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Abstract 
Numerical Weather Prediction (NWP) Centres evaluate forecast quality using statistical 
assessments of error and skill, commonly referred to as scores. Traditional forecast 
verification relies on metrics such as Root Mean Squared Error (RMSE), Anomaly 
Correlation Coefficient (ACC), Brier Score, etc., which compare forecast performance 
relative to baseline models. However, these measures mix bias effects and forecast 
uncertainty, complicating direct comparisons between deterministic models, ensemble 
averaging approaches, and machine learning-based forecasts. A clear separation between 
intrinsic forecast skill and post-processing enhancements, such as calibration, is essential for 
accurately assessing the predictive capability of a forecast system.  

In this work we take forecast reliability and resolution as the fundamental attributes 
characterising forecast performance, with resolution representing the true predictive 
capability of a system—its ability to distinguish among observed events. Recent work by 
Feng, Toth, Zhang and Peña, 2024, introduced Information and Noise as new metrics 
designed to provide an unambiguous assessment of statistical resolution. This study aims to 
introduce these novel scores in an accessible manner, relating them to traditional verification 
metrics, and tackles some of the limitations of the original formulation. Additionally, we 
demonstrate their practical implementation for routine forecast verification in an operational 
NWP environment, and provide examples of their use in the standard NWP research 
workflow. Examples of application of these new verification metrics to ensemble forecasting 
and to machine learning forecast models are also provided. 

 
Plain Language Summary 
Weather forecasting centres use statistical verification to check how accurate predictions are. 
Traditional verification metrics give estimates of total error, which is important for end users 
of forecast products, but does not allow to evaluate the intrinsic information content of the 
forecasts and makes it hard to fairly evaluate different forecasting approaches, such as single 
models, averages of multiple forecasts, and AI-based predictions. 

In this study we adopt the view that forecast reliability (how often predictions are correct) 
and resolution (how well a forecast distinguishes between different possible weather 
outcomes) are the two key attributes for assessing forecast quality. A new set of metrics, 
called Information and Noise, has been introduced to measure resolution more clearly. The 
study explains these new metrics in simple terms, connects them to traditional methods, and 
addresses their previous limitations. 

Additionally, it shows how these new scores can be used in daily forecasting operations and 
research, with examples including ensemble forecasts (which use multiple predictions) and 
AI-driven weather models. 



 

 

1. Introduction 
Numerical weather prediction centres measure the quality of their forecasts using statistical 
assessments of error and skill, typically known as ‘scores’. For deterministic forecasts (also 
known as categorical or non-ensemble forecasting), these include the root mean squared error 
(RMSE) and anomaly correlation coefficient (ACC, e.g. Jolliffe and Stephenson, 2003). A 
skill score typically measures the error relative to a baseline, such as the quality of a forecast 
based on climatology. Scores are used to compare the quality of forecasts between NWP 
centres (e.g. Haiden et al., 2023) and to assess the impact of proposed new developments, 
such as activating new observations (e.g. Healy et al., 2024).  

The correspondence between forecast scores and the true skill of a forecast is not exact. For 
example, RMSE is sensitive to bias as well as the error standard deviation. Hence, in areas 
where the error growth is relatively low, such as the tropics, changes in bias that are 
essentially irrelevant can overwhelm other signals. It is also hard to compare the outputs of 
traditional deterministic models with those based on ensemble averaging or on unperturbed 
ML-based models, since these are typically smoothed relative to reality, and most scores are 
sensitive to changes in forecast activity as well as changes in true skill (e.g. “double penalty 
effect”, Hoffman et al., 1995; Ebert et al., 2013). Hence it is important to separate the true 
underlying skill of a forecast system from the aspects that can be improved by smoothing, 
filtering, bias correction and so on, activities collectively known as calibration and which can 
be performed in a post-processing step.  

Statistical resolution and statistical reliability are two forecast attributes that completely 
characterise forecast performance (e.g. Jolliffe and Stephenson, 2003; Toth, Talagrand and 
Zhu, 2005, TTZ05 in the following; Candille and Talagrand, 2006; Feng, Toth, Zhang and 
Peña, 2024, FTZP24 in the following). Both forecast attributes are important for forecast end 
users. However, lack of statistical reliability can be corrected a-posteriori to the same degree 
that it can be diagnosed (under the hypothesis of stationarity of the underlying statistics). On 
the other hand, statistical resolution measures the true or intrinsic predictive capability of a 
forecast system (Wilks, 2011), i.e. the ability of the forecast system to sort observed events 
into groups that are different from one another, and it cannot be improved with post-
processing techniques. 

The more widely used forecast skill measures in the operational NWP community, e.g. Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), Brier Score (BS), Ranked 
Probability Score (RPS), Continuous Ranked Probability Score (CRPS), etc., mix the two 
forecast attributes described above. While decompositions into resolution and reliability 
components are available for the probabilistic scores (e.g., BS decomposition, Murphy, 1973), 
these decompositions are not routinely used in operational practice. Additionally, they are 
limited to probabilistic forecasts. FTZP24 have proposed the skill measures Forecast 
Information and Noise to provide an unambiguous diagnostic of the statistical resolution of a 
forecast system. The aim of this work is: (a) to provide a more accessible introduction to the 
new scores, including elucidating their relationship to forecast skill scores that are widely used 



 

 

in the operational NWP community; (b) to show how it is possible to practically implement  
the new verification framework for routine forecast verification in an operational NWP 
environment  (ECMWF); (c) to show examples illustrating the different qualities of the 
deterministic and ensemble forecasts at ECMWF; (d) to show how the scores can be applied in 
the standard NWP Research and Development workflow; (e) to give an example of their use to 
evaluate new Machine Learning models. 

2. A geometric view of forecast scores 

Typically, deterministic forecast scores are generated from spatial fields over a defined area 
such as the northern hemisphere extratropics. These statistics are computed for a single 
variable, a single level in the vertical, and a single forecast validity time.  In this approach, 
each of the 𝑖 = 1	to 𝑛 locations in the spatial field can be assigned a position in a vector. If 𝑥! 
represents the geophysical variable at each location, we could define a vector 𝐱" to represent 
them all: 𝐱" = (𝑥", 𝑥#, … 𝑥$). This geometric view treats each location 𝑖	as being represented 
by a different dimension within an 𝑛-dimensional space (technically, an orthonormal basis). 
As will shortly become clear (and see also appendix A) it is more convenient to apply a 
scaling when creating the vector, and we will define this vector 𝐱 (rather than 𝐱") 

𝐱 = (𝑤𝑥", 𝑤𝑥#, …𝑤𝑥$). (1) 

Here, 𝑤 is the scaling factor, which we will set to !
√#

 initially. With this scaling, distances between 

points in the n-dimensional space are equivalent, and mathematically equal, to Root Mean Squared 
Differences (and Root Mean Squared Error if one of the points is the verifying “true” state). This 
geometric approach will provide an intuitive visual explanation of the relationships between different 
scores, and moreover, it is very useful in explaining the meaning of the new noise and information 
scores of FTZP24. 

 



 

 

Figure 1: Geometrical decomposition of forecast errors and anomalies. See text for details. 

