3. (C17)

We see from (C17) that, as expected, the kurtosis elements are depending on only two independent
parameters A and B so κ40,κ22 and κ04 are not independent. In fact, one can show by eliminating A and
B from (C17) that the following relation between the fourth cumulants holds,

κ40 +κ04 = 6κ22. (C18)

This relation is indeed satisfied by the observed values of kurtosis listed in Table 1 of the main text: with
κ40 = 1.038 and κ04 = 0.428 one indeed finds that (κ40 +κ04)/6 = 0.244 which is the observed value of
κ22.

Furthermore, the dynamical part of the kurtosis is determined by near-resonant four-wave interactions.
For gravity waves there is only one type of resonant interaction present, namely the one obeying the
resonance condition ω1 +ω2 = ω3 +ω4. This process can only be represented by the parameter A and
not by the parameter B. Concentrating therefore on the properties of the quasi-resonant interactions it
is immediately clear that for these processes the rules given in Eqn. (C14) hold, which confirms the
results obtained by Mori and Janssen (2006). It is emphasized that these relations hold for arbitrary
surface elevation and arbitrary envelope probability distributions. For the bound-wave contributions
to the kurtosis parameters I have so far not been able to derive general rules for arbitrary spectra and
arbitrary p.d.f.’s. As it turns out I need one additional piece of information in order to obtain definite
results on the contribution of bound waves and free waves to the fourth order statistics. Several attempts
were made but the most straightforward was the approach suggested by Toffoli et al. (2024). This
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30 as function of dimensionless
depth

method utilizes an approximate relation between the skewness κ30 and the kurtosis κ40 of the bound-
waves. Consider as a guideline the case of narrow-band, deep-water waves. From Appendix A one finds,
with ε = k0⟨η2⟩1/2 the so-called significant slope parameter, that

κ
b
30 = 3ε,κb

40 = 18ε
2 (C19)

for the skewness, and kurtosis of the surface elevation, respectively. Therefore, one finds for deep-water
waves the familiar relation

Rη =
κb

40

(κb
30)

2
= 2, (C20)

which is independent of the significant slope. Including finite depth effects it is found that the parameter
Rη will depend on the dimensionless depth x = k0D with D being the depth. Using the expressions in
Appendix A for the narrow-band version of skewness κ30 and surface elevation kurtosis κ40 one finds for
the ratio Rη

Rη =
2
3

γ +β +2(α +∆)2

(α +∆)2 (C21)

and in Fig. C3 a plot of the proportionality coefficient Rη as a function of x= k0D is shown. It is remarked
that the parameter ∆ which is a measure of the change in mean surface elevation depends explicitely on
the spectral parameters δθ and δω , as discussed in Appendix B. In Fig. C3 we have therefore chosen
for the spectral parameters the values δθ = 0.36, δω = 0.45 as found for the Draupner event. Clearly,
the typical value of Rη is of the order of 2 but in shallow water there is a slight enhancement. For the
Draupner case with x = 1.21 one finds Rη = 2.66.

Remark:
It is noted that there is, however, a sensitive dependence on the results for Rη (and Renv) on directionality measured
by the parameter δθ . For the pure one-dimensional case Rη at x = 1.21 would increase considerably from 2.66 to
3.78 so the two-dimensional effect discussed in Appendix B plays an important role in shallow waters.
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In order to establish now the relative contributions of the quasi-resonant interactions and the bound-
waves from observed time series we execute the following steps based on the use of Eq. (C14) for the
free wave contribution and relation (C21) for the bound-waves, i.e. κb

40 = Rηκ2
30.

κ
d
40 +κ

b
40 = κ40 → κ

d
40 = κ40 −Rηκ

2
30

κ
d
22 +κ

b
22 = κ22 → κ

b
22 = κ22 −κ

d
40/3 (C22)

κ
d
04 +κ

b
04 = κ04 → κ

b
04 = κ04 −κ

d
40

where in bold we indicate quantities that are either obtained from the observed time series or through the
previous operations. The other two kurtosis elements follow from κd

04 = κd
40 and κd

22 = κd
40/3.

Table 1 Free wave and bound-wave contributions to Kurtosis of Draupner
Case.

