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Abstract 
 

We review the assessment of existing observations with Observing System Experiments (OSEs) and the 
Forecast Sensitivity to Observation Impact (FSOI) approach. Although care is needed when interpreting their 
results, the information they provide is largely consistent. The Ensemble of Data Assimilations (EDA) provides 
an affordable and manageable framework for simulating the impact of future observing systems. Recent 
experience comparing EDA predictions with the subsequent impact of real measurements gives us some 
confidence that, with appropriate interpretation and care, they provide useful information that can help guide 
the future evolution of the global observing system. 

Plain Language Summary 
	

This “Special Topic Paper” was originally presented to the ECMWF Science Advisory Committee (SAC) in 
October 2022. It has been reproduced here, with minor editorial changes, as an ECMWF Technical 
Memorandum to enable broader access to the document.  

The central question addressed in the paper is: How can we predict the potential impact of future observations 
on the quality weather forecasts produced with numerical weather prediction systems? This is clearly 
fundamental when trying to plan how the global observing system (GOS) should evolve, but it is extremely 
difficult to address in practice. To provide appropriate context, this paper starts by reviewing how the impact 
of the current, real observations is assessed, emphasising that this apparently straightforward task requires 
considerable skill and care when interpreting the results. We then discuss the use of ensemble methods 
introduced by ECMWF in 2007 designed to predict the impact of the future observations on theoretical 
estimates of analysis and short-range forecast error statistics. The strengths and weaknesses of these ensemble 
methods are discussed, and examples using both current, real and future satellite observations are presented.     
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1. Background 
This Special Topic Paper was originally presented to ECMWF’s Scientific Advisory Committee (SAC) in 
October 2022. It has been reproduced here as an ECMWF Technical Memorandum, with minor editorial 
changes, to enable broader access to the SAC document. 

The ECMWF Strategy 2021-2030 states: 

“ECMWF will continue to strengthen its key role, in collaboration with space agencies and the WMO, 
to define and support long-term visions for global observing system developments.” 

Observing System Experiments (OSEs) and Forecast Sensitivity to Observation Impact (FSOI) methods are 
used to assess the impact of current observations, and they can provide important insights into how the global 
observing system (GOS) should evolve (e.g. WMO, 2020). However, the long-term vision for the GOS also 
requires estimating the information content and potential forecast impact of future observing systems, 
sometimes before the instruments are developed. An assessment of this type will usually be based on simulated 
(or “synthetic”) observations. The most established approach for estimating forecast impact with simulated 
observations is to run Observing System Simulation Experiments (OSSEs) (e.g. Errico and Privé, 2018). These 
are significant computational exercises, requiring both the integration of a high resolution “nature run” (NR), 
which is used as a proxy for the true atmospheric state, and the simulation of all existing observing systems.  

Whilst ECMWF routinely supports OSSEs through the provision of the NRs, it does not conduct them. 
Running OSSEs at ECMWF would require significant resources.  However, in recent years, we have developed 
an alternative, computationally cheaper method for assessing new observing systems, using an Ensemble of 
Data Assimilations (EDA) technique. This approach estimates how the new observations reduce the statistical 
uncertainty in the analyses and short-range forecasts.  

Tan et al. (2007) pioneered the method, showing that the assimilation of simulated Aeolus measurements in 
an EDA system reduced the ensemble “spread”, and that this spread reduction could be used to estimate the 
impact of the Aeolus measurements. The EDA approach was subsequently used to estimate how the impact of 
GNSS-RO scales with observation number (Harnisch et al., 2013), and this work informed the 20,000 
occultation per day target, currently adopted by the International Radio Occultation Working Group (IROWG).  

In 2021, the SAC noted:   

"The SAC welcomes and supports the active role ECMWF plays in the preparation for future 
satellites, often in cooperation with satellite agencies, and evaluation of new data sets and their 
impacts. The SAC recognises the potential of using the EDA method to assess the contribution of 
existing and future observing system. However, like for other methods measuring impact, the 
interpretation needs to consider the limitations of the EDA calibration as well as the constraints of 
the configuration used for performing the evaluation of the existing or future observing system." 

A key aim of this paper is to outline our current interpretation and understanding of the strengths and 
weaknesses of the EDA assessment technique, based on recent and ongoing studies.  Clearly, it is important to 
engage with the space agencies on these matters when requested, but we must also be clear about the limitations 
in the information we provide.  
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Predicting the impact of a future observing system for NWP is very difficult with any method, because the 
overall signal will usually be relatively small when the measurements are added to the full observing system. 
In fact, it is recognised that assessing impact of real observations can now be challenging, because the NWP 
systems are already well constrained and skilful. Ideally, we want to demonstrate a statistically significant 
impact in the medium-range from a new observing system, but this can be difficult to achieve in a reasonable 
timeframe, so often a balanced judgment based on shorter-range forecast improvements and consistency with 
other observations, is required prior to operational use. It is useful to initially describe how real observations 
are evaluated, before explaining how we try to estimate the impact of a future system with the EDA.  