Panel (a) in Figure 1 illustrates the verification of a forecast in a 2-dimensional space after 
applying the scaling factor 𝑤. The vectors 𝐱𝒇 and 𝐱𝒕 represent the forecast and the validating 
‘truth’. The vector 𝐱𝐟 − 𝐱𝐭 is the forecast error. To summarise the size of this error in a single 
number, we can use the length of this vector, in other words the length of the solid line on 
Figure 1a. To compute this, we can make use of the vector dot product, which is defined 
between two vectors 𝐚	and 𝐛 as: 

𝐚 ⋅ 𝐛 ∶= ∑ 𝑎!𝑏!$
!)"      (2) 

Here, 𝑎! and 𝑏! represent the magnitude of the vector in each of the specific n directions. The 
length of any vector is computed, equivalently to Pythagoras’ theorem extended to arbitrary 
dimensions, as the square root of the dot product of a vector with itself. The length of vector 
𝐚 is just √𝐚 ⋅ 𝐚. Note that we prefer to denote length in this way, rather than using the 
Euclidean norm notation, in order to simplify the presentation. For the forecast error, its 
length is a scalar: 

𝑒 = 8(𝐱𝐟 − 𝐱𝐭) ⋅ (𝐱𝐟 − 𝐱𝐭)    (3) 

When expanded using equations (1) and (2) this recovers the formula for the RMSE between 
forecast and truth: 

RMSE(𝐱𝐟, 𝐱𝐭) = 𝑒 = 𝟏
√$
8∑ (𝑥,,! − 𝑥.,!)#$

!)"   (4) 

Hence the RMSE is a natural measure of the error in a forecast because it is the length of the 
error vector. Note that this includes the standardisation for the number of dimensions using 
the weighting factor 𝑤 = "

√$
	introduced earlier (because the length of the vector (1,1,1….1) is 

√𝑛, the length standardisation needs to change according to the number of dimensions). 

We can now introduce another vector 𝐱𝐜	representing climatology, which is typically a 
monthly mean of the relevant analysis field computed over many years. A typical skill score 
evaluates how much better the forecast is compared to such a climatology (e.g. Murphy, 
1988). In the geometric view, shown in Figure 1b, the end points of the vectors for 
climatology, truth and forecast form a triangle. The other sides of the triangle are the vectors 
𝐱𝐟 − 𝐱𝐜, which is the forecast anomaly, and 𝐱𝐭 − 𝐱𝐜, which is the true anomaly, relative to 
climatology. The lengths of these sides of the triangle are 𝑎, ∶= 8(𝐱𝐟 − 𝐱𝐜) ⋅ (𝐱𝐟 − 𝐱𝐜) and 

𝑎. ∶= 8(𝐱𝐭 − 𝐱𝐜) ⋅ (𝐱𝐭 − 𝐱𝐜). These quantify the size of the anomalies of the forecast and of 
the truth. The cosine of the angle (𝜃) between the forecast anomaly and true anomaly gives 
the anomaly correlation. This can be seen by applying the dot product cosine identity 



 

 

𝐚 ⋅ 𝐛 ∶= √𝐚 ⋅ 𝐚	√𝐛 ⋅ 𝐛	cos(𝜃)    (5) 

to the forecast anomaly and the true anomaly vectors, and solving for cos(𝜃), to define what 
we will call the RMS-derived Anomaly Correlation Coefficient (RACC): 

RACC ∶= cos(𝜃) = (𝐱𝐟2𝐱𝐜)⋅(𝐱𝐭2𝐱𝐜)
5$5%

   (6) 

These quantities are all linked by the vector version of the cosine rule, which relates the lengths 
of the sides of a triangle to the angle between two of the sides. Hence 

𝑒# = 𝑎,# + 𝑎.# − 2𝑎,𝑎.cos(𝜃) = 	𝑎,# + 𝑎.# − 2𝑎,𝑎.RACC (7) 

This is nearly equivalent to the decomposition of the mean square error into activity and 
anomaly correlation that is familiar from works such as Murphy and Epstein (1989, compare 
to their equation 9). If we can define RMS-like activity of the forecast and verification (truth) 
as RMSDAF = 𝑎,  and RMSDAV = 𝑎., then equivalently, but with alternative notation: 

RMSE# = RMSDAF# + RMSDAV# − 2	RMSDAF	RMSDAV	RACC  (8) 

Note that in practical forecast verification, two additional corrections are included. The first, 
as included in Murphy and Epstein’s decomposition, is that mean anomalies are subtracted 
before computing the lengths of the sides of the triangle, so that the triangle is composed of 
the sample standard deviation equivalents of the RMS measures we have used here, i.e. 
standard deviation of error and anomaly SDE, SDAV and SDAF and the standard anomaly 
correlation coefficient ACC, also the cosine of the angle between the mean-corrected 
anomalies. The second correction, not included in the aforementioned work, is that area 
weighting is applied. This recognises that atmospheric fields are usually provided on a 
regular lat-lon grid, so the statistics would give excessive weight to polar regions if computed 
naively. The results we show later include these two corrections. The relevant extensions and 
proofs are presented in appendix A. 

The novelty and insight of FTZP24 is to consider the projection of the forecast anomaly 𝐱𝐟 −
𝐱𝐜, onto the true anomaly 𝐱𝐭 − 𝐱𝐜, as shown in Figure 1c. The length of the projected 
anomaly is denoted p and is known simply as Information. When compared to the length of 
the true anomaly, this defines their newly proposed measure of Forecast Information, FI, as 
the ratio of the two: 

FI = 𝑝 𝑎.⁄    (9) 

When FI=1, the anomaly has been forecast perfectly, and hence the forecast was perfectly 
informative. When FI=0, the forecast contained no information on the observed anomaly and 
thus was not informative. Note that FTZP24 defined FI as the square of the quantities we use 
here (𝑝# 𝑎.#⁄ ) so they were working in the sense of variances. But we prefer to keep 



 

 

consistency with existing verification statistics such as the RMSE, standard deviation and 
ACC, so we suggest that FI should be defined our way in future. We also note that Murphy 
and Epstein (1989) argued that the square of ACC was a fairer measure of potential forecast 
skill, but this suggestion did not catch on in the verification literature, and the use of 
measures of forecast skill in the sense of standard deviation remains standard practice. 

The length 𝑝 is obtained from the length of the forecast anomaly and 𝑐𝑜𝑠(𝜃), by scalar 
projection, so that 

𝑝 = 𝑎,	𝑐𝑜𝑠(𝜃) = 𝑎,	𝑅𝐴𝐶𝐶	    (10) 

Hence, forecast information FI is closely related to the anomaly correlation, but with an 
alternative normalisation (compare to equation (6)): 

FI = 5$
5%
RACC = (𝐱𝐟2𝐱𝐜)⋅(𝐱𝐭2𝐱𝐜)

5%&
   (11) 

The alternative normalisation makes FI sensitive to changes in the forecast activity. 
Specifically, FI penalises forecasts that show levels of activity smaller that the observed 
activity, e.g. unrealistically smooth forecasts. In contrast, anomaly correlation is unaffected 
by forecast activity. RMSE can also be artificially reduced (see e.g., equation 8) just by 
reducing the forecast activity, without making any improvement in underlying forecast skill. 
Appendix B examines some edge cases with FI and explains why we have chosen to define it 
as described above. In particular, note that the angle theta can be larger than 90 degrees, a 
situation which leads to negative anomaly correlation through the cosine in equation 6. We 
also allow negative values of p in equation 10 so that FI can go negative in the same 
circumstances, which makes our definition of FI (equation 9, 11) equal in magnitude to the 
square root of the FTZP24 equivalent, but with a varying sign. These considerations are 
important where anomaly correlation and the forecast information approach or go below zero, 
such as at longer forecast ranges. 