START PROCESSING
XN = 2560. HS = 11.919
XK0 = 0.0175 XK0*D = 1.2075 EPS =XK0*SQRT(XM0) = 0.0521

OBSERVED:
XM0_OBS = 8.879
C3OBS = 0.136
C4_OBS_ENV = 0.244

INPUT:

KAPPA30 = 0.408 KAPPA4 = 1.954
KAPPA21 = -0.011 KAPPA40 = 1.038
KAPPA12 = 0.136 KAPPA22 = 0.244
KAPPA03 = -0.031 KAPPA04 = 0.428

RATIO_ETA = 2.663
KAPPA40/KAPPA30**2 = 6.236

RESULTS:

KAPPA40_D = 0.594
KAPPA40_B = 0.443
KAPPA22_D = 0.198
KAPPA22_B = 0.046
KAPPA04_D = 0.594
KAPPA04_B = -0.167

KAPPA4_D = 1.586
KAPPA4_B = 0.368

For given observed κ4,0,κ2,2 and κ0,4 I have obtained the free wave and the bound-wave contributions to
the kurtosis stats for the Draupner time series with a length of 1200 s. The details are presented in Table
I. The main result is that the total envelope kurtosis for the Draupner case equals about 1.95 (which is
quite a high value) and the dynamic contribution dominates because κd

4 = 1.59 while the bound-wave
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contribution is κb
4 = 0.37. It is concluded that according to this method it seems that during the Draupner

event quasi-resonant four-wave interactions have played a prominent role.

As an alternative method, which emphasizes the envelope wave height as a measure for extreme events,
one could also consider for the bound waves a relation between envelope kurtosis κ4 and the skewness
κ30. For narrow-band waves in deep water one finds according to Appendix A that κ4 = 24ε2 so that the
envelope ratio Renv becomes

Renv =
κ4

κ2
30

= 8/3 (C23)

which is once more independent of the significant steepness. Including finite depth effects one now finds,
using Eqns. (A27) and (A34)

Renv =
16
9

γ +α2 +(α +∆)2

(α +∆)2 (C24)

and this curve is shown in Fig. C3 as well. We will not report the details of this approach, however,
because similar results are obtained although the effect of the dynamics is compared to the bound waves
somewhat smaller.

Based on the statistical parameters of the envelope wave train we have tried two methods that are able
to separate bound-wave and free-wave contributions to the envelope kurtosis. Applied to the case of
the Draupner freak event it is seen that the free-wave contribution to the statistics is fairly important,
suggesting that for this freak wave event quasi-resonant energy transfer within the wave spectrum plays
a role. Therefore, in the next Appendix some simulation results with the Zakharov equation and the role
of the phases of the waves will be discussed.
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Figure C4: The left Panel shows a comparison of WAM model frequency spectrum at Draupner site with the
original, observed spectrum and a 7 point average. The right panel shows the comparison in wave number space
interpolated to a linear wave number grid.

C.4 1D simulations for the Draupner event.

During the discussion of the Draupner freak wave event in §3.2 it was pointed out that the observation
of such extreme event cannot be represented by a forecasting system that is based on the random phase
approximation. Typically, wave forecasting systems provide averaged information related to a domain
of, say, 14×14 km over a timestep of the order of 10 minutes. As a consequence the information is an
average over more than 100,000 waves, while a freak wave event is obtained from a time series of some
100 waves. In particular, it is expected that higher order moments such as skewness and kurtosis will be
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affected by such a large disrepancy in the number of waves and, by means of numerical experimentation,
it will be explicitely shown that this is indeed the case.

Here, I will present results of numerical simulations of the 1D Zakharov equation, the numerical details
of which have been presented by Janssen (2003). Initial conditions are obtained from the Fourier trans-
formation of the Draupner timeseries with length of 600 s. As shown in Fig. C4 such a spectrum is
very spiky and therefore we have done attempts to smooth the Draupner spectrum by averaging 3 and 7
spectral values.

As a first example a comparison is given of the observed frequency spectrum with the modelled WAM
spectrum in Fig. C4. Although there is perhaps a reasonable agreement between observed (11.91 m)
and modelled (11.23 m) significant wave height, the discrepancy between observed and modelled wave
spectrum is considerably larger. This is in particular the case for the unsmoothed original data, but there
are also substantial differences between the WAM spectrum and the smoothed observed spectrum using
a 7 point average.