In Section 2, we review how real observations are assessed, using both Observing System Experiments (OSEs) 
and the Forecast Sensitivity to Observation Impact (FSOI) approach.  Both methods are routinely used to 
quantify the impact of components of the existing observing system, and they help support choices about the 
future evolution of the GOS based on current impact.   

The main role of the EDA in the IFS is to provide flow dependent uncertainty information in the HRES system 
and contribute to the representation of initial condition uncertainties used in the ensemble forecasts. We review 
the key aspects of the EDA in Section 3, with a focus on understanding the sources of the EDA “spread”, the 
current need to inflate the spread values when constructing the covariance matrices used in operations, and the 
possible reasons for this “under dispersion”.   

In Section 4, we present the use of the EDA for assessing new observing systems. The similarities with 
theoretical 1D-Var information content studies are noted. Previous EDA studies by Tan et al. (2007) and 
Harnisch et al. (2013) are briefly reviewed. Two recent studies funded by ESA, investigating the short-range 
forecast spread-skill relationship for real GNSS-RO observations (Section 4.3), and assessing the impact of a 
proposed constellation of microwave sounders on small satellites (Section 4.4), are then summarised. 
Importantly, both studies have compared the spread reductions achieved with simulated and real observations, 
and they have shown good consistency. 

Section 5 is a summary.  

2. Assessing the impact of existing observing systems 
Assessing the impact of existing observations can provide important insights into how the global observing 
system should evolve. In this section, we review how we assess existing systems with using Observing System 
Experiments and the Forecast Sensitivity to Observation Impact method.  

2.1 Observing System Experiments 
An observing system experiment (OSE) measures the impact of a change in the real observing system. A 
denial experiment starts from the full observing system and removes one or more components. Denial 
experiments are used to assess the relative benefits of different types of observations. An addition experiment 
measures the impact of adding a new component to the existing observing system. These are used before 
deciding whether to activate a new observation type in the operational forecasting system.  
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Figure 1: Standard deviation of Analysis error as a function of the number of observations. Here, 
the background error is 1 unit and each observation has an error of 1 unit, with no error correlations 
or biases. If 10 observations represent the current global observing system, then the orange line 
shows a denial experiment and the green line an addition experiment. The red line represents a low 
baseline addition experiment. As more observations are added, their individual impact reduces. 

A fundamental difficulty with measuring changes in the observing system is that analysis and short-range 
forecast error statistics are expected to reduce following the inverse of the square root  of the number of 
observations (See Figure 1, assuming all observations have the same error and are uncorrelated). A small 
modification within a much larger observing system typically makes only a small impact on the analysis and 
forecast error statistics, as illustrated in the addition and denial examples in Figure 1. This makes it hard to 
distinguish the signal of the change in the observing system from the natural chaotic noise in any weather 
forecast (Geer, 2016).  

Some studies try to circumvent this by performing low baseline, poorer quality experiments, represented by 
the red line in Figure 1. This seeks to exclude most other observations in order to get a larger signal from 
adding the observing system of interest. A typical low baseline includes conventional data plus observations 
from one satellite, but incorrectly uses settings that have been tuned with the full observing system, such as 
the background error (e.g. Kelly et al., 2008). This can give insufficient weight to the observations under test, 
though Duncan et al. (2021) showed that for smaller, but still significant perturbations of the observing system 
(no microwave sounders), the issue of background errors is less important. The issue of an incorrect 
background error can also be overcome using an analysis reinitialization approach, where the background 
always comes from the full observing system (see Geer et al., 2014). However, these are not the only issues 
with the low baseline approach. A sub-optimal observing system, for example one with an uncorrected bias, 
might be able to show a beneficial impact on top of a low baseline system, but this impact is probably 
overestimated, and in the worst case the new data could degrade the analysis when added to a more complete 
observing system. Conversely, observations sensitive to nonlinear processes like cloud and precipitation may 
cause problems in a system where the background is too far from the truth, whereas they might be used more 
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effectively when making small corrections in a more linear regime that has been found by using other 
components of the observing system. Other synergies between observations, such as the combination of limb 
(e.g. GNSS-RO) and nadir (e.g. radiosonde or sounder) measurements, may also be important. Assimilation 
experiments performed outside the main operational centres can also resemble a low baseline approach, since 
the experimentation may not include the full observing system and may not have access to a state-of-the art 
assimilation framework. For these and many other reasons, low baseline experimentation can be unrealistic, 
and it is most informative to measure the impact of an observing system in the context of all other observations 
in the best possible assimilation framework.  

A potentially problematic approach used in some studies is to add observing systems progressively. This makes 
the impact of each observing system dependent on the order in which it was added to the system, as is obvious 
from Figure 1. The main context in which this is acceptable is in measuring the saturation of errors when 
progressively adding a set of interchangeable observing systems (e.g. Duncan et al., 2021). 