A closely related set of scores is obtained by considering the upper right-angled triangle in 
Figure 1c. This provides the orthogonal decomposition of the forecast error along the 
direction of the true anomaly and its orthogonal complement. The size (length) of the error in 
the direction of the true anomaly will be called the Information Error (IE) and the size of the 
error orthogonal to the true anomaly will be called the Noise Error (NE). Specifically: 

IE = 𝑎𝑏𝑠(1 − 𝐹𝐼)	𝑎. = 𝑎𝑏𝑠S𝑎. − 𝑎,𝑅𝐴𝐶𝐶T  (12) 

Note that FI is not bounded by 1 and in case of forecast anomalies larger than observed 
anomalies it can be larger than 1. Hence the abs() is practically required to avoid negative 
lengths but, more fundamentally, it is a consequence of the definition of IE as an error 
measure (see appendix B). The aim is that IE and NE, as an orthogonal decomposition of 
RMSE, obey Pythagoras’ theorem, hence  



 

 

RMSE# = IE# + NE#    (13) 

NE can be obtained through this identity from RMSE and IE. However, we can also consider 
the vector projection of the forecast anomaly on the true anomaly, which is FI	(𝐱𝐭 − 𝐱𝐜). 
Then the vector noise is the corresponding rejection: 

𝐫 = 	 (𝐱𝐟 − 𝐱𝐜) − 	FI	(𝐱𝐭 − 𝐱𝐜)  (14) 

And the normalised length of this vector defines NE as 

NE = √𝐫⋅𝐫
√$

  (15) 

Note that this is different from the definition of Forecast Noise, FN, by FTZP24, which is 
equivalent to FN = (𝐫 ∙ 𝐫) 𝑎.#⁄ . FTZP24 normalise by the true anomaly variance for 
consistency with forecast information FI. Instead, our definition provides a consistent 
orthogonal decomposition of the RMSE into information error (IE) and noise error (NE). 

We can now recap Figure 1, starting with panel a, which shows the geometric interpretation 
of RMSE, for a forecast validated against a “truth”, as the standardised length of the error 
vector.  Panel b shows that the forecast, truth and climatology define a triangle (in a n-
dimensional state space) in which the anomaly correlation is the cosine of the angle between 
the true anomaly and the forecast anomaly. As noted by Murphy (1988), this makes anomaly 
correlation insensitive to the amount of activity in the forecast (as well as to bias in the 
forecast) so he argued it is a measure of potential rather than actual skill. Murphy and Epstein 
(1989) hence also noted that any interpretation of anomaly correlation is incomplete without 
examination of additional terms such as activity and mean error. This point can be clearly 
understood from Figure 1b. Further, it is obvious that, if anomaly correlation stays constant, 
RMSE can still be minimised by making the error vector perpendicular to the forecast 
anomaly, as shown in Figure 2. This illustrates a well-known problem with RMSE: that it can 
typically be improved by decreasing the forecast activity, potentially favouring forecast 
systems with an unrealistic representation of the atmosphere. However, the reduction in total 
forecast error described above will be the result of a decrease in Noise Error and a 
concomitant increase in Information Error, i.e. the information content of the damped 
forecast is reduced. 



 

 

 

Figure 2: Geometrical illustration of how RMSE can be reduced by damping forecast activity, 
reducing forecast noise, but at the cost of larger information error (equivalently, less 
information). 

Figure 1c shows the FTZP24 decomposition of the forecast anomaly along and perpendicular 
to the true anomaly, which measures information and noise in the forecast. FTZP24 showed 
that although ensemble mean forecasts have apparent advantages in terms of higher anomaly 
correlation and lower RMSE, this is achieved primarily by reducing noise rather than by 
adding any new information. Indeed, the information in the ensemble mean is smaller than 
that of a deterministic forecast, apparently due to the stochastic perturbations used to create 
the ensemble members. Such an analysis illustrates the power of the new approach. 

We have seen that forecast information FI is very similar to anomaly correlation except for its 
normalisation. However, anomaly correlation is by construction bounded by 1, but FI can 
generate values larger than 1 if the forecast anomaly is larger than the observed anomaly. We 
have already seen this issue in practical verification on some days, in the early forecast range. 
Once the scores are aggregated across multiple days, this can confuse the interpretation: for 
example, a perfect aggregated score of 1 could be achieved by a mix of forecasts with under- 
and over-shooting FI. Hence, we prefer to consider the upper right-angled triangle on Figure 
1c, which is the decomposition of the RMSE into Information Error (IE) and Noise Error 
(NE), rather than the forecast information and noise of FTZP24. With this decomposition it is 
unambiguous that a perfect forecast would have both zero IE and zero NE, with zero being a 
true lower bound. It is then possible to understand any change in the RMSE in terms of noise 
and information error. Crucially, a reduction in RMSE only indicates an improved forecast if 
it does not increase the information error. Monitoring of IE would discourage the possible 
gaming of RMSE by a reduction in forecast activity and help put on a quantitative basis the 
effects of changes in forecast activity on forecast skill. In the orthogonal direction, any 
reduction in RMSE caused by reduced forecast noise may be a welcome improvement, 
though it does not increase the underlying information content (or statistical resolution; 
Wilks, 2011) of the forecast, and may reduce the forecast activity below realistic levels.  



 

 

Further details on the practical implementation of the skill and error measures in the ECMWF 
verification package Iver (Geer, 2016) are provided in Appendix A, along with full 
generalisation of the mathematical presentation to include standard-deviation type statistics 
(SDE, SDAV, SDAF, ACC) and area weighting. It is worth emphasising again that in this 
introduction, we have used the simpler decomposition triangle of RMSE into RMSDAV and 
RMSDAV, with RACC the cosine of the angle between the latter two, where these are the 
versions of the activity and the anomaly correlation formulas computed without subtraction of 
the mean. But in standard practice, the mean is subtracted, so that the decomposition triangle 
is properly STDE, SDAV and SDAF, with ACC the cosine of the angle between the activities. 
In the rest of this report, the new verification statistics Forecast Information (FI), Information 
Error (IE) and Noise Error (NE) are computed, for consistency, with the subtraction of the 
mean (as well as applying area weighting and averaging across samples) so they are part of the 
STDE decomposition, not the RMSE decomposition. 

3. Medium Range ensemble forecasts 

The ECMWF medium-range ensemble prediction system (ENS) is an ensemble of 51 
forecasts with a horizontal resolution of around 9 km. It comprises one control (unperturbed) 
forecast (CF) plus 50 perturbed forecasts (PF) each run from perturbed initial conditions and 
model physics (Owens and Hewson, 2018, Chap. 5). The perturbations in the initial 
conditions and model physics are aimed at sampling uncertainties in the initial conditions and 
model errors.  