Inspecting the unsmoothed data more closely it is immediately evident for someone who is familiar with
the Benjamin-Feir instability (also called sometimes the side-band instability) that the observed Draupner
spectrum, which shows a main peak and two sidebands, might be a clear illustration of the Benjamin-
Feir instability in action. To what extent these sidebands are still changing in time will be studied when
the simulation results are discussed. Of course, inspecting the smoothed data shows that the sidebands
disappear but there are still clear signs of a second wave system between 0.07 Hz and 0.09 Hz.

It has been suggested (see e.g. Adcock et al. 2011) that this second system with peak around 0.08 Hz
is really separate from the main system with peak frequency of about 0.06 Hz. Based on a positive
anomaly in the mean surface elevation it has been argued that the second system propagates under an
angle of 120 ◦ from the mean direction of the main system. Such a double-peaked spectrum is known to
be subject to instability even for broad peaks, but the peak frequency of the two peaks should be similar
while the angle between the two systems should be large enough, in the order of 90 ◦ (see Onorato et
al., 2006). However, according to the timeseries for the Draupner event the peaks have different peak
frequencies, while from the WAM simulation there is no evidence of a second system propagating in
a different direction from the main wave system as is seen from Fig. 5. Therefore, it is unlikely that
the Draupner event is subject to the instability of a double-peaked spectrum. I therefore thought it was
sufficient to concentrate on a one-dimensional simulation of the Draupner event following the approach
in Janssen (2003).

This approach is based on the Zakharov equation which solves the reduced Hamilton equations for the
amplitude of the free waves. The amplitudes are a function of wavenumber and time, and in the software
wavenumber space is discretized in a regular linear manner. The observed Draupner spectrum is based
on a regular frequency space. Ignoring the effect of the bound waves, which some support by the findings
in the previous §C.3, one may obtain a wavenumber spectrum F(k) from the frequency spectrum F( f )
using the usual relation

F(k)dk = F( f )d f → F(k) =
vg

2π
F( f ),

which gives a wavenumber spectrum on an irregular wavenumber grid since the dispersion relation be-
tween (angular) frequency and wavenumber is nonlinear.

As a final step, a wavenumber spectrum on a regular grid, i.e.

kn = 0.0005×n, for n = 1, N̂,
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Figure C5: Spectral change of Draupner event due to nonlinear interactions of the original spectra using the
observed initial phases and using random phase.

is produced using linear interpolation, and the resulting spectrum is almost identical to the spectrum on
the irregular wavenumber grid. The resulting observed and WAM wavenumber spectra are shown in
the right Panel of Fig. C4. The differences between observed and modelled wavenumber spectrum are
similar to the frequency spectra. An identical set of procedures was performed for the phases of the waves
so that wave phase on the above regular wavenumber grid could be provided as an initial condition.

Now, results of numerical simulations with the one-dimensional Zakharov equation are presented using a
number of versions of the initial conditions. In agreement with §B.1 the shallow water transverse current
effects are mimicked by enhancing the nonlinear transfer coefficient T1,2,3,4 in the manner shown in Fig.
B1. This assures that there is even Benjamin-Feir instability for shallow water waves.

The first set of experiments is performed with the original observed wavenumber spectra and phases
as initial condition. The duration of these runs was chosen to be fairly short, 20 min. i.e. about 75
wave peak periods, because for longer duration other physical effects, such as wave breaking, wind input
and bottom dissipation become important as well. The resulting spectrum which is the initial spectrum
modified by nonlinear interactions only is denoted by a star in Fig. C5.

In order to show the importance of the initial phase the same experiments were also performed with
random phase. The results of these experiments were obtained using an ensemble forecasting system
with 500 ensemble members where for each member the spectrum was the same, while the phases of the
individual components were obtained from a random draw between 0 and 1 multiplied by the factor 2π .
The results for random phase are also shown in Fig. C5 and are denoted by a diamond symbol.

