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1. The development of the ANN ASCAT 𝛔0 Observation Operator  
(WP 1) 

1.1. Background 

Precise knowledge of ocean surface roughness is important for a large range of applications, such as 
the computation of air/sea heat fluxes, assimilation in Numerical Weather Prediction (NWP) systems, 
for forcing ocean models and surface-wave models, as well as for climate studies.  

At ECMWF scatterometer winds have been assimilated into the Integrated Forecasting System (IFS) 
since 1996, beginning with ERS-1 and ERS-2 Scatterometer data. Currently ASCAT wind products 
from Metop-B [7][24] and Metop-C, will be termed as ASCAT-B and ASCAT-C, respectively, 
satellites are assimilated together with HY-2B observations. The importance of scatterometer 
observations and their positive impact on NWP and wave models has long been recognized 
[10][27][28]. In particular, C-band scatterometers, like the ones onboard the ERS and the Metop 
satellite series, provide information in almost all-weather conditions. These observations are therefore 
important, often unique, for the analysis of extreme events (usually characterized by cloud and rainfall) 
such as tropical cyclones (TCs) and extra-tropical storms. It has also been confirmed that ASCAT 
observations have a substantial impact on the ocean variables in coupled ocean-atmosphere assimilation 
systems [10] 30]. 

The initial study ‘Characterisation of ocean surface roughness in NWP’ was performed by ECMWF 
under contract EUM/CO/18/4600002207/Sli (see [8]). This project was aimed at exploring how to 
increase the value of scatterometer observations in NWP, by assessing the assimilation of new 
geophysical variables closer to what the scatterometer actually measures over the ocean. The 
assimilation of surface stress and stress equivalent winds were tested. But the experiments performed 
with these new geophysical variables did not show any clear benefit on the quality of the analysis and 
forecast. 

One difficulty with the stress assimilation may be related to the mapping of the ambiguous winds 
vectors provided by the geophysical model function (GMF) (currently the CMOD5.n [25] is used in 
operations) to stress space. This additional processing step is unlikely to change the real information 
content of the observation. An alternative approach is the direct assimilation of backscatter coefficient 
“sigma0” (𝛔0; also known as the normalized radar cross section, NRCS) triplets, thereby removing the 
GMF from the observation processing chain.  

Extensive effort was dedicated to retrieve wind vector from 𝛔0 (e.g., [25] [29] [34]) and use the retrieved 
wind vector in data assimilation (e.g. [27] [28] [33]). Very little work was carried out on the direct 
assimilation of 𝛔0 for two main reasons: the wind direction ambiguity and the non-linearity of the wind 
- 𝛔0 relationship (e.g. [29] [33] [35]). At ECMWF, for example, the GMF tangent-linear and adjoint 
codes required to assimilate 𝛔0 were not available before the start of this project. 
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It is time to revisit these results. The 4D-Var assimilation approach naturally uses prior information to 
constrain ill-posed retrieval problems. Ill-posed problems are ambiguous by definition, because 
multiple atmospheric states can produce the same measured value. In addition, recent progress tackling 
non-linear problems in the “All Sky” assimilation of radiances [20] might suggest that some non-
linearities considered problematic in the 1990’s might now be overcome. However, this suggestion 
needs to be tested. 

Preliminary results obtained at ECMWF with a 𝛔0 forward operator based on a neural network have 
been presented with promising results during the final meeting of the initial study and during the 
ECMWF-EUMETSAT Science bilateral, on 26/04/2022. ECMWF has trained an artificial neural 
network (ANN) to forward model ASCAT-B scatterometer 𝛔0 triplets. This work used ECMWF 10-m 
neutral equivalent wind vectors and measurement geometry parameters (“features” in ANN 
terminology) to simulate operational ASCAT-B 𝛔0 triplet values (“targets”), using “trusted” 
measurements that have passed operational quality control and have been assimilated. The work was 
performed using the Keras/TensorFlow ([4] and [1]) software packages (in python). The early results 
are encouraging, and equally importantly the ANN approach seems to be very flexible, so that the 
impact of other variables on the fit to 𝛔0 can also be tested. This could include atmospheric air density, 
sea-state information, rain-rate.  

We note that an ANN approach was used more than 20 years ago to develop scatterometer forward 
models [5]. Furthermore, ANN is also being tested for scatterometer soil moisture applications [3]. 

1.2. Used Data 

ASCAT backscatter data were retrieved from the ECMWF operational Observational Data Base (ODB) 
archived on ECMWF Meteorological Archival and Retrieval System (MARS) [15]. Only observations 
that were assimilated actively are used for training since training requires the best available data. 
Assimilated observations are usually of good quality. Scatterometer data including backscatter 
observations with their corresponding geometry (incidence and azimuthal angles) and model wind 
vectors from both background (first-guess, FG) and analysis (AN) and other related information are 
stored in ODB during data assimilation. Observations from ASCAT-B were mainly used for training 
purposes. Validation was carried out using observations from both ASCAT-B (but during different time 
windows) and ASCAT-C.  

Several periods (mainly from 2020 and 2021) were used depending on the availability of the data. The 
final training, however, was based on ASCAT-B observations covering the whole year spanning from 
1 August 2020 till 31 July 2021. 

For other variables, IFS short forecasts (FC) from step 1 till step 12 (hours) from the ECMWF 
operational suite were used.  Fields of those variable were retrieved from MARS and were collocated 
with the ASCAT data from ODB. Closest grid point and time were selected to reduce the impact of 
interpolation. Both atmospheric and ocean-wave data were used to examine their impact on the learning 
ANN process. 
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1.3. Artificial Neural Network (ANN) Model 

An Artificial Neural Network (ANN) model of ASCAT backscatter (𝛔0) has been developed using 
Keras/TensorFlow ([4] and [1]) package. Model wind vector (in addition to other model variables that 
will be specified later) and the geometry of the scatterometer beam with respect to the wind vector are 
the input variables (“features”). ASCAT 𝛔0 is the ANN model output “target”.  

ANN training is comparable to the traditional CMOD training (e.g. [25]) but with more flexibility and 
without the need of the precise knowledge regarding the underlying physics. Once enough existing 
features-target data are available, the ANN can extract the relation (~ physical laws) between the pair. 
In fact, ANN only figures out the “pattern” in the data. Therefore, the found “relation” cannot be written 
in a closed form. However, ANN model parameters are produced and stored for later usage for 
verification and implementation of the model. 

The following ANN configuration is used: 

• A Sequential ANN model is used since it is most appropriate for a plain stack of layers where 
each layer has exactly one input tensor and one output tensor  
(https://keras.io/guides/sequential_model/).  

• The input layer is composed of, at least, four input nodes. There is one node for each wind 
vector component, one node for each of the scatterometer incidence and azimuthal angles. Other 
nodes are added for each additional physical variable to be used. 

• Two identical hidden dense layers are implemented. The “dense layer” is a term used to 
describe a layer of nodes with each node receiving input from all the nodes of the previous 
layer.  

• Each layer is composed of 64 nodes. 

• The activation function transforms the input to the output (also called activation) at the node 
level. Linear activation functions are easy to implement and execute. However, to learn 
complex mappings, nonlinear activation functions are required. Two activation functions were 
tested: 

o The rectified linear (ReLU) activation function which is a piecewise linear function 
that will output the input directly if its argument is positive, otherwise, it will output 
zero. Its derivative is 1 for positive arguments and zero otherwise. These characteristics 
make ReLU the favoured activation function for many types of neural networks. 

o The hyperbolic tangent (tanh) activation function, which is an S-shaped function 
symmetric around 0 and saturates at the values of 1 and -1 for high positive and 
negative values, respectively. This saturation for high argument values is a challenge 
for the learning process. tanh activation function is much less efficient compared to the 
ReLU function. However, this function is the recommended one for data assimilation. 

• The output layer is composed of a single node representing 𝛔0. 



 Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean 

 

4 EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi 

• The loss function, which is the equivalent term for the cost function in data assimilation, is the 
sum of the errors to be minimised. ANN model training is achieved through an optimisation of 
the loss function. The loss is represented by the mean square error (MSE), which is the average 
of the squared differences between the predicted and actual values. 

• The optimisation algorithm (optimiser) is selected as the stochastic gradient descent (SGD) 
which is a very efficient optimiser. 

Summary of ANN model configuration is listed in Table 1. 

Table 1: Summary of ANN model configuration. 

Model Elements Description 

Model type Sequential 

Number of layers 1 input, 1 output and 2 hidden   
(3 hidden layers configuration was tested) 

Type of hidden layers Dense 

Number of nodes 64 for each hidden layer  
(other number of nodes were tested) 

Activation function The following were used separately: 
- rectified linear (ReLU) 

- hyperbolic tangent (tanh) 

Input layer At least 4 nodes: 
- 2 nodes for model wind vector;  

- 2 nodes for scatterometer geometry; and 

- 1 or more nodes for each additional variable 
(if used) 

Output layer 1 node for 𝛔0 

Loss function Optimisation of mean square error (MSE) 

Optimiser Stochastic gradient descent (SGD) 

 

Several deviations from the above configurations were considered. Networks that include 2 hidden 
layers with 16, 32, 64 and 128 nodes as well as 3 layers with 64 and 32 nodes were tested. The impact 
was marginal and, therefore, for the sake of efficiency and accuracy we decided to use the above 
configuration in terms of layers and nodes. 
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1.4. ANN Model Training and Validation 

1.4.1. ANN Observation Operator Based on Wind Vector 

ASCAT-B observations collocated with the IFS model wind vectors were used for the ANN training. 
The final training was based on data covering the whole year spanning from 1 August 2020 till 31 July 
2021. First, only IFS model first guess (FG) wind vector was used for training and validation. The 
trained ANN model (ANNFG) was used to estimate 𝛔0 values corresponding to IFS model FG wind 
vector data covering the 9-month period from 1 August 2021 to 30 April 2022. Later this period was 
extended till the end of March 2023, i.e. a total of 20 months and the change in the statistics was 
marginal.  

The scatter plot showing the correlation between validation results of 𝛔0 values estimated using ANNFG 
and FG winds and those measured by ASCAT-B for the 9-month validation period are shown in Figure 
1. With most of the data pairs being narrowly scattered around the symmetric 45-degree line, the 
agreement is rather excellent. However, a small number of collocations show higher scatter. Another 
important observation in Figure 1 is the inability of ANNFG model to produce 𝛔0 values below -31.29 
dB. Such low values, whose locations are shown in Figure 2, are associated with very light wind. This 
is in fact in agreement with available experimental evidence (e.g. [14]) that winds with speeds below a 
certain threshold (below around 2.0 m/s) is unable to produce any perturbation to the water surface. 
Therefore, any perturbations, which allow the radar signal to be scattered back to the scatterometer 
antennas, under very light winds are due to other variables like ocean swell. This is also clear in the 
variation of 𝛔0 with respect to the wind speed shown in Figure 3.  

Time series of the monthly standard deviation of the difference (SDD), mean absolute error (MAE), 
bias and correlation coefficient (C.C.) between ANNFG estimated 𝛔0 (based on FG wind input) and 
measured 𝛔0 by ASCAT-B and ASCAT-C are shown in Figure 4. The monthly SDD, MAE and C.C. 
values are virtually constant for the whole training (in case of ASCAT-B) and validation periods 
(August 2020 till March 2023). The results from ASCAT-B and ASCAT-C are also the same with very 
minor advantage for ASCAT-C (smaller SDD values and higher C.C. values during few months). The 
differences are negligible. The validation against the ASCAT-B data set that was used for training does 
not give any advantage for that data set. The minor advantage of ASCAT-C results is still valid.  

However, 𝛔0 estimates by ANNFG using FG wind show a small bias as can be seen from Figure 4. Bias 
with respect to ASCAT-B 𝛔0 is zero during the training period, as expected. However, the bias shows 
an increasing trend afterwards. 𝛔0 bias with respect to ASCAT-C shows a rather constant shift of about 
0.07 dB compared to bias against ASCAT-B. Otherwise, the bias with respect to ASCAT-C follows the 
same pattern as that of ASCAT-B. This implies that ASCAT-C 𝛔0 is higher than that of ASCAT-B. The 
increasing trend could be coming from the scatterometers or from the IFS model forecast. However, we 
are expecting that IFS model is the source of the increasing trend since a similar trend in both 
instruments is highly unlikely. 

The	𝛔0 bias (between ANNFG estimates and the scatterometers) in Figure 4 shows a seasonal variation 
with peaks in January and August and troughs in April and October.  
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Figure 1: Validation of a year (1 August 2021 – 31 July 2022) of the ANNFG model 𝛔0 estimates using 
IFS model FG wind vectors against measured 𝛔0 by ASCAT-B. 

 
Figure 2: Geographical distribution of low (below -31.29 dB) values of measured 𝛔0 during the full 
year from 1 August 2021 – 31 July 2022. 
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Figure 3: Relation between ANN sigma_0 and wind speed for different incidence angles (training using 
FG wind only). The left-hand panel shows the data clouds for 4 incidence angles. The right-hand panel 
shows the centreline of the data clouds of 11 incidence angles. 
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Figure 4: Time series of monthly standard deviation of the difference (SDD), mean absolute error 
(MAE), bias and correlation coefficient (C.C.) between ANN estimated 𝛔0 (based on FG wind) and 
measured 𝛔0 by ASCAT-B and ASCAT-C. Training was carried out using ASCAT-B data during the 
period shown by the two-sided arrow. 

 

The geographical distribution of bias of ANNFG model 𝛔0 estimates using IFS model FG wind vectors 
with respect to the measured 𝛔0 by ASCAT-B during the 1-year period from 1 August 2021 to 31 July 
2022 is shown in Figure 5. The small bias (below 0.1 dB) dominates the map. However, there are higher 
bias values in the Tropics. It is possible to relate high biases with major ocean currents like: the Pacific 
South Equatorial Current, the Pacific Equatorial Counter-current, the Guinea Current, Kuroshio 
Current, Agulhas Current and, to less extent, the Gulf Stream. 