Below we show results documenting the application of the Information Error and Noise Error 
measures to the forecasts of the ENS control (unperturbed) member, the ENS ensemble forecast 
mean (EM) and perturbed members 1, 10, 20, 30, 40, 50 (PF1, PF10, PF20, PF30, PF40, PF50) 
for 500 hPa geopotential (Z500). Similar results are available for other forecast quantities (e.g., 
2-metre temperature (T2m), mean sea level pressure (MSLP), but are not shown for 
conciseness. 



 

 

 

Figure 3: Information, Noise, ACC diagram for the unperturbed (control) forecast (encf), for 
the ensemble mean (enem) and the perturbed forecasts (pf). Information and noise increase 
along the y and x axes respectively (they are an orthogonal decomposition of the forecast 
anomaly). Distance along the radials represents forecast anomaly, with the true (analysed) 
anomaly represented by the dashed quadrant line. The dashed semi-circle indicates the 
position of lowest STDE for a given anomaly correlation (which is where STDE and SDAF are 
orthogonal as shown in Figure 2). The semi-circle on the y axis represents the true (analysed) 
anomaly, in other words a perfect forecast by our definition. The straight-line distance from 
this point to any of the forecasts is the relevant forecast error standard deviation, STDE. 

Figure 3 shows the results for NH 500hPa geopotential height in the orthogonal space defined 
by information and noise following FTZP24 and our earlier theoretical discussion. For the 10 
day (T+240h) forecast, the ensemble mean has anomaly correlation above 0.7, which appears 
superior to the unperturbed forecast at around 0.6 (and the straight line distance from the true 
anomaly, the error standard deviation, is also shorter). However, the unperturbed forecast 
information of 626 compared to 549 (in m2s-2) suggests that the unperturbed forecast has 



 

 

significantly higher statistical resolution, i.e. higher fundamental forecast skill than the 
ensemble mean. The apparent advantage of the ensemble mean in terms of ACC and STDE is 
obtained by reducing activity (distance from the origin in the radial direction) and noise 
(distance along the x axis). The ensemble members have similar information to the ensemble 
mean (lower than the unperturbed forecast) but more realistic levels of activity. For the 15 day 
(T+360h) forecast, the unperturbed forecast seems to be no better than the ensemble members, 
and we can speculate that, if further extended in time, all the forecasts will continue to follow 
the dashed line to a point where they continue to have realistic activity but no information. In 
contrast, the trajectory of the ensemble mean closely follows the location of minimum standard 
deviation of error, indicated by the dashed semi-circle. This shows that, if the aim of the 
ensemble forecast is to reduce the STDE to its theoretical minimum for any given ACC (the 
dashed semi-circle), then the ECMWF ensemble mean achieves this almost perfectly. It seems 
highly likely that if the ensemble mean forecast were further extended, it would follow this line 
spiralling to the origin, to a point where it contains neither information nor forecast activity. 

Further plots show a more familiar breakdown of the results as a function of forecast time. 
Qualitatively, the plots are also coherent and similar to the equivalent plots presented in 
FTZP24 (e.g., their Fig. 8, panels b, c). Specifically: 

a) In terms of RMSE (Figure 4, top row) the ensemble forecast mean (EM) has lower error 
than the ensemble control unperturbed forecast (CF) which has, on average, lower error 
than any perturbed forecast; 

b) The Information Error (IE; Figure 5, top row) of the unperturbed forecast is smaller, on 
average, than those of the EM and perturbed forecasts: for Z500 in the northern extra-
tropics the difference is approx. 18-24 hours for lead times from 5 to 10 days; 

c) The Information Error (IE; Figure 5, top row) of the ensemble forecast mean (EM) is, on 
average, indistinguishable from those of any perturbed forecast members. This supports 
results from FTZP24, their Figure 6; 

d) The Noise Error (NE; Figure 5, bottom row), which is the projection of total forecast error 
onto directions orthogonal to the true anomaly (verifying analysis) is largest for perturbed 
forecasts and smallest for EM, with the unperturbed forecast in the middle. 



 

 

 
Figure 4: Top row: Evolution of the ENS Prediction System Forecast RMSE of 500 hPa 
geopotential (Z) for the unperturbed member (CF, continuous line), ensemble mean (EM, dash) 
and perturbed members 1,10,20,30,40,50 (dot-dash lines). Left panel refers to southern extra-
tropics, middle panel to tropics, right panel to the northern extra-tropics. Bottom row: as top 
row for the forecast evolution of the standard deviation of forecast anomaly (forecast activity, 
SDAF). Statistics accumulated over the 2023-10-01 to 2024-01-20 period. Verification against 
the ECMWF operational analysis. 

 
Figure 5: Top row: Evolution of the ENS Prediction System Information Error (IE) of 500 hPa 
geopotential (Z) for the unperturbed member (CF, continuous line), ensemble mean (EM, dash) 
and perturbed members 1,10,20,30,40,50 (dot-dash lines). Left panel refers to southern Z500 
forecast fields for the CF, EM and perturbed forecasts. Bottom row: as top row for the forecast 
evolution of Noise Error (NE). Statistics accumulated over the 2023-10-01 to 2024-01-20 
period. Verification against the ECMWF operational analysis. 



 

 

4. Information and Noise Error for NWP development 
The application of the Information and Noise Error decomposition can be potentially useful in 
the research and development workflow of NWP as it provides additional insight into the added 
value (or lack thereof) of proposed changes to the analysis and forecast system. We illustrate 
this by presenting some relevant examples from recent development work at ECMWF. 

4.1. Revised vertical diffusion scheme in the stratosphere 

This change to the IFS model involved reducing the vertical diffusion in stable conditions 
above the tropopause. The motivation of this change stems from the fact that the gradient 
functions used for diffusion of momentum, heat and tracers, such as moisture, are empirically 
derived from near surface observations. Due to a lack of similar observations or analyses at 
higher altitudes, the same functions are used throughout the entire depth of the atmosphere in 
stable conditions, including across the tropopause and into the stratosphere. Gradients in winds 
and temperatures have been shown to be too weak across the tropopause, indicative of 
excessive diffusion into the stable stratosphere. The unphysically strong vertical diffusion is 
known to have deleterious impact on the modelled quasi-biennial oscillation (QBO) of the 
tropical winds in stratosphere, reducing not only the vertical wind shear but also the QBO 
amplitude, thus increasing the mean wind biases in the tropical stratosphere (Polichtchouk et 
al., 2021; section 2.5). 

The verification of the proposed change in the ECMWF data assimilation cycle showed 
generally positive impacts with improved fit of the 4D-Var analysis and first guess forecasts 
from the background state to most observation types, particularly visible in the upper 
troposphere and lower stratosphere (UTLS; not shown). Forecast medium-range impact 
showed generally positive results in the UTLS in the tropics but mixed results in the extra-
tropics (both against operational ECMWF analysis and radiosonde observations) for both 
temperature (not shown) and wind components (Figure 6, left panel). On the other hand, the 
Information Error plots (Figure 7, left panel) show that the degradation in the extra-tropical 
UTLS mostly disappears in this metric. The increase in RMSE comes exclusively from the 
increase in the Noise Error component (Figure 7, right panel) and it is largely driven by the 
increase in forecast activity of the modified IFS (Figure 6, right panel). which indicates a 
forecast with a more realistic level of variability. 