Apart from the configuration of the experiments, there are many other challenges in interpreting OSEs. First 
is measuring the skill of the forecast or the quality of the analysis. It is hard to know how to trade off impacts 
at different forecast ranges, in different areas, or on different variables. Statistics can be aggregated to a single 
number (such as the Met Office NWP index) or a visual table (such as the ECMWF scorecard). However, it is 
important to understand the details, but these can amount to thousands of different plots. An alternative strategy 
is to concentrate on a single representative measure, such as the error in the 500 hPa geopotential height (Z500) 
in the medium-range. Outside the tropics the 500 hPa geopotential height measures the fundamental target of 
medium-range forecasting, which is the synoptic situation; verification of other fields such as temperatures 
and winds often give very similar results (Geer, 2016). Section 2.1.3 will discuss this further.  

A second issue is finding a reference against which to measure the errors, given that the truth is not available. 
By definition the operational analysis using the full observing system is statistically the best estimate of the 
atmospheric state. However, using this to verify a forecast can be problematic due to the error correlations 
between analyses and forecasts. Verification ‘against observations’ sounds like a good thing but it means 
verifying against a partial subset of observations with random errors that are much larger than in the analysis, 
with more limited coverage, and with the systematic errors characteristic of that observation type. Third, the 
weather is a chaotic dynamical system in which small perturbations can grow nonlinearly into large errors in 
the subsequent forecasts. This makes it challenging to establish statistical significance, it means that 
experimental case studies (such as a single tropical cyclone) can be unreliable guides to true performance, and 
it complicates the link between the quality of the analysis and that of the subsequent forecasts, given that much 
of the error growth is driven from very localised areas.  

An OSE is still the gold standard for understanding the impact of changes in the observing system, as long as 
it is made in the context of the full observing system and uses a state-of-the-art assimilation system. However, 
it is important to recognise the challenges that are described in more detail in the following subsections. (Some 
mathematical details on measuring analysis quality and forecast skill are given in the Appendix.)   
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2.1.1. Importance of the reference 
Since there is no perfect reference, it is good practice to verify against both observations and analyses. In the 
research department it is common to use the statistics of background departures. Since these are calculated 
across the global observing system, it would be hard to find a more comprehensive set of observations for 
validation. The downside is that background departures are only routinely computed for the 12-hour forecast. 
It also means that verification is being done in the observation space, even if that is satellite radiances or 
bending angles, which need expertise to interpret. Direct observations of the forecast variables, such as 
radiosonde temperature or surface pressure, can be more easily used in observational verification at all forecast 
ranges, but these have the limitations of incomplete coverage (often dominated by highly populated areas of 
the northern hemisphere) and the relatively large errors in the observations themselves.  

 

Figure 2: Forecast error in 850 hPa relative humidity in the tropics (20°N to 20°S) as a function of 
forecast day, computed against the operational HRES analysis (solid) or the experiment’s own 
analysis (dashed). Against own-analysis, the apparent 0-hour forecast error is zero; 0-hour forecast 
error against the operational analysis was estimated from earlier studies to save time (Geer et al., 
2010). 

Verification against analysis has the advantage of complete coverage and of being based on the statistically 
best estimate of the atmospheric state. However, the results can be dominated by the error covariance term 
between the errors in the forecast and the errors in the reference (see also appendix for further details). Hence 
the choice of analysis to use as a reference is important. An extreme example of the problem is seen in the 
humidity field in the tropics (Figure 2). At a 12-hour forecast range, the RMSE is around 40 % smaller when 
computed against the experiment’s own analysis than when it is calculated against the operational analysis. 
Since the 12-hour forecast is used as the background in the data assimilation, the resulting analysis is strongly 
correlated with the 12-hour forecast. Another way to think about this is that 12-hour RMSE computed against 
own analysis is also a measure of the size of the data assimilation increments. The effect of adding new 
observations is often to increase the size of the increments, reduce correlations between forecast and analysis, 
and hence to apparently increase the size of the RMSE (e.g. Bouttier and Kelly, 2001; Geer and Bauer, 2010). 
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The operational analysis used in the verification in Figure 2 is made using the operational 12-hour forecast. 
This has a different realisation of the forecast error, and hence is less correlated with the 12-hour forecast in 
the experiment. The 0-hour forecast validation against the operational HRES analysis (strictly, analysis vs. 
analysis verification) is similar to comparing two different members of the EDA ensemble, so the apparent 
error does not reduce to zero. The problem of using the operational analysis as the reference is that it can favour 
experiments that use the same observing system as the operational system. Systematic changes in the analyses 
and forecasts introduced by observations could be particularly problematic: for example it is thought that 
aircraft observations can bias upper-tropospheric temperatures in the analyses and short-range forecast, 
creating a systematic error with a spatial pattern that follows the main commercial airways over the US, 
Atlantic and Europe. Through patterns of systematic error, and possibly simply because similar observing 
systems make corrections to the analyses and forecasts in similar ways, verification against operational analysis 
can artificially reduce the RMSE in favour of similar observing systems.  

 

 

Figure 3: Normalised change in the RMSE vector wind forecast error at 200 hPa in the northern 
extratropics resulting from a denial of all conventional observations. For three different verification 
references, the operational analysis, radiosonde observations, and own analysis, the results are 
completely different in the short-range. Error bars represent the 95 % confidence interval following 
Geer (2016). Reproduced from the right hand panel of Fig. 3, Bormann et al., 2019. 