The geographical distribution of SDD and scatter index (SI; which is the SDD normalised by the mean 
value) of ANNFG model 𝛔0 estimates using IFS model FG wind vectors with respect to the measured 𝛔0 
by ASCAT-B during the 1-year period from 1 August 2021 to 31 July 2022 are shown in Figure 6 and 
Figure 7, respectively. The SDD is predominantly below 1.5 dB. That corresponds to SI value of 8%. 
There are, however, some areas with high SDD and SI values like around the Indonesian Islands and 
the Pacific coast of Central America.  
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Figure 5: The geographical distribution of bias, in dB, between ANNFG model 𝛔0 estimates using IFS 
model FG wind vectors and the measured 𝛔0 by ASCAT-B during the 1-year period from 1 August 2021 
to 31 July 2022. 

 

 
Figure 6: Same as for Figure 5 but for the standard deviation of the difference (SDD), in dB. 
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Figure 7: Same as for Figure 5 but for the scatter index (SI), in percentage, which is the SDD 
normalised by the mean value. 

 

1.4.2. Use of Analysis versus First-Guess Wind Vector 

Model analysis (AN) winds are in theory the best winds available from a numerical weather prediction 
(NWP) system like the ECMWF IFS. These AN model winds are the result of data assimilation (i.e. 
merging observations with the model) process. Currently, IFS assimilates ASCAT-B and ASCAT-C 
scatterometer winds after inversion. Therefore, the use of AN winds is usually not preferred to be used 
for training. This is the main reason behind starting with the use of the model first-guess (FG) winds, 
which are the results of model short forecasts that are needed to represent the model state (background) 
in the data assimilation system. Model FG data are not impacted by the observations within the same 
time window They are, however, impacted by data from previous time windows. This is not a real issue 
unless there is a “systematic error”. 

The ANN training presented so far was based on model FG winds (ANNFG) and is represented 
schematically in Figure 8. Alternative training can be carried out using AN winds (ANNAN) as shown 
in Figure 9. For the validation, it is possible to estimate 𝛔0 values using either ANN model (ANNFG or 
ANNAN) and either wind type: FG wind as shown in Figure 10 or AN wind as shown in Figure 11. The 
statistics from all four combinations are listed in Table 2 for FG winds and in Table 3 for AN winds. 

It is clear from Table 2 and Table 3 that both models perform equally well for any given wind type. In 
fact, the wind type used in the 𝛔0 estimation dictates the performance.  AN winds produce better 𝛔0 
values than FG winds irrespective of wind used in the model training. However, ANNAN model 
produces slightly better 𝛔0 values when used with AN wind.  
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Figure 8: Schematic diagram showing the ANNFG training. 

 

 
Figure 9: Schematic diagram showing the ANNAN training. 

 

  

 
Figure 10: Schematic diagram showing the use of model FG wind to validate both ANN trained models; 
namely:  ANNFG and ANNAN. 

 

  

 
Figure 11: Same as Figure 10 but the use of model AN wind instead of model FG wind for validation. 
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Table 2: Verification of ANN models trained using FG (ANNFG) and AN (ANNAN) winds when used with 
FG winds. 

N = 1266843 ANN model trained  
using FG wind (ANNFG) 

ANN model trained  
using AN wind (ANNAN) 

Bias 0.023 0.048 

SDD 1.314 1.316 

R 0.9682 0.9681 

 

Table 3: Same as Table 2 but when used with AN winds. 

N = 1266843 ANN model trained  
using FG wind (ANNFG) 

ANN model trained  
using AN wind (ANNAN) 

Bias -0.012 0.005 

SDD 1.012 0.980 

R 0.9813 0.9824 

 

1.4.3. Impact of Seasonality of Training Period 

The sensitivity of the performance of the ANN model on the training duration and the period used for 
validation was tested. To do so, we divided ASCAT-B 𝛔0 data collocated with the IFS model FG wind 
covering a period of 8 months into two equal parts: the first 4-month period between 1 August and 30 
November 2020 was reserved for training while the following 4-month period from 1 December 2020 
to 31 March 2021 was reserved for validation. (This was done at an early stage when there was not 
much data available). 

Various durations and timings were selected to train ANNFG 𝛔0 models. In total 10 models were trained. 
The model durations and timings are schematically shown in the timeline in the left-hand panel of 
Figure 12 and Figure 13 (same timeline in both figures). All models were validated against the whole 
validation data set from the second 4-month period as shown in the same timeline. The SDD and 
correlation coefficient for each model are shown in the right-hand panels of Figure 12 and Figure 13, 
respectively. 

It is clear that the best results are achieved with training using 4 months of data followed closely by 
training using the 3 months just before the start of the validation period (the top two horizontal bars in 
Figure 12 and Figure 13). The third best is the ANN model trained using the 3 months with a month 
gap from the validation start (third horizontal bar in the figures) followed closely with the model trained 
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using the closest two months to the validation period (fourth bar in the figures). The performance of the 
models based on the other two-month periods degrades as the gap to the validation period increases. 
The two models based on monthly data closer to the validation period perform better than the model 
based on the furthest 2-month period. The models based on monthly data show better performance when 
they are closer to the validation period. The only exception is the model based on data from October 
2020. 

 
Figure 12: Impact of training duration and its timing with respect to validation period on SDD. 
Validation of ANNFG model trained using datasets (FG wind and ASCAT-B 𝛔0) for various durations 
within 4-month period from 1 August to 30 November 2020 against ASCAT-B data covering the 
following 4-month period from 1 December 2020 to 31 March 2021. The labels next to the horizontal 
bars, represent the duration of training in months and the month at which the training duration 
commenced. Left-hand panel shows the corresponding timeline of the training and validation periods. 

 

 
Figure 13: Same as Figure 12 but for impact on the correlation coefficient. The timeline on the left-
hand panel is the same as that in Figure 12. 
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Although the duration of the training data seems like an important factor to produce better performance, 
it is in fact how much the data are closer to the validation period which is more important. It is important 
to recall from Figure 4 that a model based on a full year of data behaves equally good at all periods of 
time including those which are more than a year away. One can conclude that a year of data hopefully 
covering a wide range of weather conditions is needed for training a successful ANN model. 

 

1.4.4. Impact of Including Air Density 

Air density is one of the variables which influence the impact of wind speed on the water surface. This 
impact was studied and included in CMOD-7 [34]. The air density as computed from IFS was included 
as a feature (input) to the ANN model. Validation of 𝛔0 values estimated by the ANN model against 
ASCAT-B 𝛔0 data shows marginal impact on SDD and correlation coefficient. However, upon 
comparing the geographical distribution of the difference between ANN estimated 𝛔0 and the ASCAT-
B measurements (see Figure 14) to those produced using FG wind alone (Figure 5), it is possible to 
notice that the differences are getting smaller with the inclusion of air density. 

 

 
Figure 14: The geographical distribution of bias, in dB, between 𝛔0 estimated by an ANN model that 
was trained using FG wind and air density and the measured 𝛔0 by ASCAT-B during the 1-year period 
from 1 August 2021 to 31 July 2022. 
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1.4.5. Impact of Sea-State Variables 

Since scatterometers detect the surface capillary gravity waves, other processes that contribute to (or 
hinder) the growth of such waves are needed to be considered while developing a scatterometer 𝛔0 
observation operator. The first candidate is the ocean waves. Although ocean waves have scales higher 
than the scale of the gravity-capillary waves, they do interact with each other. ECMWF runs an ocean 
wave model called ECWAM with IFS. The model predicts a wide range of sea-state variables. A list of 
some of those variables are listed in Table 4. The full list with description is available from [17]. The 
model short (up to 12 hours) forecast (FC) sea-state variables are used with the FG wind as well as 
model AN sea-state variables are used with AN wind. 

Several combinations of sea-state variables were used for training and validation of the trained models. 
The training period runs from 1 August to 30 November 2020 while the validation period runs from 1 
December 2020 to 31 March 2021. IFS FG model winds and ASCAT-B 𝛔0 measurements are used for 
both training and validation. The SDD, the percentage reduction in SDD and the correlation coefficient 
values for each model are shown in Figure 15, Figure 16 and Figure 17, respectively. The three plots 
suggest that the inclusion of significant wave height (SWH), mean zero-crossing wave period (also 
known as mean period based on second moment, MP2), normalized energy flux into waves (PHIAW), 
and normalized energy flux into ocean (PHIOC) to FG wind produces the best performance with a 
reduction of slightly less than 8% in SDD. The best performance for adding just two sea-state variables 
is for the inclusion of SWH and MP2 with about 5% reduction in SDD. For a single variable, the best 
sea-state variable to include is PHIOC with a reduction of about 2% in SDD.  

The scatter plot comparing 𝛔0 from the ANN model that was trained using FG wind and the FC sea-
state variables of significant wave height (SWH), mean zero-crossing wave period (MP2), normalized 
energy flux into waves (PHIAW), and normalized energy flux into ocean (PHIOC) to ASCAT-B 𝛔0 
measurements is shown in Figure 18. The ANN model is now able to produce 𝛔0 values below 31.29 
dB. This is quite an improvement compared to ANN models with wind-only training (see Figure 1). 

The geographical distribution of bias between 𝛔0 estimated by few ANN models that were trained using 
1-year of data (1 August 2020 – 31 July 2021) and the measured 𝛔0 by ASCAT-B during the 1-year 
period from 1 August 2021 to 31 July 2022 are shown in Figure 19, Figure 20 and Figure 21. The 
improvement that each sea-state variable combination on the bias clear.  
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Table 4: The used sea-state variables (sorted based on the short name). 

Variable name Short name Units 

Benjamin-Feir index bfi dimensionless 

Coefficient of drag with waves cdww dimensionless 
Mean wave period based on first moment mp1 s 

Mean zero-crossing wave period mp2 s 

Mean wave period mwp s 

Mean wave direction of first swell partition mwd1 degree 

Mean wave direction of second swell partition mwd2 degree 

Mean wave direction of third swell partition mwd3 degree 

Mean wave period of first swell partition mwp1 s 

Mean wave period of second swell partition mwp2 s 

Mean wave period of third swell partition mwp3 s 

Mean square slope of waves msqs dimensionless 

Normalized energy flux into waves phiaw dimensionless 

Normalized energy flux into ocean phioc dimensionless 

Peak wave period pp1d s 

Air density over the oceans rhoao kg m-3 

Significant height of combined wind waves & swell swh m 

Significant wave height of first swell partition swh1 m 

Significant wave height of second swell partition swh2 m 

Significant wave height of third swell partition swh3 m 

Normalized stress into ocean tauoc dimensionless 

U-component stokes drift ust m s-1 

V-component stokes drift vst m s-1 

Wave spectral directional width wdw dimensionless 

Wave energy flux magnitude wefxm W m-1 

Wave spectral kurtosis wsk dimensionless 

Wave spectral peakedness wsp dimensionless 

Wave spectral skewness wss dimensionless 

Free convective velocity over the oceans wstar m s-1 
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Figure 15: Impact of adding sea-state variables to FG winds for training and validating the trained 
models against ASCAT-B 𝛔0 measurements in terms of SDD. Training period is from 1 August to 30 
November 2020 while the validation period is from 1 December 2020 to 31 March 2021. The labels 
next to the horizontal bars represent the FC sea-state variables used for that model. The label “**FG 
wind**” refers to the reference FG-wind only model. Full names of variables are listed in Table 4. 
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Figure 16: As Figure 15 but the impact is in terms of percentage reduction in SDD. 
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Figure 17: As Figure 15 but the impact is in terms of the correlation coefficient. 
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Figure 18: Comparison of 𝛔0 estimated using an ANN model that trained using FG wind and the FC 
sea-state variables of significant wave height, mean zero-crossing wave period, normalized energy flux 
into waves, and normalized energy flux into ocean against ASCAT-B 𝛔0 measurements over a year 
running from 1 August 2021 till 31 July 2022. The ANN model was trained on 1 year of FG wind vector 
and 4 FC sea-state variables covering the period from 1 August 2020 to 31 July 2021. 

 

1.4.6. Impact of Atmospheric and Oceanic Variables 

The development of surface capillary gravity waves, which impact the scatterometer backscatter signal, 
depends on several atmospheric and oceanic processes apart from wind strength. A (nonexclusive) list 
of some of these processes is provided in Table 5. The ECMWF IFS model provides global estimates 
of them. The oceanic variables considered here are sea surface temperature (sst), sea water practical 
salinity (so) and current velocity (eastward and northward sea water velocity, ocu and ocv, respectively). 
The remaining variables in Table 5, such as surface stress, surface roughness, precipitation, are all 
atmospheric variables. The full list with brief description is available from [17]. The model short 
forecast (FC up to 12 and 24 hours atmospheric and oceanic variables, in respective order) are used in 
addition to the FG wind. Note that the ANN modelling also requires the ASCAT incidence and azimuth 
angles for all cases even if they are not mentioned. As before, ASCAT-B 𝛔0 values collocated with the 
IFS model variables covering the period from 1 August 2020 to 31 July 2021 (1 year) are used for 
training the ANN models. The data covering the following year (from 1 August 2021 to 31 July 2022) 
are used for the validation of the models. 
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Figure 19: The geographical distribution of bias, in dB, between 𝛔0 estimated by an ANN model that 
was trained using FG wind and FC sea-state variables of significant wave height and mean zero-
crossing wave period and the measured 𝛔0 by ASCAT-B during the 1-year period from 1 August 2021 
to 31 July 2022. 

 
Figure 20: Same as Figure 19 but for the ANN model that was trained using FC energy flux into waves 
and energy flux into ocean on top of those used in the model of Figure 19 (i.e. FG wind and significant 
wave height and mean zero-crossing wave period). 
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Figure 21: Same as Figure 19 but for the ANN model that was trained using FG wind and FC Stokes’ 
drift vector. 

 

The impact of using various combinations of atmospheric and oceanic variables on fitting the measured 
ASCAT-B 𝛔0 values for the validation period compared to the use of wind velocity components only 
can be seen in Figure 22, Figure 23 and Figure 24. The impact in terms of standard deviation of the 
difference (SDD) between 𝛔0 values from the ANN model and the ASCAT-B measurements is shown 
in Figure 22. The percentage of reduction of SDD compared to the computation of ANN 𝛔0 using FG 
wind only is shown in Figure 23. The correlation coefficients of ANN model trained using various 
combinations of atmospheric and oceanic variables when compared against the measured ASCAT-B 
𝛔0 are shown in Figure 24.  