 

 

 

Figure 6: Normalised difference in the RMSE (left panel) and forecast activity (SDAF) of the 
zonal wind field forecast of the experiment with the reduced vertical diffusion vs a control. 
Verification versus ECMWF operational analysis over the 3/12/2020 to 28/02/2021 period. 
Negative values indicate reduced RMSE (SDAF) in the experiment with reduced vertical 
diffusion. 



 

 

 

Figure 7: Same as Figure 6 for the Information Error (IE, left panel) and Noise Error (NE) 
measures. 

4.2. Off-centring of the IFS Semi-implicit time-stepping scheme 

The spectral, semi-implicit, semi-Lagrangian dynamical core of the IFS, described in ECMWF 
(2024), employs a fully centred second order time-stepping scheme. The IFS formulation and 
code allow the option to off-centre the semi-implicit time weights from their default value  1/2, 
1/2  to (1-ε)/2, (1+ε)/2 where the first weight is applied on the explicit and the second on the 
implicit part of the time discretization respectively. A small amount of off-centring has been 
introduced here, equal to 0.05, to control the resonant growth of spurious modes generated by 
sharp gradients in flows whose Courant number exceeds unity, and which arise especially at 
high horizontal resolution in the IFS in the stratosphere if the vertical resolution is also not 
concomitantly increased. Such spurious modes can lead to mean biases as discussed in 
Polichtchouk et al. (2019).  

In terms of impact of the assimilation system, the Off-Centring experiment shows significantly 
improved analysis and first guess from background fits to all stratospheric sounding 
observations (not shown). This is a clear indication that this model change is beneficial in the 
data assimilation cycle in extracting more information from the current observing system.  



 

 

In terms of impact on forecast performance, standard metrics like ACC (not shown) and RMSE 
show significant reductions in the stratosphere, e.g., Figure 8, left panels. However, the 
reduction in forecast RMSE appears associated with collocated reductions in forecast activity 
(Figure 8, right panel).  The plots showing the evolution of Information and Noise Error 
components (Figure 9) indicate that while the Off-Centring is successful in reducing the Noise  
component of the error budget, there are degradations in terms of Information Error, e.g. in the 
south hemisphere stratosphere, that merit further investigation. Interestingly the IE component 
shows localised degradations in the tropospheric mid-latitudes in the early forecast range, 
indicating that while this model change is targeting stratospheric effects, its impacts are 
broader. 

 

Figure 8: Normalised difference in the RMSE (left panel) and forecast activity (SDAF, right 
panel) of the zonal wind forecast of the Off-Centring experiment vs a control. Verification 
versus ECMWF operational analysis over the 2/12/2021 to 28/02/2022 period. Negative values 
indicate reduced RMSE (SDAF) in the Off-Centring experiment. 



 

 

 

Figure 9: Same as Figure 7 for the Information Error (IE, left panel) and Noise Error (NE, 
right panel) measures. 

4.3. Impact of ATMS observations 

A standard activity in operational NWP development is the introduction of new observing 
systems that become available for use in an operational data assimilation context, or the 
improved exploitation of already available and used observing systems. As an example of this 
type of NWP activities we consider here the forecast impact of adding observations from the 
Advanced Technology Microwave Sounder (ATMS) instrument on board various polar 
orbiters (JPSS, NOAA- 20, NOAA-21) on a baseline system which ingests all other currently 
ingested observations. Over the test period (Dec 2022 – Feb 2023) the experiment which adds 
the ATMS radiances shows generalised improvements in the first guess departures (O-B) of 
the order 0.5% against most of the other observing systems (not shown). These improvements 
are reflected in improvements in standard verification measures like RMSE (Figure 10, left 
panel), most visible in the stratosphere and in the south hemisphere troposphere. The forecast 
activity (SDAF, Figure 10, right panel) is largely unchanged. The Information Error and Noise 
Error plots (Figure 11) show that both components of the error budget contribute to the 
reduction in RMSE, indicating that the addition of ATMS observations to the global observing 
system does indeed improve the statistical resolution of the forecast system and at the same 
time reduces the noise error component. 



 

 

 

Figure 10: Normalised difference in RMSE (left panel) and forecast activity (SDAF, right 
panel) of the temperature forecast of the ATMS experiment vs its control. Negative values 
indicate reduced RMSE (SDAF) for the ATMS experiment. Verification against ECMWF 
operational analysis over the 1/12/2022 to 28/02/2023 period. 



 

 

 

Figure 11: Same as Figure 9 for the Information Error (IE, left panel) and Noise Error (NE, 
right panel).	

4.4. Machine Learning Forecast Models 

A well-known feature of the first generation of Machine Learning “deterministic” (one-shot) 
weather emulators (e.g., GraphCast, Lam et al., 2022; FourCastNet, Pathak et al., 2022; 
Pangu-Weather, Bi et al., 2023; etc.) is that they produce overly smooth and unphysical 
forecasts with reduced spectral energy and also reduced forecast activity at increasing lead 
times (Bonavita, 2024). While this is often mentioned as a possible caveat in the 
interpretation of their forecast performance measures, it has so far proved difficult to quantify 
its impact. The application of the IE/NE decomposition can shed some light on this issue. As 
an example, we show in Figure 12 the forecast RMSE (top row), Forecast Activity (SDAF, 
second row), Noise Error (NE, third row) and Information Error (bottom row) of 500 hPa 
geopotential for GraphCast (black lines) and ECMWF operational forecasts (red lines) over 
the March 2024 – February 2025 period. In a traditional type of forecast skill measure like 
RMSE, GraphCast appears to provide superior performance over the ECMWF operational 
forecasts in all areas. When a more precise measure of statistical resolution such as IE is 
used, the picture is mixed. In the troposphere, where forecast activity of Graphcast is at 
realistic levels, even though decreasing with forecast lead time, the performance advantage of 
GraphCast (around 12 hours in added predictive skill) is confirmed by the IE measure.  



 

 

On the other hand, when one looks at surface variables (e.g., T2m in Figure 13) the IE/NE 
decomposition indicates that the ECMWF operational forecasts have comparable or better 
statistical resolution, and thus intrinsic forecast skill, than those produced by the GraphCast 
ML emulator.  This conclusion extends to other surface variables (e.g., 10 meter u/v winds, 
Mean Sea Level Pressure) and indicates that for these variables a significant contributor to the 
advantage of GraphCast in terms of RMSE (and ACC) derives from its relative reduction in 
forecast activity with respect to the ECMWF IFS. 

 

Figure 13: Geopotential 500hPa forecast RMSE (first row), forecast activity (second row), 
Noise Error (NE, third row) and Information Error (IE, bottom row) for GraphCast (black 
lines) and ECMWF operational forecasts (red lines) over the southern extra tropics (left 
column), tropics (middle column) and northern extra tropics (right column). Verification 
versus ECMWF operational analysis over the 1/03/2024 to 28/02/2025 period. 



 

 

 

Figure 14: As in Figure 13 for 2 metre temperature (T2m) forecasts. 