For midlatitude dynamical verification, the issue is not as extreme as in the tropical humidity, but it is still 
significant. In the context of observing system denials, Lawrence et al. (2019) and Bormann et al. (2019) 
examined changes in RMSE with three possible references, own-analysis, operational analysis, and 
observations (e.g. Figure 3). For the 12-hour forecast in this example, the apparent increase in RMSE is 40 % 
when using the operational analyses as a reference, and just 10% against observations. Even at forecast day-2, 
verification against operational analysis gives twice the forecast degradation as measured against observations 
(10% vs. 5%). Though the use of the observational reference has its issues, this suggests that verification 
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against the operational analysis gives an inflated estimate of the degradation caused by removing observing 
system components, out to at least day-3. As the forecast range increases, due to rapid error growth in the 
midlatitudes, the true errors in the forecast become relatively large compared to the errors in the reference or 
the error correlation term (Eq. A3, see Appendix) so the choice of reference becomes less important in the 
longer-range forecast. For the most reliable forecast evaluation at short forecast ranges, it is typical to favour 
observation-based measures as the most reliable verification reference. 

2.1.2. Growth of forecast errors 

 

Figure 4: RMSE in geopotential forecasts at 500 hPa in the northern midlatitudes (solid) and in the 
tropics (dashed). 

The atmosphere is a dynamic system with sensitive dependence on initial conditions, in other words a chaotic 
system. In the midlatitudes, baroclinic errors grow rapidly over the first 10 days of the forecast (Figure 4, solid 
line) and start to saturate beyond this. However, in the tropics, error growth is much slower but shows little 
sign of saturation (Figure 4, dashed line). As discussed, this means that true forecast errors in the tropics do 
not always dominate the errors in the reference or the covariance term between the forecast error and the 
reference error (Eq. A3, see Appendix). Also, the bias term can be much more important (Eq. A2). A 
consequence of chaotic error growth, particularly in the extra-tropics, is that even the smallest perturbation in 
the system can grow into a large synoptic-scale error. The EDA uses this effect to generate multiple different 
realisations of the possible analysis using perturbed observations and a perturbed model, and even a purely 
technical perturbation to the system can generate a similar effect (e.g. Geer, 2016).  
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Figure 5: Size of the 95% statistical significance range for 500hPa geopotential height forecast in 
the extra-tropics, as a function of the number of forecasts in the sample, and of the forecast range. 
The significance range is expressed as a percentage change in the RMSE, normalised by the RMSE 
in the control experiment. The impact of adding one AMSU-A to the full observing system is around 
a 0.5 % reduction in the RMSE at day-5, meaning that at least 500 separate forecasts would be 
needed to measure this change with statistical significance. Reproduced from figure 15a of Geer 
(2016).  

One of the difficulties of forecast verification is deciding whether a difference in the forecast quality has come 
from the change being tested, such as addition of a new observing system, or whether it is just the consequence 
of chaotic error growth. This is the role of statistical significance testing. However, chaotic errors are often 
large compared to the small signals being measured in an addition or denial experiment. This chaotic noise can 
be reduced by running experiments for long periods; Figure 5 shows how the impact of a single AMSU-A, 
which reduces forecast error by around 0.5% in the medium-range, would need to be aggregated from around 
500 separate forecasts to attain statistical significance at forecast day-5 (Geer, 2016).   

A final consequence of chaotic error growth is the importance of small areas of high sensitivity, often mapping 
onto baroclinic features. The existence of these sensitive areas is clearly shown by adjoint modelling (e.g. 
Rabier et al., 1996). However, the existence of sensitive areas may make short-range verification an unreliable 
predictor of changes in the medium-range forecast skill. Imagine a new observing system that predominantly 
improves the analysis in the subtropical subsidence regions. These are areas which seem to have very small 
influence on the subsequent forecast; the short-range verification might be improved, but if the new observing 
system was unable to improve the analysis in areas of rapidly growing forecast errors, it might not have any 
effect on the medium-range forecasts. A similar effect is seen in the decorrelation of measured forecast skill at 
longer ranges: just because the day-3 forecast is good does not mean the day-10 forecast will also be good (e.g. 
Geer, 2016). This is mainly a caution against placing too much weight on the short-range verification, which 
is often a temptation if statistical significance cannot be established in the medium-range. 
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2.1.3. Summary 
For decades, medium-range weather forecasting has used the midlatitude geopotential height errors at 500 hPa 
as a main indicator of synoptic forecast quality. This can seem overly reductive. However, these errors are 
easy to measure, since they far outweigh any errors in the reference, and they rapidly outgrow the error 
covariance term that makes the choice of reference so important in the earlier forecast range. Finally, the 
medium-range forecast is an effective filter, taking whatever information is useful from the observations (in 
areas where the errors are rapidly growing) but ignoring observational information in areas that don’t matter 
(in areas of decaying errors). It is hard to measurably improve the medium-range synoptic forecast, due to the 
size of the chaotic variability, and due to the relatively small signals involved in high-baseline addition or 
denial experiments (Figure 1). But for these reasons, a statistically significant reduction in the day-5 
extratropical 500hPa geopotential height RMSE is an unambiguous signal that an observing system has a 
beneficial impact. Verification of the short-range forecasts, and of areas or fields with more complex error 
patterns, such as the stratosphere, the tropics, or clouds and humidity generally, is also important, but needs to 
be approached with much greater caution.   