The use of extra atmospheric variables improves the performance of the ANN model by up to ~10% 
reduction of SDD. This is the case of using IFS model forecast surface stress vector (iews and inss), 
surface roughness (fsr), magnitude of friction velocity (zust), instantaneous 10-m wind gust (i10fg) and 
large-scale precipitation (lsp) in addition to the usual IFS model FG wind vectors. 

For a better visualisation of the impact, the combinations are grouped into three groups, from lower to 
top in Figure 22, Figure 23 and Figure 24:  

• FG wind velocity in addition to others, 

• FC surface stress in addition to others, 

• Both FG wind velocity and FC surface stress in addition to others.   
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Table 5: The used atmospheric and oceanic variables (sorted based on the short name). 

Variable name Short name Units 

Charnock chnk      dimensionless 

Convective precipitation cp        m 

Forecast surface roughness fsr       m 

Instantaneous 10-metre wind gust i10fg     m s-1  

Instantaneous eastward turbulent surface stress iews      N m-2  

Instantaneous northward turbulent surface stress inss      N m-2  

Large-scale precipitation lsp       m 

Mean sea level pressure msl       Pa 

Eastward sea water velocity ocu       m s-1   

Northward sea water velocity ocv       m s-1  

Sea water practical salinity so        psu  

Sea surface temperature sst       K  

Total cloud cover tcc       (0.-.1)  

Total column rain water tcrw     kg m-2   

Total column snow water tcsw     kg m-2   

Total column vertically-integrated water vapour tcwv      kg m-2   

Total precipitation tp        m  

Friction velocity zust      m s-1    

 

In general, the combinations in the group “FG wind & others” (lower) show lower impact than the other 
two groups. The combinations of the group “FC surface stress & others” (middle) show more impact 
than members of the “FG wind & others” group. The best results are obtained when both FG wind and 
FC stress are used in combination of other variables. 

In general, the more variables included in the ANN model, the better the results are. However, including 
a member of each of the following group of variables improves the performance: 

• FG (10-m) wind 

• Surface stress, friction velocity, gust 

• Surface roughness, Charnock parameter 

• Precipitation (large scale) 
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Figure 22: Impact of using relevant atmospheric and oceanic variables (including FG winds) for 
training and validating the trained models against ASCAT-B 𝛔0 measurements in terms of SDD. 
Training period is between 1 August 2020 and 31 July 2021 while the validation period is between 1 
August 2021 to 31 July 2022. The labels next to the horizontal bars represent the combination of 
atmospheric and oceanic variables used for that model. The label “**FG wind**” refers to the 
reference FG-wind only model. A list of variable full names is listed in Table 5. 
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Figure 23: As Figure 22 but the impact is in terms of percentage reduction in SDD. 
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Figure 24: As  Figure 22 but the impact is in terms of the correlation coefficient. 
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It seems that each of those groups includes intrinsic relevant pattern or patterns that complement the 
patterns in the other groups. The other atmospheric variables, not included in the groups above, 
introduce minor improvements. It was surprising that adding the oceanic variables, especially the 
surface current, show almost no impact. Adding the water salinity tends degrade the results slightly. 
This may be a consequence of the relatively poor ocean model resolution except for the tropical areas.  

Figure 25 shows the scatter plot of ANN 𝛔0 from FG wind only against ASCAT-B 𝛔0 over one year (1 
August 2021 to 31 July 2022). Figure 26 shows a similar scatter plot for ANN 𝛔0 from the instantaneous 
surface stress components (iews, inss). Figure 27 shows the same but with adding surface roughness 
(fsr), magnitude of friction velocity (zust), 10-m wind gust (i10fg) and large-scale precipitation (lsp) to 
wind and stress vectors. The improvement can be seen by comparing Figure 27 (wind & stress & 
roughness & precipitation) to Figure 25 (wind only) and even to Figure 26 (wind & stress). The 
histograms of the three ANN 𝛔0 cases: “wind only”; “wind & stress”; and “wind & stress & roughness 
& precipitation” are compared to the histogram of ASCAT-B 𝛔0 and shown in Figure 28. Adding extra 
atmospheric variables to the wind produces smaller ANN 𝛔0 values (below 31.29 dB) as can be seen in 
Figure 28, especially the lower panel. Nevertheless, those small 𝛔0 values are less represented in the 
ANN models which suggests that there is still room for improvement. 

 

 
Figure 25: Validation of 12-month (1 August 2021 – 31 July 2022) of the ANNFG model 𝛔0 estimates 
using IFS model FG wind vectors against measured 𝛔0 by ASCAT-B. Model training period is between 
1 August 2020 and 31 July 2021. 
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Figure 26: Same as Figure 25 but with the ANNFG model 𝛔0 estimates involves IFS model forecast 
instantaneous surface stress vector (iews and inss). 

 

The geographical distribution of bias between 𝛔0 estimated by three ANN models of “wind only” 
(whose scatter plot is shown in Figure 25); “wind & stress” (whose scatter plot is shown in Figure 26); 
and “wind & stress & roughness & precipitation” (whose scatter plot is shown in Figure 27) from one 
side and ASCAT-B 𝛔0 measurements, on the other side, over the validation year (1 August 2021 to 31 
July 2022) are shown in Figure 29, Figure 30 and Figure 31, respectively. The reduction in bias when 
more atmospheric variables are added can be clearly seen.  

 

1.5. Discussion 

1.5.1. Accuracy of the ANN Models  

The value of the standard deviation of the difference (SDD) between 𝛔0 estimated by ANN models 
presented earlier and the measured 𝛔0 varied roughly between 1.0 and 1.3 dB. This seems to be a high 
value compared to the expected error in 𝛔0 measured by the ASCAT instruments. Potential contributors 
to the rather high SDD values are the ANN modelling and the wind used for training and validation. 

The same IFS FG wind vector used for the validation of the various ANN models was used for various 
CMOD geophysical model functions. Note that only wind is used (i.e. the impact of air density was not 

-40 -30 -20 -10 0 10
ASCAT-B Sigma0 (dB)

-40

-30

-20

-10

0

10

M
od

el
 S

ig
m

a0
 (d

B)

Reg. Constant
Reg. Coefficient
Symmetric Slope
Correlation Coef
1.4826 * MAD
St Dev of Diff.
Bias (Mod-ASCB)
Mean Model
Mean ASCB
Entries

      -0.895
       0.950
       0.995
       0.971
       0.890
       1.254
       0.068

     -19.213
     -19.281
38,412,384

FC Instantaneous Surface Stress
Aug. 2021 - Jul. 2022 (Global - All)

    1

    5

   10

   50

  100

 1000

10000

100000

1000000

10000000



Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean  

 

EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi  29 

considered here). The resulted SDD values compared to ASCAT-B 𝛔0 measurements are shown in 
Table 6. It is clear that the high SDD values are not due to the ANN training. 

To demonstrate the impact of wind-speed error on the accuracy of 𝛔0 estimation, a simple simulation 
was carried out by perturbing the model wind speed using Gaussian random noise with standard 
deviation (SD) of 1.0 m/s (to represent the model forecast error). The wind speed without perturbation 
is assumed to be the truth in this case. CMOD-5n, CMOD-6 and CMOD-7 GMF’s were used to compute 
𝛔0 from both the unperturbed wind speed (the truth in this simulation test) and the perturbed wind 
speed. The SDD value from each mode (comparing 𝛔0 values from the perturbed wind speed to the 
wind speed without perturbation) are shown in Table 7. Therefore, 1.0 m/s wind error leads to more 
than 1.2 dB error in 𝛔0 according to various CMOD GMF’s. Since the wind speed error of IFS model 
around 1.0 m/s, SDD in the ANN simulation of 1.3 dB is something to be expected. 

 

 

 
Figure 27: Same as Figure 25 but with the ANNFG model 𝛔0 estimates involves IFS model forecast 
instantaneous surface stress vector (iews and inss) as in Figure 26, surface roughness (fsr), magnitude 
of  friction velocity (zust), instantaneous 10-m wind gust (i10fg) and large-scale precipitation (lsp)  in 
addition to IFS model FG wind vectors. 
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Figure 28: Histograms of ASCAT-B 𝛔0 measurements (black line and grey-shaded area) for the 1-year 
validation period (from 1 August 2021 to 31 July 2022). The corresponding histograms from the ANN 
models that use FG wind vector, and some other atmospheric variables like surface stress vector, 
surface roughness, … etc. Upper panel shows histograms on a linearly scaled y-axis while the lower 
panel shows the histograms on a logarithmically scaled y-axis.   
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Figure 29: The geographical distribution of bias, in dB, between ANNFG model 𝛔0 estimates using IFS 
model FG wind vectors and the measured 𝛔0 by ASCAT-B during the period from 1 August 2021 to 31 
July 2022. Minor differences from Figure 5 are due to slightly different number of collocations. 

 

 
Figure 30: Same as Figure 29 but for the ANN model that was trained using FC instantaneous surface 
stress vector (iews and inss). 
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Figure 31: Same as Figure 30 but for the ANN model that was trained using FC surface roughness 
(fsr), magnitude of  friction velocity (zust), instantaneous 10-m wind gust (i10fg) and large-scale 
precipitation (lsp) on top of those used in the model of Figure 30 (i.e. FG wind vector and FC 
instantaneous surface stress vector). 

 

Based on the above, one can estimate the wind speed error for model FG to be smaller than 1 m/s and 
for the model AN to be smaller than 0.8 m/s (a separate simulation similar to the above was carried out 
by perturbing the wind speed data using random noise with SD of 0.8 m/s resulted in 𝛔0 errors similar 
to those displayed in Table 3 for AN data).   

Table 6: Standard deviation of the difference (SDD) of 𝛔0 model estimates (using IFS model FG wind 
vectors) compared to 𝛔0 measurements from ASCAT-B. 

Model SDD  (dB) 

ANNFG 1.3299 

CMOD-5n 1.4689 

CMOD-6 1.4327 
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Table 7: Standard deviation of the difference (SDD) of 𝛔0 model estimates from perturbed wind speeds 
compared to 𝛔0 estimates from unperturbed wind speeds. 

Model SDD  (dB) 

CMOD-5n 1.226 

CMOD-6 1.226 

CMOD-7 1.319 

 

1.5.2. Comparison Against CMOD5N and CMOD7 GMF’s 

The previous sub-section, in specific Table 6, provided a gross comparison between the ANNFG model 
and various CMOD GMF’s. The ANNFG model is slightly better than the CMOD models evaluated.  

Figure 32 shows a comparison of 𝛔0 as estimated from ANNFG, CMOD-5n and CMOD-7 against 𝛔0 
as measured by ASCAT-B for wind vectors aligned with the scatterometer beams (within 2o) for 
incidence angles of 27o and 59o. In general, the agreement against the ASCAT-B measurements and 
among various models is quite good. However, contrary to CMOD-5n and CMOD-7 𝛔0 estimates, ANN 
𝛔0 estimates saturate below ~ 1.5 m/s. There is quite a support for this behaviour in the ASCAT-B data. 
Furthermore, this behaviour agrees with the available experimental evidence (e.g. [14]) that winds with 
speeds below a certain threshold (around 2.0 m/s) is unable to produce any perturbation to the water 
surface. Therefore, the saturation value of 𝛔0 could be a result of noise. 

The overall errors in the ANN and CMOD-7 estimations of 𝛔0, represented in terms of the standard 
deviation of the difference (SDD) with respect to 𝛔0 as measured by ASCAT-B over the whole training 
year (1 August 2020 to 31 July 2021) are shown in Figure 33. For wind speeds between 3 and 21 m/s, 
SDD from both ANN and CMOD-7 are very close to each other with SDD from ANN is slightly lower 
than that of CMOD-7. For wind speeds below 3 m/s, ANN has lower SDD values while for winds above 
21 m/s CMOD-7 has lower SDD values. Note that the amount of data with wind speeds below 3 m/s is 
rather low and above 21 m/s is even lower. 

 

1.5.3. Limitations of the ANN Models  

Careful examination of the characteristics of the developed ANN model (appreciation to EUMETSAT) 
revealed that there are few shortcomings: 

• The underestimation of high winds. 

• Nonsymmetric behaviour of the observation operator around the 0º/360º edge (lack of 
periodicity). 

• The non-physical undulations especially at extreme incidence angles and wind speeds. 



 Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean 

 

34 EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi 

  
Figure 32: Comparison of 𝛔0 as estimated from ANNFG (Sigma0_NN in the plot), CMOD-5n and 
CMOD-7 with 𝛔0 as measured by ASCAT-B (Sigma0_SCAT in the plot) for wind vectors aligned with 
the scatterometer beams (within 2o) for incidence angles of 27o and 59o. 

 

  
Figure 33: Standard deviation of the difference (SDD) between model 𝛔0 from ANN and CMOD7 
compared to ASCAT-B as functions of wind speed. The PDF (as percentage of the data) of wind speed 
is plotted both on a linear y-axis and a logarithmic y-axis (both on the right-hand side of the plot). 
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Underestimation of High Wind Speeds: 

There are 3 factors that contribute to the underestimation of high wind speed issue: 

1. There are few observations available at wind speeds of 20 m/s and above as can be seen in 
Figure 34. About 0.3% of the data are wind speeds exceeding 20 m/s (see PDF in Figure 33). 
This issue can be alleviated by adding more observations in that regime. Increasing the period 
of the training data to cover multiple years is one option. Using data from both ASCAT-B and 
ASCAT-C for training could help. Another possibility is to use simulated data by using CMOD-
7, for example. In any case, one needs to be careful to respect the distribution of the wind speed. 

2. The IFS model tends to underestimate high winds compared to CMOD-5n or CMOD-7 as can 
be seen in Figure 35. This issue can be alleviated by bias correcting IFS model wind speeds, 
especially at high winds. 

3. The ANN training seems to be not able to reproduce the targets very well towards the edge of 
data domain (we can call this the edge effect). Although more data near the edge could help, it 
is not clear what a good solution to this issue could be. 