 

 

 



 

 

5. Conclusions 

In this note we have started from the examination of two recently proposed forecast skill 
measures, the Forecast Information and Forecast Noise (FTZP24), which have been devised 
to give an undiluted estimate of the statistical resolution of a forecast system. With respect to 
the original formulation of FI and FN in FTZP24, a few modifications have been introduced: 
a) we are using debiased anomalies in their definition; b) we are using the signed square root 
of the FI and FN defined in FTZP24; and c) we have extended the framework to allow for 
area-weighting in the computation of these forecast scores. With these modifications, FI and 
FN can be expressed as functions of standard forecast measures (ACC, SDAF, SDAV) and 
effectively synthetise information present in these quantities. Note that if the anomalies are 
not debiased, as in FTZP24, then the equivalent decomposition applies to the RMSE and the 
non-debiased versions of the activity and anomaly correlation but is equivalent. Specifically, 
FI can be viewed as a rescaled form of ACC (i.e., Eq. 11) where the covariance between 
forecast and observed anomaly is normalised by the variance of the observed anomaly only. 
This choice has the advantage of penalising overly smooth forecasts which are rewarded by 
the well-known “double penalty” effect. On the other hand, FI cannot be guaranteed to have 
an upper bound of one as ACC, and this fact can make its interpretation as a forecast skill 
measure difficult. For this reason, we have developed two related error measures, Information 
Error and Noise Error, that avoid the pitfalls described above and provide a meaningful and 
unambiguous decomposition of the forecast STDE for debiased anomalies (and RMSE for 
undebiased anomalies). Specifically, the IE/NE decomposition projects the total forecast error 
into components parallel and orthogonal to the observed anomaly. While both components 
need to be minimised to reduce forecast error, the reduction of the IE is more crucial and 
possibly more difficult to achieve. In particular, damping forecast activity will increase IE 
even when it reduces the overall RMSE. In this sense, one can interpret IE as a measure of 
the statistical resolution of the forecast system, i.e. the ability of the forecast system to 
distinguish outcomes conditioned on forecast outputs (Wilks, 2011; TTZ05).      

The rest of this note is devoted to applications of these new measures to better understand 
their characteristics and potential use cases. We first look at applying FI/FN to ECMWF 
operational medium-range forecast system. Results are consistent with results shown in 
FTZP24 and with the general understanding of current predictive skill of the NWP 
operational ensemble prediction systems. An interesting result of this exercise has been that 
simple post-processed products like the ensemble forecast mean have the same statistical 
resolution (i.e., information content) of the individual perturbed forecasts and lower statistical 
resolution than the unperturbed forecast. These results further support, in both quantitative 
and theoretical aspects, the conclusion that the advantage of ensemble mean/median products 
in standard forecast metrics (ACC, RMSE) with respect to the unperturbed forecast is based 
on their reduced forecast activity. On the other hand, our results also indicate that ensemble 
forecast mean has the lowest STDE for a given ACC (Figure 3), which supports the widely 



 

 

held assumption that ensemble averaging is an effective tool of removing noise from scales 
that become progressively less predictable for the forecast system in use. 

Another area of application of the new measures is in the standard NWP development cycle. 
For illustration, we present a few cases of recent upgrades proposed for the ECMWF 
Integrated Forecast System (IFS) model. Both upgrades introduce non negligible changes in 
the IFS forecast activity and the use of IE/NE is shown to allow a more quantitative 
evaluation of the improvement/degradation of the IFS statistical resolution as a result of these 
changes than what is possible with standard forecast skill measures. This is also true for the 
evaluation of the intrinsic forecast skill of Machine Learning Weather Prediction models, 
where the impact of less active, more diffusive forecasts on the statistical resolution of the 
forecast system needs to be assessed in a quantitative manner.   

The forecast error metrics described here are new additions to the set of NWP verification 
tools and more work is needed to better understand their capabilities and limitations. For 
example, the verification (truth) used in this note is model based (ECMWF operational 
analysis and/or own analysis verification). There are examples where this approach can lead 
to misleading results, e.g. when estimating changes due to changes in the observing system, 
which will also lead to changes in the activity of the verifying analysis. For these cases, it 
would be preferable to use independent observations. This and other refinements are left for 
further development.      

Finally, we emphasize that all the metrics described here should be used in combination with 
other forecast evaluation metrics to make an informed decision about proposed changes to the 
forecasting system. For example, both IE and NE are sensitive to changes in 
conditional/unconditional systematic errors whose reduction is also an important target of 
forecast system development. For the end user of NWP forecast products, the accuracy of the 
products in terms of minimising and quantifying their expected error will always be of 
paramount importance. For NWP and Machine Learning model developers, however, the 
ability to distinguish between the resolution and reliability components of the error budget will 
be crucial in order to understand whether new systems deliver improvements in the information 
content of the forecasts or a still useful, but less fundamental, improvement in their reliability. 
This especially in light of the fact that while in the NWP workflow calibration of raw model 
output is typically done in a separate post-processing step accessing a training dataset of 
forecast/verification pairs, in current ML model development the calibration step is absorbed 
in the model development phase and the loss functions more commonly used aim to minimise 
total error measures (e.g., RMSE, CRPS). 
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Appendix A 
Compared to the definition of information and noise in FTZP24, and as presented in the 
introduction here, the practical computation of these statistics makes two changes for 
consistency with the way the decomposition of forecast error into activity and anomaly 
correlation is normally computed at weather forecasting centres: 

 

1. The mean of the anomaly is subtracted (equivalently debiased) 
2. Area weighting is performed. 

 

Here we first present the statistics in a more standard summation form, representing exactly 
how the calculations are done in the code of the Iver forecast verification tool at ECMWF. 
Then we show how these modifications can be understood geometrically and how these 
statistics parallel the derivations given in the main text for the simpler case (the 
decomposition of RMSE without area weighting). 

Statistics are first computed on the level of a single forecast valid at a specific time, on one 
pressure level, and over a predefined region such as the northern hemisphere. These single-
forecast statistics are later aggregated using the unweighted mean (see below). This allows 
the formation of populations for statistical significance testing as described by Geer (2016). 
For a single forecast field and region as described, the basis of computation is the bias-
corrected anomaly for forecast 𝑑,,! 	and for the reference or ‘truth’ analysis 𝑑.,!, at one 
location 𝑖 out of the 𝑛 locations composing the field: 

 

𝑑,,! = 𝑥,,! − 𝑥8,! − ∑ 𝑤!$
!)" (𝑥,,! − 𝑥8,!)  (A1) 

𝑑.,! = 𝑥.,! − 𝑥8,! − ∑ 𝑤!$
!)" (𝑥.,! − 𝑥8,!)  (A2) 

 

The summation is the grid box area-weighted regional mean anomaly where the weights are 
proportional to the grid box area, which is computed using grid box central latitude  𝜆! and 
the latitude width Δ𝜆! 	as follows, with 𝑎	a normalising constant, such that: 

 

𝑤! = 𝑎 sin Δ 𝜆!cos 𝜆!   (A3) 

∑ 𝑤!$
!)" = 1    (A4) 

 

The forecast and truth activity are here the area-weighted sample standard deviations of the 
relevant anomaly, calculated as 