2.2 Forecast Sensitivity to Observation Impact (FSOI) 
Forecast Sensitivity to Observation Impact (FSOI, Langland and Baker, 2004) is an adjoint or ensemble-based 
method that enables the simultaneous assessment of how different groups of observations contributed to the 
reduction of a globally integrated, quadratic function of short-range forecast errors. It is argued that the reduced 
error in a 24-h forecast from the analysis, compared to the 36-h error forecast from the background, is due to 
the work done by the observations to improve the description of the atmospheric state. Using the adjoint (in 
the ECMWF implementation) of the forecast model, the forecast error differences, usually expressed as a total 
energy norm, are traced back in time (linearly) and attributed to individual observations according to their 
weight in the analysis, and relevance to the chosen metric. Given that FSOI relies on the use of a linearised 
version of the forecast model, it is only valid to evaluate short-range forecasts (0 to 48 hours, Janisková and 
Lopez, 2013). As discussed in the previous section, FSOI results at short-range can only be considered a partial 
indicator of medium-range forecast impact.   

The choice of forecast error measure, including the verifying reference, is an important aspect of the FSOI 
application, and it needs to be decided at the start of the FSOI calculations. Most NWP centres use a dry or 
moist total energy norm as an overall measure of forecast skill, obtained by verifying against the own analysis. 
The choice of dry or moist energy norm can have some impact on results and conclusions subsequently reached 
(Marquet et al., 2020), as it leads to different weighting of forecast errors across variables and levels. The 
choice of verifying reference can also have a significant impact on the results, as errors in the verifying analysis 
can confuse the interpretation of the impact of the observations. This can be due to biases in analysis and 
forecast, as well as correlated errors between analysis and forecast, and this problem is very similar to the 
issues highlighted earlier in the context of short-range forecast verification of OSEs. While the use of own-
analysis verification is most common for FSOI applications, Todling (2013) and Cardinali (2018) tested instead 
the use of an observation-based forecast error metric, to avoid some of these issues. Necessarily, results 
differed from the analysis-based FSOI, not least due to the geographical and geophysical sampling of the 
observing system and giving more weight to the stratosphere because of the satellite information the. At 
ECMWF, the default configurations used in operations applies the dry total energy norm to assess the impact 
on T+24 forecasts (Cardinali, 2009), using own-analysis verification, and the system is run twice daily based, 
using the long-window configuration of the HRES system. 
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Since FSOI provides an impact measure for individual observations, it can be aggregated in any way, and this 
is a particularly attractive feature. It allows affordable detailed analyses for multiple observation types, and 
also subsets of observations, such as individual stations or channels of an instrument, specific geographical 
regions, observed variables, etc. Results are typically reported either as total FSOI for a particular observation 
set, or as FSOI per observation. Some aggregation is needed, because individual values are noisy. In this 
context, FSOI suggests that just over 50% of the observations have positive impact, reflecting the statistical 
nature of FSOI (Lorenc and Marriott, 2014). As a result, a thorough interpretation of FSOI results should 
include statistical significance testing. 

FSOI can be particularly useful for assessing the value of remote observations which are considered 
meteorologically important, but are difficult to assess in OSEs, as the size of the impact signal will be 
comparatively small and localised. For example, in support of the WMO Systematic Observations Financing 
Facility (SOFF https://public.wmo.int/en/our-mandate/how-we-do-it/development-partnerships/Innovating-
finance), we showed that the Synop FSOI per datum in the Pacific Islands is more than 4 times the impact per 
datum achieved in the US or Europe (Figure 6), and this is useful information to justify continued investment 
in such observations. Of course, high density observations over Europe have value for short-range European 
forecasts, and more observations just upstream, over the Eastern North Atlantic, would be very useful. 

 

Figure 6: FSOI per datum (J/kg, positive values denote better forecasts) for SYNOP stations in 2020 
- various regions (CONUS denotes the Contiguous USA). 

FSOI also enables us to monitor and summarise how the contributions of different observing systems evolve 
over time. For example, Figure 7 shows such a plot for 2020 to June 2022. There are several features of interest: 
a) the increase of GNSS-RO impact (brown) with the implementation of COSMIC-2 assimilation in March 
2020 and Spire data in May - removed at the end of September (the Spire data were made temporarily available 
because of the Covid pandemic), b) the drop in aircraft numbers and impact (cyan) in March 2020 followed 
by a slow recovery (see Ingleby et al., 2021), c) the impact of Aeolus wind data (yellow dashed line, Rennie 
et al., 2021), which was about 4% of the total when introduced in January 2020, which is considered very large 
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for a prototype satellite, reflecting the relative sparsity of wind data, especially in the tropics. In Figure 7 the 
20-day mean values still show some noise, partly due to fluctuations in observation numbers, but much of it 
can be considered as random. Overall, in situ observations (densest in the northern hemisphere) tend to have 
slightly larger FSOI in the boreal winter than the summer, reflecting slightly larger background errors in winter. 
Over the last eight or so years (not shown) there has been a strong increase in the impact of microwave data, 
especially the humidity channels (MWWV, black in Figure 7) with the addition of several instruments and the 
move to all-sky radiance assimilation (Geer et al., 2017). 