 

 

 
Figure 34: The probability density function (PDF) of the wind speed of the training data set. Left-hand 
side panel shows the PDF plotted using a linear y-axis while the right-hand side panel shows the same 
PDF plotted using a logarithmic y-axis. 
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Nonsymmetric Behaviour of the ANN Observation Operator: 

The azimuth angle (with respect to North) and the absolute wind vector (components in east-west and 
north-south directions) were used as two features in training. The basic mathematical fact of periodicity 
(angles between 0° and 360° are repeated beyond 360°) of the azimuthal angle was not introduced to 
the ANN training. This caused some deviation between simulated sigma0 at azimuth angles of 0° and 
360°. This issue can be sorted out by repeating the observations at the edges (0° and 360°) as follows: 

• data with small angles are repeated beyond 360°; 

• data with large angles (below 360 degrees) are repeated below 0°.  

That safeguards the azimuth angle range between 0°-360° and ensures periodicity. 

 

 
Figure 35: Comparison between the mean IFS model 10-m wind (from FG, AN and neutral FC wind) 
against wind speed from ASCAT-B CMOD5.n wind. Global wind covering the period from 1 August 
2020 till 31 July 2021. 

 

Non-Physical Undulations at Extreme Incidence Angles and Wind Speeds: 

This issue seems to be mainly due to the edge effect (incidence angles and wind components). Using 
more data with extreme incidence angles and/or wind speeds for training could help. This issue needs 
further investigation (beyond this study). 
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1.5.4. Comparison Against PARMIO Model 

We obtained the code for the Passive and Active Reference Microwave to Infrared Ocean (PARMIO) 
model [13]. After having it running, several model configurations were changed in order to produce 
results that are comparable to the scatterometer data. Figure 37 shows the variation of 𝛔0 estimated by 
PARMIO model for C-band with respect to the wind speed for various incidence angles. The 
comparison between 𝛔0 estimated by ANNFG and that by PARMIO model for several incidence angles 
is shown in Figure 38. The comparison does not look very good. It seems that having PARMIO model 
working properly needs more work and experience that what we have available for this project. 
Furthermore, the outcome of this comparison will not contribute to the aims of this project. Therefore, 
we decided not to pursue this effort any further. 

 

 
Figure 36: The variation of 𝛔0 estimated by PARMIO model for C-band with respect to the wind speed 
for various incidence angles. 

 

1.6. Conclusions 

Artificial neural networks (ANN) is an attractive tool that can be used to develop numerical models 
based on the data without the need for a deep understanding of the detailed physical laws. Its flexibility 
to include extra features (input variables) with minimal effort is another strength.  

A database consisting of collocations of ASCAT-B and ASCAT-C backscatter coefficients, 𝛔0, and the 
corresponding ECMWF IFS model wind vectors and other related variables covering a period of more 
than 30 months was constructed for training and validation of the developed ANN models. 
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With 𝛔0 as the target, ANN models based on first-guess (FG) surface wind vectors, analysis (AN) 
surface wind vectors and combinations of wind vectors and other variables as features were trained and 
validated. In general, 1-year of ASCAT-B data (together with their model collocations) were reserved 
for training. The rest of the data as well as the whole ASCAT-C data were used for validation. The 1-
year of training data was needed to cover most of the atmospheric conditions. 

ANN models, irrespective of being trained against FG or AN wind, were successful in predicting 𝛔0 
values for the data which they have not seen before. They compare very well with the values retrieved 
using different CMOD GMF’s. ANN models based on wind vector only were not able to produce any 
𝛔0 values below 31.29 dB. This turned out to be the regime of wind speed below ~1.5 m/s, which is 
known to be the wind speed threshold value to produce any water surface gravity-capillary waves. This 
is the scale capable of generating a backscattering radar signal. ANN models based on wind vector and 
sea-state variables could produce 𝛔0 values below 31.29 dB. This is an indication that such backscatter 
values are not produced by wind but other processes like the ocean swell.   

The value of the standard deviation of the difference (SDD) between 𝛔0 estimated by ANN models 
presented earlier and the measured 𝛔0 varied roughly between 1.0 and 1.3 dB. This rather high value is 
due to the accuracy of the IFS model wind. 

 

 
Figure 37: The comparison between ANNFG and PARMIO 𝛔0 estimates for various incidence angles. 
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1.7. Annex to Section 1 

The geographical distribution of the IFS mean surface wind over one year from 1 August 2021 to 31 
July 2022 is shown in Figure 38 for reference. 

 

 
Figure 38: The geographical distribution of the IFS mean surface wind over one year (1 August 2021 
– 31 July 2022). 
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2. The development of the ANN Radar Altimeter Wind Retrieval 
Algorithm (WP 2) 

2.1. Introduction 

Information about the surface wind velocity is very valuable for oceanic and atmospheric applications. 
Apart from its own applications, surface wind velocity is one of the most important driving forces for 
ocean waves and circulation. 

Ocean surface wind generates ripples on the water surface. The stronger the wind is, the steeper the 
ripples are. These ripples diffuse radar, or any electromagnetic, signal that hits such surface. This can 
either enhance (for inclined signal) or reduce (for a nadir signal) the power of the backscattered signal. 
Therefore, there is a strong (direct or inverse) relation between the surface wind speed and the 
backscattered signal. This relation is not exclusive and is not known precisely. Therefore, empirical 
algorithms have been used for this purpose so far (e.g. [2] [19] [21] [22] [31] [36] and [37]). 

A radar altimeter (RA) instrument is a nadir looking active device that is capable of measuring, with 
high precision, the time delay, the power and the shape of the radar pulses after reflection, called 
waveform, from the Earth surface. The time delay is proportional to the altitude of the instrument. The 
power and the shape of the reflected signal contain information on the characteristics of the surface that 
caused the reflection. Over the ocean, the shape of the waveform can be translated into significant wave 
height (SWH), Hs, while its power (the backscatter coefficient, σo) can be translated into ocean surface 
wind (defined here as the wind speed at a height of 10 m above the mean sea surface, U10). Several 
satellites carrying RA instruments were launched during the last few decades. The list includes Jason-
3, Sentinel-3A/B and Sentinel-6A. All those platforms carry at least a Ku-band (or Ka-band) altimeter. 
Most of satellites like Jason and Sentinel-3/6 families carry a second altimeter operating with a different 
radar frequency (usually at C-band). Hereafter, only Ku-band altimeter from Sentinel-6A is considered. 
The approach can be extended to other altimeters and may be generalised as well but that is beyond the 
scope of this work. 

Although there are several satellite-borne instruments capable of measuring higher density wind vector 
fields across rather wide swath (e.g. scatterometers), RA wind speed is still of great value for several 
applications like the correction of the altimeter estimate of mean sea surface height (e.g. the 
electromagnetic bias correction). RA wind speed data are very useful for monitoring the quality of 
model wind speeds. For example, at the European Centre for Medium-Range Weather Forecasts 
(ECMWF) the scatterometer (ambiguous) wind vectors from Metops-B/C (ASCAT-B/C) are 
assimilated in the atmospheric model. Therefore, these sources of data cannot be used for totally 
independent verification of the model winds. 

The history of the empirical models for translating Ku-band RA backscatter into ocean surface wind 
speed goes back to 1980’s. The modified Chelton-Wentz (MCW) algorithm proposed by [36] was one 
of the mostly used in operational retrieval algorithms. It was adopted for several altimeters like the ones 
onboard TOPEX, ERS-1/2 and ENVISAT (before late October 2005). The algorithm, which was 
devised based on a limited number of GEOSAT altimeter-buoy collocations, consists of a look-up table 
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relating U10 to σo. Although this algorithm is generally performing rather satisfactorily, it was always 
felt that there was room for improvement. Some improvement attempts refined the existing one-variable 
algorithm (e.g. [19]) while others tried to introduce a sea-state dependence by including the measured 
Hs as a second variable (e.g. [22]) in retrieval algorithms. The sea-state dependence itself was the subject 
of several research efforts (e.g. [21] and [26]). The results of those studies show ranges of impacts from 
significant to no impact (e.g. [37]). 

Artificial neural networks (ANN) approach was used by [22] to develop their two-variable algorithm. 
Due to its flexibility and the fact that a functional form is not needed, ANN is the chosen approach for 
training in this work.  

 

2.2. Data Used 

Near-real time (NRT) Sentinel-6A conventional Low-Resolution Mode (LRM) altimetry data in BUFR 
format have been retrieved from EUMETSAT and archived at the ECMWF archiving system since 17 
June 2022. Only 1-Hz are considered for this work. From the experience gained from WP1 
(scatterometer observation operator training), one full year of data is needed for proper training without 
introducing biases. So, the data covering the period from 17 June 2022 to 17 June 2023 are reserved for 
ANN training. The remaining data (from 17 June to 11 December 2023) are used for independent 
validation of the trained models. Although the period for the validation is not perfect since it does not 
cover a full year, it should give a good indication on the performance of trained ANN models. 

Sentinel-6A LRM 1-Hz data are grouped in 6-hourly windows centred on 00, 06, 12 and 18 UTC. 
ECMWF model analysis fields of wind velocity at 10-m height are retrieved from the ECMWF 
Meteorological Archival and Retrieval System (MARS) [15] for the same time windows (each model 
field is valid at the middle of its corresponding 6-hour window). Linear interpolation both in space and 
time is used to estimate the model value at each observation. 10-m wind speed, U10, is computed from 
the interpolated wind velocity components. 

The BUFR version of the data does not contain any reliable indicator of the quality of the altimeter data. 

 

2.3. ANN Model Configuration 

An Artificial Neural Network (ANN) model of wind retrieval from radar altimeter measurements like 
backscatter (𝛔0) has been developed using Keras/TensorFlow ([4] and [1]) package. The following 
altimeter measurements were considered:  

• Ku-band  

o backscatter, sigma0;  

o Standard deviation (SD) of sigma0, sigma0sd;  

o significant wave height (SWH), swh;   
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o SD of SWH, swhsd;  

o SD of range, rangesd;  

• C-band 

o  backscatter, csigma0;  

o SD of sigma0, csigma0sd;  

o SWH, cswh;   

o SD of SWH, cswhsd;  

o SD of range, crangesd;  

• Mis-pointing of altimeter from nadir as derived from the trailing edge of the Ku-band 
waveform, also known as offnadir angle, offnadir. 

Sigma0 (Ku-band backscatter) was either considered alone or with one or more of the remaining 
altimeter measured variables as the input variables (“features”). The collocated ECMWF model analysis 
10-m wind speed is the ANN model output “target”.  

ANN training is equivalent to the traditional algorithm fitting (e.g. [2]) but with more flexibility and 
without the need of the precise knowledge regarding the underlying physics nor the functional form of 
the dependence. Once enough existing features-target data are available, the ANN can extract the 
relation (~physical laws) between the targets and the features. In fact, ANN only figures out the 
“pattern” in the data. Therefore, the found “relation” cannot be written in a closed form. However, ANN 
model parameters are produced and stored for later usage for verification and implementation of the 
model. 

The following ANN configuration is used: 

• A Sequential ANN model is used since it is most appropriate for a plain stack of layers where 
each layer has exactly one input tensor and one output tensor  
(https://keras.io/guides/sequential_model/).  

• The input layer is composed of one or more input nodes depending on the used features (one 
node for each feature).  

• Two identical hidden dense layers are implemented. The “dense layer” is a term used to 
describe a layer of nodes with each node receiving input from all the nodes of the previous 
layer.  

• Each layer is composed of 32 nodes. 

• The activation function transforms the input to the output (also called activation) at the node 
level. Linear activation functions are easy to implement and execute. However, to learn 
complex mappings, nonlinear activation functions are required. The activation function used 
for altimeter wind is the rectified linear (ReLU) activation function which is a piecewise linear 
function that will output the input directly if its argument is positive, otherwise, it will output 
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zero. Its derivative is 1 for positive arguments and zero otherwise. These characteristics make 
ReLU the favoured activation function for many types of neural networks. 

• The output layer is composed of a single node representing the 10-m wind speed, U10. 

• The loss function, which is the equivalent term for the cost function in data assimilation, is the 
sum of the (square of) errors to be minimised. ANN model training is achieved through an 
optimisation of the loss function. The loss is represented by the mean square error (MSE), which 
is the average of the squared differences between the predicted and actual values. 

• The optimisation algorithm (optimiser) is selected as the stochastic gradient descent (SGD) 
which is a very efficient optimiser. 

Summary of altimeter wind ANN model configuration is listed in Table 8. 

Several deviations from the above configurations were considered. Networks that include 2 hidden 
layers with 16, 32, 64 and 128 nodes as well as 3 layers with 64 and 32 nodes were tested. The impact 
was marginal and, therefore, for the sake of efficiency and accuracy we decided to use the above 
configuration in terms of layers and nodes. 

 

Table 8: Summary of altimeter wind retrieval ANN model configuration. 

Model Elements Description 

Model type Sequential 

Number of layers 1 input, 1 output and 2 hidden   
(configurations with 3 hidden layers were tested) 

Type of hidden layers Dense 

Number of nodes 32 for each hidden layer  
(other number of nodes were tested) 

Activation function rectified linear (ReLU) 

Input layer Several configurations were tested from a single node 
with sigma0 only up to 10 nodes (one for each 
feature) 

Output layer 1 node for wind	speed	(the	target) 

Loss function Optimisation of mean square error (MSE) 

Optimiser Stochastic gradient descent (SGD) 
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2.4. Data Cleaning 

This step was not necessary for scatterometer ANN models since clean data sets were used as they were 
composed of the data that had passed quality control and were used for data assimilation. The situation 
for the altimeter data is different. The initial trial was to use all the data without much cleaning (only 
obvious cleaning like rejecting missing or nonphysical values). As can be seen in Figure 39, the results 
were very disappointing, especially for low backscatter values which should result in high winds. In 
fact, running mean along the measured backs scatter values (after sorting ascendingly) would give very 
close result. The reason is that there is a limited number of observations corresponding to high winds. 
The erroneous data deteriorate the signal-to-noise ratio and confuse the training process. 

 

 
Figure 39: Sentinel-6A Altimeter 𝛔0 versus model 10-m wind speed from the ECMWF model (green 
dots) official Sentinel-6A product (red dots), an ANN model that uses all the data (blue dots). The 
running average of ECMWF model wind speed along Sigma0 is also shown (cyan dots). 