 



 

 

SDAF = ]∑ 𝑤!S𝑑,,!T
#$

!)"   (A5) 

SDAV = ]∑ 𝑤!S𝑑.,!T
#$

!)"   (A6) 

 

The area-weighted dot product of the forecast and truth anomalies, 𝑝, is common to the 
anomaly correlation and the information: 

 

𝑝 = ∑ 𝑤!$
!)" 𝑑,,!𝑑.,!   (A7) 

 

So that 

 

ACC = 9
SDAF×SDAV

   (A8) 

FI = 9
@ABC&

    (A9) 

IE = 𝑎𝑏𝑠(1 − FI) × SDAV (A10) 

 

And to compute the length of the noise vector, starting from a simple vector calculation from 
Figure 1c, but applying area weighting: 

 

𝑟  =   ∑ 𝑤!S𝑑,,!   − FI	𝑑.,!T
#$

!)" 	       (A11) 

 

so that noise error NE is computed as 

 

𝑁𝐸 = √𝑟   (A12) 

 

As mentioned, the measures presented in Iver and in the figures in this paper are then 
aggregated using a simple mean over the sample of forecasts generated from 𝑚 different base 
times 𝑗 so that we are usually showing  the sample mean information, noise, anomaly 
correlation and activities as follows, based on the information and noise calculations for each 
individual forecast 𝑗, where the index 𝑗 has been omitted so far for clarity: 

 

𝐹𝐼 = "
D
∑ 𝐹𝐼ED
E)"    (A13) 



 

 

NE = "
D
∑ NEjD
E)"    (A14) 

IE = "
D
∑ IEjD
E)"    (A15) 

ACC = "
D
∑ ACCjD
E)"    (A15) 

SDAF = "
D
∑ SDAFjD
E)"   (A16) 

SDAV = "
D
∑ SDAVjD
E)"   (A17) 

 

The figures we show are all based on these scores that have been meaned over forecasts 
(equivalently cycles). This averaging breaks the exact mathematical decomposition of RMSE 
or STDE into the other scores that we have presented, and which is strictly valid for a single 
cycle and forecast only. However, if the statistics do not have large variations with time, it 
can be shown mathematically that the errors are small (this is not included here as it would 
require an additional long appendix). We also see that in practice, and especially for scores 
like Z500, the decomposition remains reasonably closely valid, even when applied to the 
time-mean scores. 

It is not immediately obvious how the area-weighted, mean-subtracted versions of these 
scores follow the geometric interpretation presented in the introduction. To make the link, we 
first need to think about how removing a mean would be represented in the geometric 
approach. To do this, we can seek a decomposition of a vector 𝐚 into two vectors 𝐚’ and 𝐦  

 

𝐚 ∶= 𝐚G +𝐦    (A18) 

 

We then impose two conditions: that 𝐚’ and 𝐦 should be orthogonal, and that the 𝐦 =
(𝑚,𝑚,𝑚… . .𝑚) is the same length 𝑚 in every dimension. This scalar 𝑚 is our desired mean.  

To include area weighting, we also need to generalise the dot product, which we will denote  

 

< 𝐚, 𝐛 >	= ∑ 𝑤!𝑎!𝑏!$
!)"    (A19) 

 

where 𝑎! 	and 𝑏! are the distances along each unit vector. This notation reflects that in a 
broader sense we are defining an alternative inner product with which to measure length. 

To impose orthogonality of the mean in the case of a weighted inner product, we first take the 
inner product of 𝐚’ with itself, relying on this product being distributive, which is easily 
shown for the above specific definition. Hence, we obtain: 

 



 

 

< 𝐚G, 𝐚G >=< (𝐚 −𝐦), (𝐚 −𝐦) >=< 𝐚, 𝐚 > −< 𝟐𝐦, 𝐚 > +< 𝐦,𝐦 >  (A20) 

 

If 𝐚’ and 𝐦 were orthogonal according to this weighting, then Pythagoras’ rule would hold, 
i.e. 

 

<𝐚G, 𝐚G >=< 𝐚, 𝐚 > −< 𝐦,𝐦 >  (A21) 

 

It is therefore possible to achieve this orthogonality between 𝐚’ and 𝐦 if  

 

< 𝐦, 𝐚 >=< 𝐦,𝐦 >    (A22) 

 

Applying the weighted dot product (A19) to a debiased vector (A20) therefore defines the 
mean as follows 

 

∑ 𝑤!𝑚𝑎!$
!)" = ∑ 𝑤!𝑚#$

!)"    (A23) 

 

So that 

 

𝑚 = ∑ I'5'
(
')*
∑ I'(
')*

.     (A24) 

 

Since we have also defined that our weights sum to 1, we can ignore the denominator. We 
have done no more than recover the usual definition of a weighted mean, but we can now 
show how and why it is the appropriate definition of the mean to be used with the weighted 
distance measure represented by our generalised dot product (inner product). 

A consequence of defining the weighted inner product is that it implies that if we just rescale 
our vectors appropriately, we can use the standard Cartesian dot product and other 
geometrical tools. If the original forecast and truth fields are denoted 𝑥! as in the main text, 
then the weighted mean that we derived above only makes sense if our vectors are not 
rescaled but simply defined 𝒙 = (𝑥", 𝑥#, … 𝑥$).  (unlike the main text, here we do not use “ to 
denote this). However, there is another set of vectors where  

 

𝐚∗ = (√𝑤"𝑎", √𝑤#𝑎#, …8𝑤$𝑎$).   (A25) 

 



 

 

and we are applying a scaling transformation to the vectors. With this scaling, the standard 
dot product is the weighted inner product that we applied in the unscaled vectors: 

 

𝐚∗ ∙ 	𝐛∗ 	= 	∑ 𝑎!∗𝑏!∗$
!)" 	= 	∑ 𝑤!𝑎!𝑏!$

!)" =	< 𝐚, 𝐛 >.   (A26) 

 

(This broadly links to the notion of an inner product space, i.e. a space defined by the inner 
product, but it is much easier to think about scaling within one space in this case). With these 
scaled vectors we can apply the standard dot product and cosine triangle rule. We have 
already effectively made use of this alternative scaling (or alternative space) in the main text 
when, in order to make the RMSE equal to the length according to the dot product, we 
defined our vectors from 𝑥! to include a constant scaling 𝑤! =

"
√$

 for all 𝑖. 

To apply these concepts to forecast verification, we define the following scalars representing 
a weighted mean of each vector in the triangle formed by the forecast, truth and climatology: 

 

𝑚,8 = ∑ 𝑤!$
!)" (𝑥,,! − 𝑥8,!) (A27) 

𝑚.8 = ∑ 𝑤!$
!)" (𝑥.,! − 𝑥8,!) (A28) 

𝑚,. = ∑ 𝑤!$
!)" (𝑥,,! − 𝑥.,!) (A29) 

 

We can then define vectors to represent the bias corrected forecast anomaly, true anomaly 
and forecast error as follows:  

 

𝐝, = 𝒙𝒇 − 𝒙𝒄 −𝐦,8  (A30) 

𝐝. = 𝒙𝒕 − 𝒙𝒄 −𝐦.8  (A31) 

𝐝,. = 𝒙𝒇 − 𝒙𝒕 −𝐦,.  (A32) 

 

It is clear that these three new vectors also form a triangle, because 

 

𝐝, − 𝐝. = 𝒙𝒇 − 𝒙𝒕 − S𝐦,8 −𝐦.8T = 𝒙𝒇 − 𝒙𝒕 −𝐦,. (A33) 

 

so that  

 

𝐝,. = 𝐝, − 𝐝.    (A34) 



 

 

 

This is illustrated in Figure A1 for two dimensions.  