 

Figure 7: Relative impact of different observation subsets (% of FSOI), 20 day mean. 

Conceptually, FSOI and OSEs are very different, and they are usually seen as complementary pieces of 
information. OSEs measure the cumulative impact of removing (or adding) observation subsets, including any 
effect via adjustments to bias correction, whereas FSOI gives results linearised about the ‘all observations’ 
states. Therefore, FSOI does not measure the impact of removing the observation type from the system. For 
example, if an observing system provides 20% in FSOI, this does not mean that forecast errors will increase 
by 20% if it is removed. The DA system will automatically re-tune, giving more weight to other observations 
by taking account of the degradation of the background, and the loss of skill may be smaller. The different 
behaviours of OSEs and FSOI have been highlighted by Eyre (2021). The OSE results are more resilient to the 
removal of observational information from well-observed variables, but not when denied from poorly observed 
variables. 

As in the case of OSEs, FSOI results will depend on the maturity of the NWP system used, including the 
number and diversity of observing systems assimilated. Two different NWP systems may give very different 
results. In the case of FSOI, an important caveat is that results are very sensitive to assigned observation errors. 
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Overweighting an observation type can lead to a misleadingly large FSOI for that observation type. In 
situations where an observation type is over-weighted to the extent that it gives negative impact in an OSE, 
FSOI may misleadingly suggest particularly large positive influence from this observation type relative to 
others (Lupu et al., 2015). FSOI therefore requires careful analysis to avoid misinterpretation, and ideally it 
should be used alongside OSEs. 

In general, FSOI has a less important role at ECMWF when assessing whether a new observing system should 
become operational, and the relevant OSEs are used instead for this decision. FSOI is used primarily for 
diagnostic purposes. For these, either the operational database of FSOI values for each observation is available, 
or dedicated RD experiments can be run. FSOI is not calculated by default for RD experiments. 

3. Ensemble of Data Assimilations 
We use the EDA system in the assessment of new observations, but the EDA is primarily designed to provide 
flow dependent uncertainty information. This section outlines the EDA method and how it is used in the main 
applications.  

3.1 Method 
The Ensemble of Data Assimilations (EDA) (Isaksen et al., 2010; Bonavita et al., 2016) has the dual role of 
providing flow dependent covariance estimates for the hybrid 4D-Var system, and it contributes to the 
estimation of the initial conditions used in the ensemble forecasting system (ENS). In the EDA, each perturbed 
ensemble member performs an independent 4D-Var analysis update (Courtier et al., 1994; Rabier et al., 2000). 
The EDA is a variational implementation of a Monte Carlo approximation to the standard Kalman filter 
(Houtekamer and Mitchell, 1998), also known as the perturbed observations ensemble Kalman filter (EnKF), 
where observations in each member are perturbed according to their assumed observation error covariances. 

3.2 EDA Spread: Source and reliability 
In theory, if all sources of uncertainty in the assimilation system are accurately sampled, the analysis and 
background covariance matrices, given as (A, B), respectively, sampled from the ensemble members are, on 
average, unbiased estimators of the error covariances of the system. In practice, the “raw spread” calculated 
directly from EDA members is lower than the corresponding error statistics estimated from cross validation or 
spread-skill relationships (see Bonavita et al., 2016). This “under dispersion” of the EDA is common to 
most/all operational ensemble data assimilation systems, and most employ methods for covariance inflation, 
typically multiplicative or additive inflation (see review by Houtekamer and Zhang, 2016). At ECMWF, 
however, there is no inflation of the cycling EDA members, and the focus is on improving the modelling of 
the sources of uncertainty.  

The “reliability” characteristics of the ECMWF EDA are thus dependent on our ability to model the sources 
of uncertainty, including observation errors, model uncertainty, boundary and forcing term uncertainty and 
system uncertainty (see Houtekamer and Zhang, 2016, Table 4, for a list of error sources). Observation 
uncertainty is modelled by the perturbed observation approach that adds random perturbations with the 
standard deviation of the assumed observation error to the observations used in each member. The model 
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uncertainty parametrization is identical to the one used in the ensemble forecasts (Lock et al., 2019), and it is 
added to the model of each ensemble member. Boundary and forcing terms are only partially represented with 
climatological SST perturbations. Land, sea ice and snow-covered surfaces are not explicitly perturbed. System 
uncertainty is not explicitly accounted for, but we attempt to reduce its amplitude by applying the same 4D-
Var system in each member as in the unperturbed analysis, apart from the differences in resolution and number 
of outer loops for cost considerations. 