By simply checking out in Fig. C5 the differences between circles and stars for observed phase and
comparing these with the differences between circles and diamonds for the random phase case it is clear
that phase plays an important role in the changes of the spectrum. While for random phase the low-
wavenumber peaks hardly change, in sharp contrast to this, for observed phase there are considerable
changes. Above k ≃ 0.022 both random phase and observed phase shows differences in the spectrum
due to nonlinear interactions, but the observed phase case tends to enhance the secondary peak while the
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Figure C6: Shown is the 5-point smoothed spectrum in comparison to the initial condition with observed phase.

random phase case tends to smooth the peaks.

It is clear from Fig. C5 that the evolved spectrum using the observed phase becomes fairly erratic,
therefore it might be difficult to judge how the nonlinear transfer affects the wave spectrum. For this
reason we show in Fig. C6 the 5-point smoothed version of the evolved spectrum from Fig. C5. Clearly,
the nonlinear transfer gives rise to an upshift of the main peak, which is quite extra-ordinary since, at
least in the random phase case, it is usually expected that the nonlinear transfer gives rise to a downshift
of the peak. It is also clear that even the smoothed version of the evolved spectrum starting from observed
phases differs considerably from the spectrum obtained from the case of random phase (Janssen, 2003).

The main reason to do these experiments is, of course, to study the dependence of statistics of the evolv-
ing nonlinear wave train on the choice of the phases. It turns out that these differences are substantial.
Indeed, inspecting Fig. C7 which shows the evolution in time of the spatial average of dynamic kurtosis
κ40 over a time period of 2400 seconds, it is clear that for random initial phase dynamic kurtosis is small,
only of the order of 0.10, in close agreement with the findings obtained from the exact computations
for the maximum in kurtosis factor C4 = κ40/3 depicted in Fig. 9. However, these results are an order
of magnitude smaller than the maximum value of kurtosis obtained from the simulation when observed
phase is used as initial condition. The maximum value of dynamic kurtosis κ40 is of the O(1) which is in
fair agreement with the observed value given in Table 1. Note, that, as expected, results from the Kinetic
equation (Janssen, 2003) are in fair agreement with the random phase simulations.

Finally, it should be noted that Fig. C7 shows some intriguing aspects of the time evolution of κ40.
While at initial time the spatial average of dynamic kurtosis is large, owing to dispersion κ40 reduces
quickly to zero due to phase mixing which is then followed by a number of ’random’ solitary peaks. The
formation of these solitary peaks is most likely a nonlinear effect as by switching off nonlinearity kurtosis
always remains small and frequently less than zero. However, these are the results of a one-dimensional
simulation, and two dimensional effects may have to be taken into account as well and may counteract
the formation of these solitay peaks. This therefore requires further investigations.
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Figure C7: Spatial average of kurtosis κ40 as function of time for observed phase, random phase and kinetic
theory. The initial condition is the original unsmoothed spectrum with observed phases Switching off nonlinear
effects gives a major difference in the evolution of kurtosis κ40 .

C.5 Alternative method to detect extreme wave events.

So far we have applied results from the statistics of surface gravity waves to characterize extreme wave
events giving statements on e.g. the probability of the exceedance of maximum wave height in a domain
of, say, 10 by 10 km during a time span of 20 minutes. It was shown that nonlinear effects related to the
bound waves and free waves play an important role in the probability of extreme events and that linear
effects only are not enough to explain these extremes.

However, one may wonder whether statistics over a fairly large domain are of any use because the domain
is quite large and the user is, of course, interested in whether an extreme wave might occur at the location
of an oil rig or a ship. Are there perhaps alternative measures to indicate the severity of the extreme sea
state. Still based on a statistical approach, one might contemplate the use and value of the expectation
value of maximum wave height which according to the ECMWF freak wave warning system is given by
Eq. 40. The advantage of this expression is that it is related to the maximum wave height of a time series
of 20 minutes, but the statistics still relates to the domain of the spatial/temporary resolution of the wave
prediction system.

Here, it is discussed whether there are alternative methods to characterize extreme surface elevations
given only the wave spectrum. The wave spectrum is a very useful quantity because unlike higher-
order moments such as skewness and kurtosis, the wave energy and it associated spectrum are under the
assumption of stationary statistics independent of the phase distribution. This is illustrated in Fig. C7
where for given wave spectrum one may obtain completely different value of kurtosis for the observed
phases of the waves versus random phases.