 

Unfortunately, we could not find reliable quality flags in the BUFR version of Sentinel-6A data to make 
use for the rejection of bad data. Therefore, we had to develop a data cleaning procedure to improve the 
signal-to-noise ration of the data especially at high winds (low backscatter). 

The following data cleaning procedure produced satisfactory results: 

1. Remove records with missing, zero or unphysical values of vital data (Specifically: Sigma0 and 
its SD, SWH and its SD, SD of the range and the offnadir angle) 
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2. Remove the observation when it shows signs of noise: 

a. SD of Ku-band SWH > 1.0 m 

b. SD of Ku-band Sigma0 > 1.5 dB 

c. SD of Ku-band range > 0.12 m 

d. Noise along the track. 

3. Distribute the data over a grid of altimeter SWH – model wind speed which are the most 
influential variables for wind speed retrieval. 

4. Compute the mean (M) and the standard deviation (SD) of Ku-band Sigma0. 

5. Discard all records with Sigma0 values outside the range between  M - 𝜶 SD and M + 𝜶 SD   
(several values between 1 and 3 were tested for 𝜶 and finally the value of 2.2 was selected).  

6. Repeat steps 3-6 with the data accepted so far. 20 iterations are used but in general ~10-12 
iterations are usually enough as can be seen in Figure 40. 

Although this procedure was not fully optimised, we did not find that there is a need for fine tuning. 

 

 
Figure 40: Percentage of Sentinel-6A data that pass filtering. 

 

The impact of data cleaning can be clearly seen in Figure 41 which shows the standard deviation of the 
difference (SDD), which is a proxy of the random error, of official Sentinel-6A altimeter surface wind 
speed compared to IFS model during the period from 17 June to 11 December 2023. The upper panel 
of Figure 41 is plotted using the filtered data while the lower panel is plotted using the unfiltered data. 
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The filtered data (upper panel of Figure 41) show smaller areas with SDD values exceeding 1.6 m/s 
(yellow, orange, red) and larger areas with SDD values below 0.9 m/s (shades of blue) compared to the 
unfiltered data case displayed in the lower panel of Figure 41.  

 

2.5. Results 

2.5.1. ANN Model Utilising Sentinel-6A Sigma0 and SWH 

An ANN model was trained using Sentinel-6A backscatter (Sigma0) and significant wave height 
(SWH) as input features and ECMWF model 10-m wind speed analysis over the period of training (one 
year running from 17 June 2022 till 17 June 2023). This choice was made to reflect the fact that both 
Sigma0 and SWH were used to fit the model used for wind speed computations in the official Sentinel-
6A product. 

Figure 42 shows wind speed comparison between Sentinel-6A altimeter and ECMWF model analysis 
over the whole global ocean during the period from 17 June to 11 December 2023 (independent 
validation period). The upper panel of Figure 42 is for Sentinel-6A wind data from the ANN model 
trained using Sentinel-6A Sigma0 and SWH for the period from 17 June 2022 to 17 June 2023 while 
the lower panel is for the official Sentinel-6A product (which was derived using Sigma0 and SWH). 
Only filtered data are used for both plots in Figure 42. The improved agreement between Sentinel-6A 
ANN data and the ECMWF model can be visually observed from the pattern of the data clouds in both 
plots of Figure 42. While the centre of gravity of the ANN cloud represented by the circles in the upper 
panel is aligned across the symmetric (45° line) line, the centre of gravity of the official product cloud 
represented by the circles in the lower panel shows visible deviations from the symmetric line. 

Quantitatively, when validated against ECMWF model wind, the ANN model shows slightly lower 
bias, standard deviation of difference (SDD), which is a proxy to the random error, and scaled (i.e. 
multiplied by 1.4826) median absolute deviation (MAD), which is another proxy of the random error, 
and slightly higher correlation coefficient compared to the same statistics from the official wind 
Sentinel-6A product (as can be seen in the offset of the two plots in Figure 42). It is worth mentioning 
that only filtered data are used in both plots of Figure 42. Although the filtering procedure was able to 
discard a large number of outliers, some isolated outliers as well as a cloud of a small number (few 
hundreds out of 4 million) of outliers for model wind speeds of less than 8 m/s still exist.  

Maps of the SDD between Sentinel-6A and the ECWMF model winds are shown in Figure 43. The 
upper panel shows the wind SDD for the ANN model trained using Sentinel-6A Sigma0 and SWH 
while the lower panel shows the SDD map for the official Sentinel-6A data. Although the same spatial 
distribution features can be seen in both maps, the intensity of the yellow-orange-red is higher, i.e. 
larger SDD values, in the lower panel (official product). At the same time, the shades of blue are 
stronger in the ANN map (upper panel) which indicates lower SDD values. 
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Figure 41: Standard deviation of the difference (SDD), in m/s, of official Sentinel-6A altimeter wind 
speed compared to IFS model during the period from 17 June to 11 December 2023. The upper panel 
is from filtered data while the lower panel is from the unfiltered data. 
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Figure 42: Wind speed comparison between Sentinel-6A altimeter and ECMWF model analysis over 
the global ocean during the period from 17 June to 11 December 2023. The upper panel is for Sentinel-
6A wind from the ANN model with Sigma0 and SWH while the lower panel is for the official Sentinel-
6A product (which was derived from Sigma0 and SWH). Only filtered data are used for both plots. ANN 
model training period is between 17 June 2022 and 17 June 2023. Number of collocations in each 0.5 
m/s X 0.5 m/s 2-D bin is coloured-coded as in the colour bar in the legend. The crosses are the means 
of all bins with given x-axis values (model) while the circles are the means of all bins with given y-axis 
value (Sentinel-6A). 
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2.5.2. ANN Model Utilising Sentinel-6A Sigma0 Only 

Another ANN model was trained using only Sentinel-6A Sigma0. Other details are the same as 
described earlier. Figure 44 shows the wind speed comparison between Sentinel-6A altimeter as 
computed using the Sigma0 only ANN model and ECMWF model analysis over the whole global ocean 
during the period from 17 June to 11 December 2023 (independent validation period). Only filtered 
data were used. Comparing Figure 44 to the upper panel of Figure 42 (the ANN model trained using 
Sentinel-6A Sigma0 and SWH), one can recognise a slight degradation as expected. SDD, scaled MAD 
and correlation coefficient changed from 0.916 m/s, 0.869 m/s and 0.966, respectively, in the case of 
Sigma0-SWH ANN model to 0.953 m/s, 0.873 m/s and 0.964, respectively, in the case of Sigma only 
ANN model. The latter set of values are very close to the corresponding values that emerge from the 
official Sentinel-6A wind product (0.948 m/s, 0.896 m/s and 0.964, respectively) as can be seen in the 
lower panel of Figure 42. 

The map of the SDD between the ANN model that utilises Sentinel-6A Sigma0 only and the ECWMF 
model winds is shown in Figure 45. Comparing this map to that in the upper panel of Figure 43 which 
correspond to wind SDD for the ANN model trained using Sentinel-6A Sigma0 and SWH, one can 
notice that the same spatial distribution features are seen in both maps. However, the intensity of the 
yellow-orange-red is higher, i.e. larger SDD values, in Figure 45 (Sigma0 only model), which is 
expected given the better performance of the model utilising the additional SWH variable (upper panel 
of Figure 43). The surprise is that the blueish colours in the Sigma0 only SDD map (Figure 45) tend to 
be larger and more intense than those in the Sigma0-SWH map (Figure 43). The differences, however, 
are not large. 

Maps of the Sentinel-6A wind bias defined as the mean difference between Sentinel-6A wind and the 
ECMWF model wind are shown in Figure 46. The upper panel of Figure 46 shows the wind bias of the 
ANN model trained using Sentinel-6A Sigma0 only while the lower panel shows the bias in the case of 
the ANN model trained using Sigma0-SWH pair. Both bias plots show overwhelmingly positive biases. 
The Sigma0 only model bias (upper panel) tends to have large areas with negative wind biases in the 
Northern Hemisphere but very little negative biases in the extra-tropical Southern Hemisphere. On the 
other hand, the Sigma0-SWH model (lower panel) shows fewer negative areas, but they tend to be 
balanced between the Northern and Southern Hemispheres. This feature is possible due to the impact 
of swell on the altimeter wind retrieval.  
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Figure 43: SDD of filtered Sentinel-6A altimeter wind speed, in m/s, compared to ECMWF model 
during the period from 17 June to 11 December 2023. The upper panel is from Sigma0 and SWH ANN 
model while the lower panel is from the official Sentinel-6A product. 
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Figure 44: Wind speed comparison between ANN model that uses Sigma0 only from Sentinel-6A 
altimeter and ECMWF model analysis over the global ocean during the period from 17 June to 11 
December 2023. Only filtered data are used. ANN model training period is between 17 June 2022 and 
17 June 2023. See caption of Figure 42 for colour-coding, crosses and circles. 

 

 
Figure 45: SDD of filtered Sentinel-6A altimeter wind speed, in m/s, computed using the Sigma0 only 
ANN model compared to ECMWF model during the period from 17 June to 11 December 2023. 

0 5 10 15 20 25 30
Model Wind Speed (m/s)

0

5

10

15

20

25

30

S6
A 

AN
N

 W
in

d 
Sp

ee
d 

(m
/s

)

Reg. Constant
Reg. Coefficient
Symmetric Slope
Correlation Coef
1.4826 * MAD
St Dev of Diff.
Bias (S6A-Mod)
Mean S6A
Mean Model
Entries

0.714
0.938
1.016
0.964
0.873
0.953
0.199
8.551
8.352

4120089

sigma0 - Jun.-Dec. 2023 (Global)

1

5

10

50

100

500

1000

10000

100000

0°N

20°S

40°S

60°S

80°S

80°N

20°N

40°N

60°N

80°N

0°N

20°S

40°S

60°S

80°S

80°N

20°N

40°N

60°N

80°N

30°E 60°E 90°E 120°E 150°E 180°E 150°W 120°W 90°W 60°W 30°W

30°E 60°E 90°E 120°E 150°E 180°E 150°W 120°W 90°W 60°W 30°W

For period between  12:40:59UTC  on  17.06.2023    and   95:95:90UTC  on  11.12.2023
10-m Wind Speed SDD  (Sat-Mod)     [m/s]
Sentinel-6A  -  Using altimeter sigma

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1



Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean  

 

EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi  53 

 

2.5.3. ANN Model Utilising Sentinel-6A Sigma0, SWH and Altimeter Mis-pointing  

Minor deviation of altimeters from nadir is usually tolerable for altimeter measurements. However, that 
might come at a price of slight degradation. Another model was trained that utilises, in addition to 
Sigma0 and SWH, the altimeter mis-pointing expressed in terms of the squared of off-nadir angle 
derived from the trailing edge of the altimeter waveform (will be referred to as Offnadir).  

Figure 47 shows the wind speed comparison between Sentinel-6A altimeter as computed using the 
Sigma0-SWH-Offnadir ANN model and ECMWF model analysis over the whole global ocean during 
the period from 17 June to 11 December 2023 (independent validation period). Only filtered data were 
used. Comparing Figure 47 to the upper panel of Figure 42 (the ANN model trained using Sentinel-6A 
Sigma0 and SWH), one can recognise quite an improvement. SDD, scaled MAD and correlation 
coefficient changed from 0.916 m/s, 0.869 m/s and 0.966, respectively, in the case of Sigma0-SWH 
ANN model (upper panel of Figure 42) to 0.861 m/s, 0.796 m/s and 0.970, respectively, in the case of 
Sigma-SWH-Offnadir ANN model (Figure 47). Including the off-nadir angle introduced few (10’s of) 
very low wind cases in more agreement with the model.  

The map of the SDD between the ANN model that utilises Sentinel-6A Sigma0, SWH and Offnadir and 
the ECWMF model winds is shown in Figure 48. Comparing this map to that in the upper panel of 
Figure 43 which correspond to wind SDD for the ANN model trained using Sentinel-6A Sigma0 and 
SWH, one can notice that the same spatial distribution features are seen in both maps. However, the 
areas with low SDD values (shades of blue) are getting larger and darker when the off-nadir angle was 
introduced (Figure 43). The size and intensity of the yellow-orange-red (high SDD values) are getting 
smaller due to the inclusion of the off-nadir angle. 

Maps of the wind speed bias, with respect to the ECMWF model wind, of the ANN model that utilises 
Sentinel-6A Sigma0, SWH and Offnadir is shown in Figure 49. Comparing this map to that from the 
lower panel of Figure 46, which shows the wind bias of the ANN model trained using Sentinel-6A 
Sigma0 and SWH pair, one can notice that the overall bias has been decreased with more white areas, 
indication bias close to zero. 
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Figure 46: Bias of filtered Sentinel-6A altimeter wind speed, in m/s, compared to IFS model during the 
period from 17 June to 11 December 2023. The upper panel is from Sigma0 only ANN model while the 
lower panel is from Sigma0-SWH ANN model. 
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Figure 47: Same as Figure 44 but with the ANN model utilising Sigma0, SWH and off-nadir angle from 
Sentinel-6A altimeter. 

 

 

 
Figure 48: SDD of filtered Sentinel-6A altimeter wind speed, in m/s, computed using the Sigma0, SWH 
and off-nadir angle ANN model compared to ECMWF model during the period from 17 June to 11 
December 2023. 
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Figure 49: Bias of filtered Sentinel-6A altimeter wind speed, in m/s, computed using the Sigma0, SWH 
and off-nadir angle ANN model compared to ECMWF model during the period from 17 June to 11 
December 2023. 