 

Figure A1: Visual representation of the relationship between forecast and observed mean 
and debiased anomalies. See text for details. 

Note that the mean vectors are always just scalar multiples of the diagonal vector (1,1,1, . .1) 
in however many dimensions. It is clear from the figure that in 2 dimensions, 𝐝,. = 𝐝, − 𝐝. 
makes a degenerate triangle. In other words, for a two-dimensional space, debiasing the 
anomalies makes the angle between the anomalies equal to 0 and the anomaly correlation 
equal to one. This is linked to the Bessel correction for computing standard deviation (the use 
of 𝑛 − 1 rather than 𝑛), which recognises there is one less degree of freedom available once 
the mean has been subtracted. Note that no statistics computed here include the Bessel 
correction, since it is assumed that in practice 𝑛 is large enough that 𝑛	 ≈ 	𝑛	 − 	1. 

 



 

 

 

Figure A2: Visual representation of the relationship between debiased anomalies and error. 
See text for further details. 

Figure A2 then exemplifies the triangle formed by the debiased, rescaled anomalies (vectors 
denoted by *) to take account of the area weighting. This is now notionally for a three 
dimensional (three point) forecast field where the triangle of Figure A1 is no longer 
degenerate and we can rotate our viewpoint to again put the debiased, rescaled true anomaly 
along the y-axis of the figure. The length of the forecast error vector will be denoted 𝑒∗, and 
similarly 𝑎.∗ and 𝑎,∗ denote the lengths of the true and forecast anomaly after debiasing and 
rescaling (area weighting). By expanding out these lengths in summation form we can show 
that they correspond to the standard deviation of forecast error (STDE), the standard 
deviation of the true and forecast anomaly (SDAV and SDAF) and that the angle between the 
latter two is the anomaly correlation coefficient ACC: 

 

𝑒∗ = 8𝐝𝐟𝐭∗ ∙ 𝐝𝐟𝐭∗ = ]∑ 𝑤!S𝑥,,! − 𝑥.,! −𝑚,.T$
!)L = STDE  (A35) 

𝑎.∗ = 8𝐝𝐭∗ ∙ 𝐝𝐭∗ = ]∑ 𝑤!S𝑥.,! − 𝑥8,! −𝑚.8T$
!)L = SDAV  (A36) 

𝑎,∗ = 8𝐝𝐟∗ ∙ 𝐝𝐟∗ = ]∑ 𝑤!S𝑥,,! − 𝑥8,! −𝑚,8T$
!)L = SDAF  (A37) 

 

The triangle cosine rule applied to the triangle 𝐝𝐟𝐭∗ = 𝐝𝐟∗ − 𝐝𝐭∗ defines the decomposition of 
the STDE into SDAV, SDAF and ACC as follows, with 𝜙 being the angle between the true 
and forecast anomaly, after debiasing and rescaling. 

 

(𝑒∗)# = (𝑎.∗)# + S𝑎,∗T
# − 2𝑎.∗𝑎,∗ cos𝜙    (A38) 

 



 

 

or equivalently 

 

(STDE)# = (SDAV)# + (SDAF)# − 2SDAV×SDAF cos𝜙  (A39) 

 

The cosine dot product rule hence defines the ACC in its expanded form as 

 

ACC = cos𝜙 =
𝐝$
∗ ∙𝐝%∗

5%∗5$
∗ =

"
5%∗5$

∗ ∑ 𝑤!S𝑥,,! − 𝑥8,! −𝑚,8TS𝑥.,! − 𝑥8,! −𝑚.8T$
!)L   (A40) 

 

In the case of equal weighting of 𝑤! =
"
√$

, these equations exactly recover the decomposition 

in Murphy and Epstein (1989). However, note that (RMSE)# = (STDE)# + (MEANE)# (as 
derived above, but applied to the error E) is required to put this into their exact form. The 
versions of STDE, SDAV, SDAF and ACC with area weighting are also clearly identical to 
the form being used inside Iver, as presented at the beginning of this appendix. The new 
forecast scores based on noise and information can similarly be derived from the new vector 
triangle, as for example 

 

FI	=	SDAF	/	SDAV	×	ACC   (A41) 

 

and this can be expanded to recover the summation formula given earlier in this appendix. 
Note that this also implies that the IE and NE, when debiased, are an orthogonal 
decomposition of the error standard deviation STDE. We have not explicitly distinguished 
the notation here in the same way as RACC vs ACC, but rather IE and NE are understood in 
the context of whether ACC is computed with or without subtracting the mean anomalies. 

Appendix B 
This appendix briefly discusses some of the edge cases that help understand the precise 
definitions of forecast information (FI), noise error (NE) and information error (IE), and for 
raising the question of these edge cases, we are indebted to the internal review by Martin 
Leutbecher and Thomas Haiden (both ECMWF).  

A first thing to notice is that forecast information is now defined as a rescaled version of 
ACC and keeps the same sign as ACC, while it was strictly positive in the original definition 
of FTZP24. This is done for two reasons. First, ACC values can at long forecast lead times 
randomly attain positive or negative values, and these changes are not a-priori predictable 
(i.e., they cannot be calibrated out). Secondly, a definition of FI in terms of just the 
magnitude of the forecast anomaly projection onto the observed anomaly would lead to an 
inconsistent relationship with the Information Error defined in equation 12.  



 

 

A further issue is that forecast information (FI) can be larger than 1, when the forecast anomaly 
and the anomaly correlation are large enough. In practice, this occurs in the very early forecast 
range, when ACC and FI are close to 1 and small chaotic variations in the forecast could project 
in such a way to produce FI > 1 (see Figure 3). A forecast with information greater than 1 is 
clearly not a better forecast than the perfect forecast (which has FI=1). And when averaging 
over a series of forecasts (equation A13) a set of imperfect forecasts with for example FI=0.99, 
1.01, 0.98, 1.02 would provide an apparently perfect mean score of 1. We prevent this issue by 
working mostly with information error and noise error defined as a Pythagoras decomposition 
of the RMSE or STDE, and hence always positive, and with optimality defined at zero 
(equation 13). The mean information error in the example above would be 0.015, clearly 
indicating that the illustrative series of forecasts is not perfect. Further, it would be very hard 
in practice to generate forecasts systematically with FI > 1, somehow making the forecast 
activity unrealistically high while retaining forecast skill (which in practice would likely be 
destroyed by the high activity). Therefore, we believe there is no likelihood of forecasters 
“gaming” information through adjustments in activity. In any case, as illustrated in Figure 3, it 
is important to monitor activity as one of the key aspects of a realistic forecast. Further, this 
issue is irrelevant for scores presented in terms of IE and NE. 
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