Let us therefore study once more the single event of the Draupner wave, in particular quantities such as
the surface elevation and the envelope of the wave train. From the inverse of Eqn. (C11) we obtain the
amplitude as function of angular frequency,

|an|=
√

2E(ωn)∆ω, (C25)
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Figure C8: The cumulative sum ∑
N
n=1 cosθn as function of frequency fN = N∆ω/2π for initial time and for the

time of maximum elevation. For the case of maximum elevation also the case of constant phase is shown.The
duration of the timeseries TL is 1200 s.

where ωn = n∆ω with ∆ω = 2π/TL and TL the length of the time series. Denoting the phase of the
individual waves by φn one obtains from (C2) and the expressions (C3) and (C5) for surface elevation η

and its orthogonal complement ζ the relations

η =
N̂

∑
n=1

|an|cos(φn −ωnt), ζ =
N̂

∑
n=1

|an|sin(φn −ωnt) (C26)

It should be clear from the above expression that the observed initial phases φn and the ’total’ phase
θn = φn−ωnt play a key role in the value of the surface elevation and in the creation of an extreme event.

Let us now concentrate on the role of the phases on the result for surface elevation. Using the observed
phases φn the partial sum ∑

N
n=1 cosθn, with N < N̂ as function of N has been plotted in Fig. C8, for initial

time and for the time that the envelope reaches a maximum. Inspecting the expression for the surface
elevation in Eq. C26 it is clear that for the maximum elevation case the increments shown in Fig. C8
are mainly positive over the whole frequency range which means that the phases θn are such that cosθn

is most of the time positive. In order to convince ourselves that this is indeed the case we plot in Fig.C9
the distribution function p[cosθ ] as function of its argument for the extreme event. It is evidently clear
that the distribution is asymetrical with respect to the origin, implying that the average value ⟨cos(θ)⟩ is
positive, its value being about 0.235. In the same Figure we also plot the distribution function p[cosθ ]
for the whole 1200 s time series, which, as expected, is symmetrical with respect to the origin because
the average surface elevation vanishes. The extreme event has a distribution of phases that differs to a
large extent from the average phase distribution

In passing it is remarked that the phase distribution of the whole time series is found to be uniform. This
is shown as follows using the rule p[cosθ ]dcosθ = p(θ)dθ . Assuming that θ is uniformly distributed
one finds for the cosθ -distribution

p[cosθ ] =
1

π
√

1− cos2 θ
. (C27)
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Figure C9: Probability distribution of cosθ at the extreme event which is compared with the average distribution
over the whole time series. The latter is in close agreement with the pdf based on the random phase distribution.

Note that this distribution function has an integrable singularity at the end-points |cosθ | = 1, therefore
only the integral of p[cosθ ] over a width, in this case, of 0.1 can be directly compared with the numerical
results displayed in Fig. C9. There is perfect agreement between results from the time series and Eq.
C27 suggesting that the phase distribution over the whole period of 1200 s is indeed uniform.

Of course, the question now is what can one do with this knowledge of the phase distribution in the
context of operational wave forecasting where one has no knowledge of the phases of the individual
wave components. Just out of curiosity I tried the case that at the extreme event the phases of all the
wave components are the same and equal to zero. This leads to a maximum surface elevation of 50 m
which is quite extreme since observed maximum elevation is 17.85 m. Hence, I made the choice that
each wave component has the same phase with value cosθ = 1/3. This leads to the result in Fig. C9 with
the dashed line. Remarkably, over the whole frequency range, the increment plot with constant phase is
in good agreement with the result from the observations.

Why there is such a good agreement is a mystery. Christou and Ewans (2014) would probably argue
that this is a case of dispersive focussing. However, the waves in the Draupner event are fairly nonlinear
so four-wave interactions are expected to play an important role in the formation of this extreme event.
Nonlinearity could lead to phase locking resulting in an almost constant phase on average. More work
in understanding why this simple suggestion works is clearly needed.

Finally, let us concentrate on the low-frequency part of the plot in Fig. C9. At the time of the freak wave
event even the low-frequencies were phase locked. However, this only happened during a period of 20
seconds around the extreme event. Most of the time, for example at initial time, the low frequencies were
not correlated giving a flat increment plot in that range.
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