 

2.6. Discussion 

2.6.1. Positive Impact of Including Altimeter Mis-pointing  

The importance of including the altimeter mis-pointing expressed in terms of the squared of off-nadir 
angle derived from the trailing edge of the altimeter waveform (off-nadir angle) to Sigma0 and SWH 
in the ANN model was demonstrated in Section 2.5.3. To further test the impact of including the off-
nadir angle, an ANN model trained using only Sigma0 and the off-nadir angle (i.e. SWH is not 
included). The comparison of the results of this model against the ECMWF model wind is shown in 
Figure 50 for the whole global ocean during the period from 17 June to 11 December 2023 (independent 
validation period). Only filtered data were used. Comparing Figure 50 (Sigma0 and Offnadir without 
SWH) to Figure 47 (Sigma0, SWH and Offnadir), it is clear that there is a degradation for not including 
SWH. On the other hand, comparing Figure 50 (Sigma0 and Offnadir) to the upper panel of Figure 42 
(Sigma0 and SWH), one can notice that utilising Sigma0 and the off-nadir angle produces better results 
than utilising Sigma0 and SWH. A possible explanation is that the off-nadir angle reflects the mis-
pointing of the altimeter as well as the existence of the long swell (or other long ocean waves) which 
causes a tilt of the water surface. 

Including the off-nadir angle also introduces few (10’s of) very low wind cases in more agreement with 
the model. 
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Figure 50: Same as Figure 44 but with the ANN model utilising Sigma0 and off-nadir angle from 
Sentinel-6A altimeter. 

 

 

2.6.2. Impact of Including C-Band Sigma0  

The intensity of backscatter depends on the wavelength of the radar signal. In a sense, Ku-band (~2 
cm wavelength) and C-band (~ 5 cm) altimeters do not see the same details of the sea-surface 
roughness. Training an ANN model that utilises the backscatter from both bands (Sigma0 and 
Csigma0) was tried.  

The comparison of the results of the ANN model that utilises backscatter from both bands against the 
ECMWF model wind is shown in Figure 51 for the whole global ocean during the period from 17 
June to 11 December 2023 (independent validation period). Only filtered data were used. Comparing 
Figure 51 (Sigma0 and Csigma0) to the upper panel of Figure 42 (Sigma0 and SWH), one can notice 
that the former model (utilising both backscatters) produces comparable results to those produced by 
utilising Sigma0 and SWH. Including the C-band backscatter introduces few (10’s of) very low wind 
cases in more agreement with the model. 

Including SWH to both (Ku- and C-band) backscatter values, improves the agreement with the 
ECMWF model winds as can be seen in Figure 52.  

0 5 10 15 20 25 30
Model Wind Speed (m/s)

0

5

10

15

20

25

30

S6
A 

AN
N

 W
in

d 
Sp

ee
d 

(m
/s

)

Reg. Constant
Reg. Coefficient
Symmetric Slope
Correlation Coef
1.4826 * MAD
St Dev of Diff.
Bias (S6A-Mod)
Mean S6A
Mean Model
Entries

0.640
0.941
1.011
0.967
0.804
0.908
0.149
8.501
8.352

4120089

sigma0, offnadir  - Jun.-Dec. 2023 (Global)

1

5

10

50

100

500

1000

10000

100000



 Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean 

 

58 EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi 

 
Figure 51: Same as Figure 44 but with the ANN model utilising both Ku-band and C-band Sigma0 
values from Sentinel-6A altimeter. 

 

 
Figure 52: Same as Figure 44 but with the ANN model utilising SWH in addition to both Ku-band and 
C-band Sigma0 values from Sentinel-6A altimeter. 
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2.6.3. Impact of Including 10 Altimeter Variables  

The impact of including many variables that are measured by Sentinel-6A altimeter was also tested. 
The following altimeter measurements were included:  

• Ku-band  

o backscatter, sigma0;  

o significant wave height (SWH), swh;   

o standard deviation (SD) of SWH, swhsd;  

o SD of sigma0, sigma0sd;  

o SD of range, rangesd;  

• C-band 

o  backscatter, csigma0;  

o SD of SWH, cswhsd;  

o SD of sigma0, csigma0sd; 

o SD of range, crangesd;  

• Mis-pointing of altimeter from nadir as derived from the trailing edge of the Ku-band 
waveform, also known as offnadir angle, offnadir. 

The comparison of this model against ECMWF model wind is shown in Figure 53 for the whole global 
ocean during the period from 17 June to 11 December 2023 (independent validation period). Only 
filtered data were used. The agreement with ECMWF model wind is the best with low bias (0.148 m/s), 
SDD (0.852 m/s), and scaled MAD (0.793 m/s) and high correlation coefficient (0.971). However, the 
improvement compared to the case of Sigma0-SWH-Offnadir ANN model is marginal. 

 

2.6.4. Impact of Various Combinations of Altimeter Variables  

Several combinations of the altimeter variables mentioned earlier were used for training. The results 
from each case were compared against the ECMWF model winds over the whole global ocean during 
the period from 17 June to 11 December 2023 (independent validation period). Only filtered data were 
used. The correlation coefficients from each ANN model are displayed in the bar chart shown in Figure 
54. The standard deviation of the difference (SDD) and the reduction in SDD are shown in Figure 55and 
Figure 56, respectively. Ku-band backscatter (sigma0) is the basic variable and retained in all ANN 
models. Including significant wave height (swh), the C-band backscatter (csigma0) and the mis-pointing 
(offnadir) separately or together, introduces a positive jump in statistics. The combination of Ku-band 
sigma0, SWH and C-band sigma0 introduced a significant positive impact. Slightly better positive 
impact comes from using the combination of Ku-band sigma0, SWH and off-nadir angle. Including 
SWH from both bands does not introduce any benefit. Using all possible variables, produces the best 
results. 
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Figure 53: Same as Figure 44 but with the ANN model utilising SWH in addition to both Ku-band and 
C-band Sigma0 values from Sentinel-6A altimeter. 

 
Figure 54: The correlation coefficients of the ANN models utilising different combinations of Sentinel-
6A altimeter measurements for filtered Sentinel-6A altimeter data over the whole global ocean during 
the period from 17 June to 11 December 2023. 
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Figure 55: Same as Figure 54 but for the standard deviation of the difference (SDD). 

 
Figure 56: Same as Figure 54 but for the reduction of SDD in percent compared to the model that 
utilises Ku-band Sigma0 only. 



 Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean 

 

62 EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi 

 

2.7. Summary and Conclusions 

As stated in Section 1.6, artificial neural networks (ANN) is an attractive tool that can be used to develop 
numerical models based on the data without the need for a deep understanding of the detailed physical 
laws nor the functional dependence. Its flexibility to include extra features (input variables) with 
minimal effort is another strength. This has been proved for the altimeter wind retrieval as well. 

Data cleaning is very essential for the success of ANN. A procedure to clean altimeter data was 
proposed. Although there was effort to optimise the procedure, its results are very satisfactory. 

The 1-Hz Sentinel-6A conventional Low-Resolution Mode (LRM) altimetry measurements, including 
the backscatter (Sigma0), significant wave height (SWH) and the standard deviation of the their and the 
range 20-Hz (within each 1 Hz) from both altimeter channels (Ku- and C-bands) and the altimeter 
square of off-nadir angle over a period of about 18 months (17 June 2022 to 11 December 2023) were 
collocated with the ECMWF model 10-m wind analysis. The first year of collocations were used for 
ANN model training. The remaining 6 month of collocations were used for the independent validation 
of the models. 

Several ANN models were trained. Additional Combinations of Sentinel-6A altimeter measurements 
were utilised for model training with Ku-band backscatter maintained in all combinations. The inclusion 
of variables like SWH and off-nadir angle improves the skill of the trained ANN models. The inclusion 
of backscatter from both channels (Ku- and C-bands) shows improvements as well. 

Utilisation of Ku-band backscatter and SWH together with the square of off-nadir angle is 
recommended for use in altimeter wind retrievals. The combination of backscatter from both channels 
(Ku- and C-bands) and Ku-band SWH is the second-best combination. 
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3. Development of the Tangent Linear and the Adjoint Models (WP 3) 

3.1. Introduction 

Neglecting model error, and absorbing the model integration and interpolation to the observation time 
and location into the observation operator, 𝐻, the 4D-Var cost function, 𝐽, can be written as,     

𝐽(𝐱) = 	
1
2
(𝐱 − 𝐱𝐛)"𝐁#𝟏(𝐱 − 𝐱𝐛) +	

1
2
(𝐲 − 𝐻(x))𝐓𝐑#𝟏(𝐲 − 𝐻(𝐱)) 

where 𝐱 is the estimate of the atmospheric state, 𝐱𝐛 is a short-range forecast valid at the start of the 
assimilation window, 𝐲 is the vector of observations and (𝐁 and 𝐑) are the short-range forecast error 
and observation error covariance matrices, respectively. In order to minimise the 4D-Var cost function, 
we also need both the tangent-linear and adjoint of the observation operator 𝐻, which can be denoted 
as 𝐇 and 𝐇𝐓, respectively. The tangent-linear represents the derivative of the observed values with 
respect to the state vector elements. For example, in this work it computes the derivative of simulated 
sigma0 values with respect to the 10 m neutral equivalent winds. The adjoint,  𝐇𝐓,	arises because we 
need to compute the derivative of the cost function with respect to the state vector, 𝐱,   

𝐽′(𝐱) = 	𝐁#𝟏(𝐱 − 𝐱𝐛) −	𝐇𝐓𝐑#𝟏(𝐲 − 𝐻(𝐱)) 

during the 4D-Var minimisation, noting the use of 𝐇𝐓matrix multiplied by a vector, 𝐑#𝟏(𝐲 − 𝐻(𝐱)). 
The tangent-linear code is also needed during the minimisation because ECMWF uses the incremental 
formulation of 4D-Var ([6]).   

 

3.2. Implementation 

The tangent-linear is usually computed first by manually differentiating each line of the observation 
operator code, 𝐻. This tangent-linear code is then transposed manually line-by-line, to form the adjoint 
version of the code. Although the rules for adjoint coding are relatively straightforward given sufficient 
experience, the resulting code is often not intuitive and it can be extremely difficult to debug.  

The use of an ANN approach can simplify the forward modelling and the subsequent tangent-linear and 
adjoint coding steps considerably. This is because the same general structure of an ANN can be applied 
to a diverse set of problems. Fundamentally, the ANN is defined by the chosen architecture, the weight 
matrices,	𝐖𝐢,	and the bias vectors,	𝐛𝐢.	Recently, [23] demonstrated the flexibility of ANNs in the context 
of data assimilation by showing how forward models, tangent-linear and adjoint models can be built 
with ANN to emulate a gravity wave drag scheme. As part of that work, they also produced useful 
FORTRAN90 code that was effectively a translation of an ANN python code produced with 
Keras/TensorFlow to the F90 code required in the ECMWF 4D-Var. We deliberately selected the same 
hyperbolic tan (tanh) activation function as used by [23] when constructing the sigma0 forward 
operator. This meant we were able to reuse much of their gravity wave Fortran90 code by simply 
selecting the appropriate weight matrices (𝐖𝐢) and bias vectors (𝐛𝐢) estimated during the training of the 
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sigma0 ANN (Section 1). This simplified the work on the sigma0 tangent-linear and adjoint 
considerably. 

The implementation of the ANN based assimilation code was tested in a series of short technical 
experiments designed to demonstrate that the 4D-Var system converged correctly when the new 
scatterometer sigma0 data was being assimilated. One example is shown in Figure 57, where the spatial 
variation of the mean and standard deviation of both the sigma0 (o-b) and (o-a) departure statistics are 
presented. These statistics are computed over 30 days, between March 1-30, 2022. As expected, there 
is a clear reduction in both the standard deviation and mean of the departures as a result of assimilating 
the sigma0 data in the 4D-Var. The globally averaged mean (o-b) value is only 0.02 dB but this masks 
significant spatial variations. The mean absolute departure is close to 1 dB. The globally averaged mean 
absolute departure of the (o-a) is reduced to 0.7 dB. The globally averaged standard deviation of the (o-
b) departures shown here is 1.6 dB, and the standard deviation of the (o-a) departures is reduced to 1.2 
dB. We note that 1.6 dB for the (o-b) statistics is larger than obtained in either the ANN training or 
validation (Section 1). However, as part of the testing phase we found that this can be reduced to around 
1.3 dB by replicating some of the quality control (QC) checks performed in the ASCAT Level 2 wind 
assimilation system because checks are automatically incorporated in the training and validation 
datasets. These QC checks include screening based on the following information provided with the 
observation: 

• The land fraction flag 
• The sigma0 quality flag 
• The “Kp” quality flag  

 

 
Figure 57: The mean (upper) and standard deviation (lower) of the ASCAT 𝛔0 departure statistics for 
a) observation minus background; and b) observation minus analysis. The statistics are computed over 
1 month, for March 1-30, 2022. 

a) b)
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4. Assimilation Experiments (WP 4) 

4.1. Experimental Set-up 

The main experiments reported here are run for the period January 1 to April 30, 2022. A second period 
from April 1 to October 31, 2023 has also been tested, but these results will be reported in the context 
of tropical cyclone impact in Section 4.7. All experiments use ECMWF’s IFS cycle 48R1 which is 
currently used operationally. We use the 4D-Var assimilation approach with a 12-hour assimilation 
window, and the forecast model used in the assimilation experiments is run at Tco399 which 
corresponds to a spatial grid of 29 km. In general, all observation types used operationally for this period 
are assimilated with the exceptions outlined below.  

The key experiments for this period are the following: 

• CTL: The control experiment, assimilating Metop-B and C ASCAT L2 wind retrieval 
information produced with CMOD5.n at ECMWF during the assimilation experiments as part 
of the pre-processing step. 

• No SCATT: As CTL, but not assimilating the ASCAT level 2 wind retrievals. 

• KNMI-R1: Assimilating the KNMI “selected” wind retrievals, produced with CMOD7 and 
their 2D-Var ambiguity removal approach. The “selected” KNMI wind vector is the one closest 
to the 2D-Var analysis. 

• SIG0: Assimilating Metop-B and C sigma0 values using the ANN approach, that computes 
sigma0 as a function of the neutral equivalent 10 m wind vector (plus geometry: angles of 
incidence and azimuth). 

Note that we only assimilate scatterometer wind information from Metop-B and Metop-C satellites in 
these experiments.   