There are several sources of bias in the current uncertainty estimates. Observation error amplitude and 
correlations are sometimes simplified. For example, we omit the spatial correlation of AMV observation errors 
for computational cost reasons and increase their standard deviations to compensate. More generally, it is 
conceivable that the lack of explicit spatial observation error correlations in other dense observing systems 
(e.g., microwave and infrared sounders) could be a significant source of missing variance in the EDA error 
budget (Liu and Rabier, 2002). Model error uncertainty is calibrated for performance in the ensemble forecast 
system, but in some areas, terms are omitted or reduced. For example, we reduce the perturbations in the 
boundary layer for stability, and there is also a lack of explicit perturbations to the surface fluxes (Leutbecher 
et al., 2017). Further omissions are a lack of perturbations in the land surface models, which will reduce 
boundary layer spread in the atmospheric boundary layer. 

The under dispersion of the cycling EDA system means we need to apply inflation to the covariances A and B 
calculated from the raw EDA at the point where they are used. For the background errors, B, currently a global 
inflation factor of 1.34 is applied when calculating background errors standard deviations from raw EDA 
spread values. This factor is heuristically derived from testing which covariance inflation gives the best 4D-
Var performance, both in terms of observation departures and medium-range forecast scores, and it changes 
over time with updates to the system. This multiplication is applied inside the analysis, where there is also a 
further modification of the amplitude to account for the difference in global variance at different inner loop 
truncations. 

A remaining question is whether the relative spread changes we see by comparing EDA's run in a simpler 
configuration, for example the lower resolution and fewer members used when assessing new observations, 
are representative for changes we would see in the full resolution system. This has been addressed in the 
context of designing lower resolution and fewer members EDA experiments, to test the impact of proposed 
changes to the full resolution system (Lang et al., 2019). In the majority of cases, the changes in the low-
resolution system are representative, with only a minority of changes requiring full resolution testing. For EDA 
observation impact studies, we can likewise use fewer members. Lower resolution will likely give similar 
results for most observation types, with the provision that certain observation types are more sensitive to 
resolution and need more resolution, for example TCo639 (18 km spacing) rather than TCo399 (29 km 
spacing). 

There are currently several areas of work being considered to improve the reliability of the EDA. These include 
improved model uncertainty parameterizations, better modelling of observation errors including horizontal 
correlations, and a reduction of the resolution gap between the EDA and the high-resolution analysis. By 
addressing the sources of unreliability while not inflating the cycling EDA, we aim to stepwise improve the 
reliability of the EDA. 
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3.3 Use of EDA in Ensemble Forecasts 
Buizza et al. (2008) examined ensemble initial conditions based on the EDA. They found that initial 
perturbations based solely on the EDA did not generate sufficient ensemble spread to obtain reliable ensemble 
forecasts. Their study also looked at the combination of initial perturbations based on the EDA and 
perturbations based on the leading initial singular vectors (SV), which led to a larger ensemble spread that 
better matched the growth of the error of the ensemble mean. The combination of EDA and singular vector 
perturbations has been used operationally since 2010, and the amplitudes of the singular vector perturbations 
have not changed significantly since 2011. The need for this kind of inflation may disappear with future 
improvements in the EDA reliability, but it currently has implications for using the EDA to estimate the 
medium-range impact of new observations (Section 4.5).  

4. Using the EDA to estimate the impact of new observing systems 
As discussed in Section 3, the cycling EDA system is designed to provide flow dependent covariance 
information. Currently, like most operational ensemble-based DA systems, it is under dispersive, so in practice 
the “raw” covariance matrices have to be inflated for operational use in the 4D-Var, and singular vectors are 
still required in combination with the EDA when initialising the ensemble forecasts. 

In this section, we outline how the EDA is used to assess the impact of new observing systems and provide 
examples from previous and ongoing work. In this application, we are investigating how the new simulated 
observations change the estimates of the analysis and short-range forecast error statistics provided by the EDA 
These changes in the error statistics are usually averaged over both large spatial scales and over a period of 
around a month, so it is a large scale, statistical measure of the observation impact. The EDA method does not 
provide a useful framework for assessing how the new observations improve forecasts of specific, high impact 
weather events.  

Ideally, we would like to estimate the impact of the observations on the medium-range forecasts, but the EDA 
observation studies usually focus on the analysis and short-range, because the observation impact is clearest 
there. Currently, the EDA method is not ideal for the assessment of medium-range impact. It can be extended 
to longer forecast ranges (Section 4.5), but the interpretation of these results is more complicated, because the 
singular vectors needed in the ensemble system to achieve reliability are not included in the EDA.  

4.1 Interpretation, link to OSSEs and simulation    

4.1.1. Information content interpretation 
The use of the EDA for assessing new observing systems can be interpreted as a 4D-Var information content 
approach, analogous to 1D-Var studies (e.g. Rodgers, 2000). It provides a theoretical estimate of how the 
(cycling) analysis and short-range forecast error statistics (A and B, respectively) should respond to 
assimilating a new set of observations. In the linear limit, these changes in the error statistics are dependent on 
the assumed observation error covariance, R, rather than the values of the new observations, y.  
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Clearly, the EDA must provide a theoretical estimate of the uncertainty reduction because the simulated 
measurements can reduce the spread values without improving the estimate of the atmospheric state. However, 
it will be demonstrated that real and simulated COSMIC-2 measurements produce very similar spread 
reductions in the EDA (Section 4.3.1). The key requirements are producing simulated observations with 
realistic short-range forecast departure statistics (o-b), and using an accurate estimate of the observation error 
covariance matrix, R (Linearity assumptions can break down if an inappropriate R matrix is used in the EDA).  