Both the scatterometer wind vectors and sigma0 values are assimilated on a 50 km by 50 km spatial 
grid, after measurement thinning. The retrieved winds used in the CTL and KNMI-R1 experiments are 
assigned an uncertainty of 2.25 ms#' for both the zonal and meridional (u,v) components. The KNMI-
R1 winds are assimilated as neutral equivalent winds rather than “stress equivalent” winds ([12]). This 
is not optimal, but the Met Office currently make the same assumption in their NWP system. The 
ambiguity removal is performed and updated during the 4D-Var trajectory calculations, by selecting the 
scatterometer wind solution closest to the latest estimate of the atmospheric state. In the KNMI-R1 
experiment this step is effectively removed because the selected solution is duplicated in the observation 
database, meaning that only the KNMI selected option is available for assimilation.  

The SIG0 experiment is based on the observation operator which takes the neutral equivalent 10 m wind 
vector as input (plus geometry). For the observation uncertainty, we use the largest value of either 1.6 
dB or 10% of the observed value. Spatial error correlations and error correlations between the beams 
are neglected (assumed equal to 0). Some sensitivity experiments changing the uncertainty values have 
been performed, but this appears to be a reasonable approach for these initial experiments. Observation 
values less than -30 dB are “blocklisted”, meaning they are not active in the assimilation experiments.   
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4.2. Verification of short-range forecasts 

A useful method for testing the impact of observations on short-range (up to 12 hours) forecasts is to 
look at the changes in the observation minus background (o-b) departure statistics. In this section, we 
provide a summary of the results for a range of surface and upper-air observing systems. For example, 
Figure 58 shows the percentage change in the standard deviation of the (o-b) departures when compared 
to the CTL experiment for a set of surface observations, including wave heights, winds, surface pressure 
and humidity. Values below 100% indicate that the configuration is an improvement relative to the 
control (CTL) and conversely values above 100% indicate that the short-range forecasts are degraded. 
These statistics are averaged globally. Perhaps the most striking feature is the improved fit (red line: a 
reduction of > 2.5%) to the ASCAT wind retrievals when using the KNMI-R1 CMOD7 information 
rather than the CMOD5.n winds used in the CTL experiment. This indicates that the CMOD7 wind 
retrievals have lower noise than the CMOD5.n wind retrievals used in the CTL experiment. There is 
also a small improvement in the SARAL and Jason-3 significant wave height (SWH) statistics when 
using KNMI wind retrievals. We note that the SWH information provided by wave forecasting system 
is sensitive to the surface wind information provided by the atmospheric forecasts integrated over time. 

 

 
Figure 58: The percentage reduction in the standard deviation of the (o-b) departures for a selection 
of surface-based observations, when compared with the CTL experiment. Values less than 100% 
indicate that the departure statistics are improved when compared with CTL. The error bars indicate 
the 95% confidence interval. These results are globally averaged and cover the period January 1 to 
April 29, 2022. 
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There is a clear degradation in the SARAL and Jason-3 SWH departure statistics in the No SCATT 
experiment (green line), meaning that the scatterometer measurements are improving the forecast fit to 
these observations. There is also a small degradation in buoy and ship winds, but this is not statistically 
significant over this period. The use of sigma0 (black line) produces a 0.7% improvement in the SWH 
statistics relative to the CTL and, consequently, a larger improvement relative to No SCATT. The SWH 
improvements in the SIG0 experiment are largest in the tropics, where there is a 2% reduction in the (o-
b) standard deviation relative to CTL. These SWH results are the clearest example of sigma0 
assimilation being potentially better than assimilating wind retrieval information in the short-range 
departure statistics, but this picture is not uniform across all observation types. For example, the drifting 
buoy statistics shown in Figure 58 are slightly degraded for SIG0. In addition, Figure 59 shows the 
departure statistics for the SATOB wind retrievals. The assimilation of sigma0 degrades the departures 
at 850 hPa and 1000 hPa. Similarly, it appears that scatterometer measurements in the CTL experiment 
are also degrading the fit to SATOB wind information at these levels (green line: the departures are 
improved at 850 hPa and 1000 hPa when the scatterometer data is removed). The apparent inconsistency 
of the scatterometer and SATOB wind information in the ECMWF system has been an issue for some 
time. In contrast, the KNMI winds produce an improvement below 700 hPa compared to the CTL, but 
are similar to no SCATT at 850 hPa and 1000 hPa.  

 

 

 
Figure 59: Globally averaged SATOB wind (o-b) departure statistics over the period from January 1 
to April 29, 2022, where CTL is 100%. 
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We do not see much impact on the radiosonde and aircraft wind departure statistics, but Figure 60 shows 
the globally averaged Aeolus Mie wind departure statistics, where there is a clear degradation below 
700 hPa when the scatterometer data is removed, compared to the other experiments. The SIG0 is 
slightly degraded relative to the CTL, and the KNMI winds are slightly improved, but the statistical 
significance in both cases is borderline. The impact on Aeolus Rayleigh clear wind departures is neutral.  

 

 

 
Figure 60: Globally averaged Aeolus Mie wind (o-b) departure statistics over the period from January 
1 to April 29, 2022, where CTL is 100%. 

 

Radiances can provide wind information through the 4D-Var tracer effect (e.g. [32]), whereby the wind 
field is adjusted within the 4D-Var assimilation window, in order to move humidity features and fit the 
observed radiances more closely. Conversely wind information can improve radiance departure 
statistics by improving the locations of humidity features within the 4D-Var window. For example, we 
see significant degradations in the departure statistics for all microwave imagers when scatterometers 
are removed, as illustrated in Figure 61. However, the impact of scatterometer information in the 
KNMI-R1, SIG0 and CTL experiments is broadly similar, and there is no indication that the sigma0 
approach is losing information compared to the level 2 retrieval assimilation in these results. 
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4.2.1. Summary 

Only a selection of departure statistics results has been presented here, and there are undoubtably some 
variations in the results across the different observing systems. However, overall the performance of 
the level 2 assimilation and sigma0 assimilation is broadly similar for short-range forecasts. In general, 
as expected, the largest degradations are seen in the No SCATT experiment, but the scatterometer 
performance in the CTL, SIG0 and KNMI-R1 experiments is similar.  

 

 

 
Figure 61: The (o-b) departure statistics for the microwave imagers a) AMSR2, b) GMI, c) MWRI and 
d) SSMIS. These results are globally averaged and span the period from January 1 to April 29, 2022. 

 

 

a) b)

c) d)
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4.3. Verification against operational and own analyses 

Verifying against operational analyses can overestimate the impact of datasets already used in 
operations, which in this case are the CMOD5.n wind retrievals used in the CTL experiment. On the 
other hand, verifying forecasts against “own analyses” generated during each experiment can also be 
problematic at short-range because they often penalise increments introduced by the new observations. 
In fact, verifying against operational and own analyses can provide contradictory results at short-range, 
and this is why we also look at the (o-b) departure statistics alongside the verification against analyses 
for short-range forecasts.  

Figure 62 and Figure 63 show the change in RMS vector wind forecast errors on pressure levels between 
1000 hPa and 200 hPa, verified against own and operational analyses, respectively. The error bars give 
the 95% confidence interval. The lines are below 0 in these figures indicate that the configuration being 
tested is better than the CTL experiment. Therefore, Figure 62 appears to show that removing the 
scatterometer measurements produces a large reduction in the RMS of the vector wind forecast errors 
(green line), meaning that the scatterometer information in the CTL experiment is degrading the vector 
wind forecasts. For example, at 1000 hPa in the tropics the RMS is reduced by almost 15% at 12 hours 
in the No SCATT experiment. However, in Figure 63 the corresponding RMS error is increased by 
almost 6% meaning an improved forecast impact, clearly illustrating the difficulties in verifying the 
impact of scatterometers at short-range.  

Given the observation departure statistics shown above we can be fairly confident that scatterometers 
are not degrading the short-range wind forecasts in the CTL experiment, so we give more weight to the 
verification against operations here. The impact of KNMI retrievals is slightly better than either the 
CTL and SIG0 experiments at short-range in Figure 63. These improvements with KNMI data are 
consistent with the lower retrieval noise produced with CMOD7, reducing the size of the increments. 
In the medium-range, KNMI statistics also tend to be slightly better but the differences are not 
statistically significant beyond day 1.  

Figure 64 shows the change in the fraction change RMS forecast errors relative to the CTL experiment 
for both the zonal and meridional 10 m winds, verified against operations (0001). Again, it could be 
argued that KNMI retrievals are providing slightly larger impact than the scatterometer information 
used in either the CTL and SIG0 experiments, but these improvements are only statistically significant 
for the first 12 hours. Figure 65 shows the change in mean sea level pressure RMS errors, and the results 
are neutral after 12 hours. Figure 66 is the change in relative humidity RMS errors on the 1000, 925 
and 850 hPa pressure levels. The No SCATT experiment is clearly degraded for day-1 and day-2 in the 
tropics at 1000 hPa, but beyond day 1 the results are generally neutral. 
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Figure 62: Normalised change in the RMS of vector wind forecast errors on pressure levels as a 
function of forecast range. The verification is against “own analysis”. Below 0 indicates that the RMS 
forecast error statistics are smaller than in the CTL experiment. The period is from January 1 to April 
29, 2022. 
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Figure 63: As Figure 62, showing the change in vector wind RMS forecast errors, but verified against 
operational analyses (0001). Below 0 indicates that the RMS forecast error statistics are smaller than 
in the CTL experiment. 
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Figure 64: The change in zonal (upper) and meridional (lower) 10 m wind RMS errors as a function of 
forecast range, verified against ECMWF operations (0001). Below 0 indicates that the RMS forecast 
error statistics are smaller than in the CTL experiment. 

 

 
Figure 65: The change in the RMS of the mean sea level pressure errors relative to the CTL experiment. 
Verification is against ECMWF operations. Below 0 indicates that the RMS forecast error statistics are 
smaller than in the CTL experiment. 

U10

V10
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Figure 66: The change in the RMS of the relative humidity errors, given relative to the CTL experiment. 
The forecasts are verified against ECMWF operations. Below 0 indicates that the RMS forecast error 
statistics are smaller than in the CTL experiment. 

 

4.4. Verification against observations 

In addition to verifying against operational and own analyses, we can also verify these experiments 
against a trusted set of moored buoy measurements used in the official ECMWF verification package, 
QUAVER. Figure 67 shows the fractional change in the standard deviation of the 10 m wind speed 
errors verified against the buoys for the No SCATT experiment when compared to CTL. In the tropics 
(right panel), there is a clear degradation in the 10 m wind speed of more than 5% at the analysis time, 
falling to around 1.5% at day 1. The degradation is smaller in the northern hemisphere, around 1% at 
the analysis time. The corresponding plots for the KNMI-R1 and SIG0 experiments are shown in Figure 
68 and Figure 69, respectively. The clear No SCATT degradation in the tropics is effectively reversed 
in the KNMI and SIG0 experiments recovering the performance of the CTL, indicating that useful wind 
speed information is being retrieved with both assimilation approaches. The KNMI results are slightly 



Revisiting Direct Assimilation of Scatterometer ‘Sigma0’ over the Ocean  

 

EUMETSAT Contract Report, No. EUM/CO/22/4600002712/SLi  75 

better in the tropics out to day 2, but the results do not appear to be statistically significant. The SIG0 
results appear to be slightly better in the northern hemisphere at the analysis time, but more generally 
KNMI and SIG0 results appear very similar for longer forecast ranges.  

 

 
Figure 67: The change in the standard deviation of the 10 m wind speed error given as function of 
forecast range for the northern hemisphere (left) and tropics (right), comparing the No SCATT to the 
CTL experiment.  Below 0 indicates that the forecast error statistics are better than the CTL. 

 

 

 
Figure 68: As Figure 67, showing the change in the standard deviation of the 10 m wind speed error 
given as function of forecast range for the northern hemisphere (left) and tropics (right), but comparing 
the KNMI-R1 to the CTL experiment.  Below 0 indicates that the KNMI-R1 forecast error statistics are 
better than the CTL. 
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Figure 69: As Figure 67, showing the change in the standard deviation of the 10 m wind speed error 
given as function of forecast range for the northern hemisphere (left) and tropics (right), but comparing 
the SIG0 to the CTL experiment. Below 0 indicates that the SIG0 forecast error statistics are better than 
the CTL. 

 

We have performed a similar analysis for SWH forecast errors verified against buoys, and the general 
picture is the same, with degradations in the No SCATT experiment largely corrected in both the KNMI 
and SIG0 experiments. For example, Figure 70 shows the change in standard deviation of the SWH 
error comparing the SIG0 against the CTL experiment. In the southern hemisphere (lower) we see an 
improvement relative to the CTL of around 1% out to day 2.5. The results are less clear in the northern 
hemisphere and tropics. 

 

4.5. Verification against altimeter SWH and wind speed retrievals 

Altimeters retrievals provide additional verification datasets for both wind speed and SWH forecasts. 
We use retrievals from Jason-3 and Sentinel-3A/3B for this verification. No altimeter wind speeds are 
assimilated in the 4D-Var system, and so they can be considered independent of the 4D-Var analyses 
and forecasts. The Jason-3 SWH information is the ECMWF wave data assimilation system, but not 
Sentinel-3A/3B during this period.  

Figure 71 shows the standard deviation of the wind speed errors verified against the altimeter retrievals, 
given as a function of forecast range (hours). In this case, the SIG0, CTL (“U-V” in the figure legend) 
and KNMI-R1 experiments are compared with the No SCATT, and values above 0 indicate that the 
error statistics are better than No SCATT. Unfortunately, this verification package does not provide an 
estimate of statistical significance, but it is clear that the SIG0 experiment performs best at short-range.  
For example, in the tropics the standard deviation of the (analysis – altimeter retrieval) differences is 
4% smaller in the SIG0 experiment than in KNMI-R1 and CTL (a 12% reduction in SIG0 versus 8%). 
The corresponding SWH scores are shown in Figure 72, where again the SIG0 experiment is best at 
short-range. The SWH results are more mixed for longer ranges. For example, in the northern 
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hemisphere the KNMI-R1 SWH results are better than either CTL or SIG0 after about 24 hours. The 
altimeter verification statistics are clearly encouraging for the sigma0 assimilation, and we are not aware 
of any reason why verifying with the altimeter retrievals would erroneously penalise the level 2 
approach. 

 

 
Figure 70: The change in standard deviation of the SWH, comparing SIG0 with the CTL experiment. 
The verification is against moored buoys. Below 0 indicates the SIG0 has better error statistics than 
CTL. 

 

4.6. Sigma0 as a function of stress 

One of the advantages of developing forward operators based on ANNs is that we can develop and test 
multiple versions, using on different physical variables as inputs. For example, one sigma0 forward 
operator developed in Section 1.4.6 computes sigma0 as a function of surface stress, and we have tested 
this version in OSEs. This is of interest because in a previous phase of this project we were considering 
the direct assimilation of ambiguous surface stress values derived indirectly from the observed 
sigma0’s, via the wind retrieval. Here we are effectively reversing the approach, assimilating sigma0 
given as a function of stress, 𝝉.  
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Neglecting ocean currents, the surface stress vector can be written as,  

𝛕 = 𝜌𝐶(|𝑢(𝑧))|𝐮(z*) 

where 𝐮(𝑧)) is the two-dimensional wind vector on the lowest model level, |𝑢(𝑧))| is the wind speed, 
𝜌 is the air density at the sea surface and 𝐶( is the drag coefficient [18]. Therefore, use of stress in the 
forward operator explicitly introduces a dependence on the atmospheric density at the surface, similar 
to the use of stress equivalent winds. It also implicitly introduces a dependence on the local sea state 
via the roughness length in the drag coefficient. We have found that the use of stress reduces the biases 
in the (o-b) departure statistics, as illustrated in Figure 73, where the magnitudes of positive and 
negative biases are reduced. Most of the improvement in the biases appears to be related to the inclusion 
of density. This result is promising, but it does not appear to translate into an improved forecast impact.  

 

 
Figure 71: The reduction in standard deviation of the wind speed forecast errors verified against 
altimeter retrievals as a function of forecast range (hours). The comparisons are against the No SCATT 
experiment, and values above 0 indicate that the configuration is better than No SCATT: Global (top 
left), northern hemisphere (top right), tropics (bottom left), southern hemisphere (bottom right). 
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Figure 72: The reduction in standard deviation of the SWH forecast errors verified against altimeter 
retrievals as a function of forecast range (hours). The comparisons are against the No SCATT 
experiment and values above 0 indicate that the configuration is better than No SCATT: Global (top 
left), northern hemisphere (top right), tropics (bottom left), southern hemisphere (bottom right). 

 

4.7. Tropical Cyclone Impact 

The impact of assimilating retrieved scatterometer winds or backscatter (over the ocean) on tropical 
cyclone analysis and forecast errors has been also assessed. The period under evaluation so far (January-
February 2022) is not ideal for tropical cyclones since not many storms usually occurs. To have a larger 
number of case studies, a new set of OSEs, with the same configuration explained in Section 4.1, was 
run over the period from the 1 April 2022 until 31 October 2022. This period covers the Atlantic and 
north-east Pacific tropical cyclone season with more cases to compute the statistics.  

The following OSEs were run:  

• CTL: The control experiment, assimilating Metop-B and C ASCAT L2 wind retrieval 
information produced with CMOD5.n at ECMWF during the assimilation experiments as part 
of the pre-processing step. 

• No SCATT: As CTL, but not assimilating the ASCAT winds. 
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• SIG0: Assimilating Metop-B and C sigma0 values over the ocean using the ANN approach, 
that computes sigma0 as a function of the neutral equivalent 10 m wind vector (plus geometry: 
angle of incidence/azimuthal). 

 

    
Figure 73: The spatial maps of the mean (upper) and standard deviation (lower) of the (o-b) sigma0 
departure statistics for a) the “standard” forward operator based on neutral equivalent 10 m winds 
and b) using the surface stress values. The statistics are computed from January 1 – April 29, 2022. 

 

The tropical cyclones position error and central pressure error were computed for all the common storms 
that occurred globally in the three experiments. For this evaluation we consider the CTL (similar to the 
operational assimilation) the reference experiment and we assess the change in performances if ASCAT 
data are assimilated as backscatter (SIG0) instead of wind or if we do not assimilate ASCAT data over 
the ocean at all (No SCAT).  

Figure 74 shows the average position error (left-hand panels) and intensity error (right-hand panel) as 
function of the forecast step for CTL (black line), SIG0 (red line), No SCAT (blue line). The top panels 
present the absolute error, the bottom ones the normalized differences of the SIG0 and No SCAT versus 
CTRL. Negative values indicate a reduction in error as a result of assimilating ASCAT backscatter or 
not assimilating ASCAT data at all.  

SIG0 and No SCAT show higher position error than the CTL at analysis time and out to 48-hour 
forecasts, with the SIG0 experiment having a larger error than the No SCAT. After that the signal is not 
statistically significant (i.e. the confidence intervals cross the zero line). An impact on day-1 to day-3 
forecasts is typically related to the local steering flow, while an impact from day-5 to day-7 is related 
to hemispheric skill. 

October 29, 2014

a) b)

October 29, 2014

a) b)
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The signal is opposite for the central pressure error. The assimilation of backscatter instead of wind 
(SIG0), is reducing the intensity error up to 3% at analysis time and 2.5% at 12-hour forecast. A 2% 
improvement is seen at day-2. The impact is neutral on the other forecast steps. Removing ASCAT 
observations (No SCAT) is slightly increasing the central pressure error, but the signal is not statistically 
significant.  

Previous studies performed to assess the impact on tropical cyclones of other observing systems have 
showed that the impact depends a lot on the model horizontal resolution used to run the OSEs [11].  

 

  
Figure 74: The impact on tropical cyclone from assimilating scatterometer observations over the ocean 
as either surface winds or backscatter. Mean absolute position errors (km) on the top-left plot and 
minimum sea level pressure error (hPa) on the top-right plot for the CTL (in black), Sig0 (in red), No 
SCAT (in blue) for the period from 1 April 2022 to 31 October 2022. In the bottom panels the lines are 
the normalised difference of the two OSEs minus CTL (Sig0 minus CTL in red, No SCAT minus CTRL 
in blue, with 95% confidence interval plotted as error bars: negative values indicate a reduction in 
error from assimilating ASCAT as backscatter or for not assimilating ASCAT at all. On the x-axes the 
forecast step (from 0 to 120 hours) and the number of cases is displayed. The verification is done against 
observation derived best estimate of TC position and central pressure. 
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4.8. Summary 

The ASCAT scatterometer observations over the ocean from Metop-B and Metop-C have been 
assimilated as either ambiguous wind vectors or as backscatter (sigma0) values using the ANN forward 
operator developed in Section 1 (SIG0). Two versions of the Level 2 wind products have been tested. 
The first follows the operational approach used at ECMWF, using CMOD5.n in pre-processing step of 
the 4D-Var (CTL). The second uses the selected wind retrievals provided by KNMI, based on CMOD7 
and their 2D-Var ambiguity removal approach (KNMI-R1). However, note that the KNMI wind 
retrievals are assimilated as “neutral equivalent” winds rather than the recommended “stress equivalent” 
winds. 

The short-range forecast departure statistics for ASCAT indicate that the KNMI retrievals have lower 
noise than the CMOD5.n retrievals currently used operationally at ECMWF. This is despite interpreting 
the KNMI information as neutral equivalent winds in the experiments. This is a potentially useful result 
when planning ahead for the assimilation EPS-SG SCA data. The sigma0 approach improves the short-
range departure statistics for altimeter SWH retrievals when compared to the level 2 approaches and 
the No SCATT experiment. The largest improvements are found in the tropics. This is the clearest 
example where sigma0 assimilation appears better than the level 2 approach, but we do not see this 
improvement across all observing systems. For example, the SATOB wind departures below 700 hPa 
are best with the KNMI wind retrievals, with both the sigma0 approach and CMOD5.n degrading the 
departures near the surface. This is a known issue in the ECMWF system.  

We see a clear degradation in the microwave image departure statistics in the No SCATT experiment, 
but the differences between SIG0, KNMI-R1 and CTL are small, indicating that the assimilation of 
sigma0 is able retrieve similar wind information content to the level 2 approaches.    

The verification against operational and own analyses supports the KNMI data impact in the short-
range, but the differences in the forecast error statistics are not generally statistically significant beyond 
day-2 when assessing surface and upper-air winds, humidity and surface pressure information. In 
general, the scatterometer impact on these is small and so seeing the differences that arise from the 
assimilation approach is challenging. However, there is no clear evidence that the sigma0 assimilation 
is significantly worse than the wind experiments.  

The verification of 10-m wind speed forecasts against moored buoys in the No SCATT experiment 
illustrates the importance of scatterometer measurements more clearly than verification against 
analyses, particularly in the tropics. The impact of the retrieved wind and the sigma0 is similar, with 
both compensating for the degradation in the No SCATT experiment. There is some improvement in the 
SWH forecast error statistics out to day 2.5 in the southern hemisphere when assimilating sigma0. The 
verification against altimeter wind speed and SWH retrievals is also encouraging for the sigma0 
assimilation. The analysis and short-range forecasts from the SIG0 experiment are more consistent with 
the altimeter retrievals than the wind assimilation experiments, but this improvement is not sustained 
for longer forecasts. It should be noted that the altimeter verification does not include statistical 
significance tests.  
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Assimilating sigma0 as a function of stress improves the (o-b) biases, but this does not appear to 
translate into improved forecast scores.  

The impact of assimilating sigma0 on tropical cyclone forecasts has been assessed for the period 1 April 
2022 until 31 October 2022. The assimilation of sigma0 produces a statistically significant degradation 
of the position errors out to day-2. The central pressure error statistics are improved out to 12 hours. 
We have found previously that tropical cyclone impact can be very sensitive the resolution of the 
forecast model. 

As is often the case with the forecast impact experiments, both positive and negative signals are mixed 
when considering a range of factors like forecast-range, meteorological variables and verification 
method. However, overall there is no clear evidence that sigma0 assimilation does not work, and that 
the scatterometer measurements have to be assimilated as level 2 wind products over the ocean. Indeed, 
aspects of these results are clearly positive with respect to the wind assimilation and they would support 
further research work in this area. 
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5. Summary and Recommendations 
 

In this study, we have used artificial neural networks (ANNs) to develop new forward operators that 
enable the direct assimilation scatterometer sigma0 (backscatter) observations. The central question we 
have tried address is whether scatterometer information has to be assimilated as ambiguous Level 2 
products, or whether developments in data assimilation methodology in recent years mean that the direct 
assimilation of sigma0 is now a viable approach. Overall, we have demonstrated in extended observing 
system experiments (OSEs) that the direct assimilation of sigma0 is now a viable assimilation approach, 
with a comparable performance to the Level 2 assimilation. In fact, the verification against altimeter 
wind speed and significant wave height (SWH) retrievals suggest that the sigma0 approach may be 
better. However, this is not the case for verification against own and operational analyses, and overall 
we believe that further work would be required to demonstrate conclusively if sigma0 assimilation can 
be superior to Level 2 assimilation before, for example, using this new approach operationally at 
ECMWF.  

The study has been completed in just over a year and it has encompassed a diverse range of activities. 
These include the development and testing of the new scatterometer ANN forward models, the 
implementation of the new operators in the ECMWF 4D-Var data assimilation system and performing 
the first extended forecast impact experiments with ASCAT sigma0 values. (We have also developed a 
new altimeter wind speed retrieval as part of this work - see below.). Although the main study questions 
have been addressed, there are aspects of the work that could be improved with more time. In the context 
of the forward model development these improvements include; 

• The performance of the ANN sigma0 operator is good belew 20 m/s, but it is not as good as 
established GMFs, like CMOD7, above 20 m/s. More generally, the ANN performance outside 
its training space can be unphysical, and CMOD7 is a more accurate simulation code for general 
applications. 

• The input to the ANN is the neutral equivalent 10 m wind vector (𝑢, 𝑣). There may be 
advantages training the operator to ingest the wind components parallel and perpendicular to 
the beam direction. 

• Currently, we have trained the ANN with single sigma0 values at a given location. We have 
not tried to train against the triplet at that location. Could that provide any additional benefit?  

A number of ANN sigma0 forward models have been tested, but only two versions have been tested in 
the NWP system. Significantly, the flexibility of the ANN architecture has enabled us to adapt existing 
tangent-linear and adjoint code, developed initially as gravity wave emulator, when implementing the 
sigma0 code in the ECMWF NWP system.  

The sigma0 assimilation experiments have been successful, but there are areas that could be improved: 
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• The uncertainty model used in the sigma0 assimilation is relatively crude. The error is assumed 
to be the largest of either 10 % of the observed values or 1.6 dB. For context, a Gaussian 1 m/s 
wind speed error maps to around 1.2 dB. Further sensitivity tests to the assumed sigma0 
uncertainty values would be useful.  

• We have not attempted any bias correction of the sigma0 values, but there are clearly large 
spatial variations in the (o-b) biases. It would be useful to implement the sigma0 assimilation 
within a variational bias correction scheme.  

• The results assimilating sigma0 as a function of stress, rather than as a function of neutral 
equivalent wind, appears to improve the (o-b) biases. This promising result should be pursued 
further. In addition, parallel work at ECMWF coupling the ocean current to atmospheric 
system appears to have a big impact on the scatterometer impact. This coupling work should 
be combined with both the sigma0 and the sigma0 as a function of stress assimilation approach. 

• Quality control for sigma0. To date, we have tried to use the basic quality control used for the 
ambiguous wind assimilation. We have not explored whether this can be improved for sigma0. 

In addition to the scatterometer work, we have also developed a new ANN based wind speed retrieval 
for altimeter measurements. Unlike the scatterometer work, which is based on “used” data that had 
passed quality control checks needed to be assimilated, the altimeter training required more emphasis 
on quality control and “data cleaning”. A number of ANN configurations have been tested, but we 
recommend the retrieval based on the Ku-band backscatter and SWH, together with the square of off-
nadir angle. The performance of this retrieval is comparable with the existing operational product.  

To conclude, we have explored many questions as part of this study. Perhaps most significantly, the 
viability of the direct assimilation of scatterometer backscatter (sigma0) has been clearly demonstrated. 
We have also exploited the flexibility of the ANN approach when developing the sigma0 forward 
models. Overall, the results are very encouraging but further research and development will be needed 
to move to sigma0 assimilation in routine operational applications.  
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