As the EDA is a cycling system, it estimates the accumulated impact from both the previous and the latest 
observations. The cycling also means we can estimate the impact of mass measurements on the wind field, for 
example how the GNSS-RO or microwave sounder measurements impact the tropical wind uncertainty 
estimates. This is not possible in a 1D-Var study. 

4.1.2. Relationship to OSSEs 
There are obviously many computational and technical differences with OSSEs, and we do not discuss OSSEs 
in detail here (see, Errico and Privé, 2018).  However, a key difference is that OSSEs can provide direct 
estimates of analysis and forecast error vectors, 𝛆𝐚and 𝛆𝐟, respectively. This is because the true state is defined 
by the nature run. In OSSEs, covariance matrices, like A and B, can then be computed from the statistics of 
these error vectors. In contrast, the EDA is a cycling, error propagation model that attempts to estimate the A 
and B matrices directly, without reference to a true state. 

OSSEs are computationally expensive when compared to the EDA, but it can be argued that they should 
potentially provide a more comprehensive assessment of the observation impact. We would argue that having 
access to both EDA and OSSEs when assessing a new observation should be beneficial, because the impact 
will differ from system to system. On the interpretation of OSSEs, Errico and Privé (2018) make many of the 
same points made in Section 2 for OSEs. In particular, they note that OSSEs provide statistical information on 
the observation impact. The impact of the new observations when added to the full observing system may be 
“modest”, but using a reduced observing system will provide misleading results. Case studies from OSSEs do 
not generally provide robust statistics from which to draw confident conclusions. “Legitimate” OSSEs are 
unlikely to provide “extraordinary impacts”, and decision makers should have reasonable expectations about 
the new data.   
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4.1.3. Method: simulation of observations used in EDA 

 

Figure 8: Typical simulation system used to produce observations for the EDA computations. Note 
that errors are added both in this simulation step and later during the EDA.  

The EDA computations require a simulated dataset generated with a system illustrated in Figure 8. There are 
three main steps. High quality atmospheric state information is interpolated to the observation locations. A 
forward model maps the state information to observation space. Noise is added to the simulated data and it is 
stored ready for assimilation alongside real data. 

There have been differences over time in how this simulation system has been implemented at ECMWF as 
understanding has evolved. For example, Tan et al. (2007) used Met Office short-range forecast information 
to ensure that the (o-b) departures were realistic. Subsequent studies used operational ECMWF analyses, but 
at higher resolution than the EDA. Harnisch et al. (2013) used a 2D bending angle operator to simulate the 
data, but a 1D operator to assimilate it, in order to introduce a realistic forward model error. The recent 
microwave sounder study in Section 4.4 uses the same observation operator (RTTOV-SCATT) to simulate 
and assimilate the radiances, but with different surface emissivity information over land and sea-ice. The 
advantages of using different forward models to simulate and assimilate the observations are not clear. 

There are still some open questions on the importance and role of the noise added in the simulation step. We 
have to consider whether it should include just instrument noise, E, or both instrument noise and representation 
error, R=E+F, and how to model these. The GNSS-RO work usually adds perturbations that explicitly include 
both components, whereas for the MW sounder work it was found that realistic background departures can be 
achieved for the simulated observations when only instrument noise is explicitly considered, with 
representation error arising implicitly in the observation simulations. Introducing realistic biases for observing 
systems that are likely to require bias correction also needs some consideration. 
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4.2 Some previous EDA studies 

4.2.1. Early Aeolus studies  
The application of EDA techniques for assessing new observing systems was introduced by Tan et al. (2007) 
to estimate the potential impact of Aeolus line of sight (LOS) wind profile information in the ECMWF system. 
Their key insight was that the EDA computations – unlike OSSEs – could be performed with a mixture of both 
real and simulated measurements. This means that only the new observing system needed to be simulated.  

It was recognised that OSSEs can potentially provide an estimate of the “absolute observation impact”, because 
the simulated truth is known from the nature run (NR).  In contrast, they noted that estimating the absolute 
impact of an observing system from the EDA computations would require careful calibration. However, it was 
argued that when comparing two observing systems, absolute calibration is unimportant, as it simplifies to a 
common rescaling of the spread values.  

The study mainly focussed on the impact on analyses and short-range forecasts, but showed a zonal wind 
spread at day-5. They emphasised potentially large impact in the tropics. The possible reasons for the EDA 
under dispersion were discussed, where it was noted the model error was not explicitly accounted for in the 
EDA at the time, and that spatial correlations of observation errors were only included when assimilating 
SATOB AMV wind information.  

It is difficult to compare EDA results from 2007 (investigating a period in 2003) with recent OSEs directly, 
but Rennie et al. (2021) have subsequently demonstrated significant impacts assimilating Aeolus 
measurements in the ECMWF system. The latest extended experiments, now spanning over 2 years using 
reprocessed Aeolus data, show statistically significant improvements in the northern/southern hemisphere 
Z500 out to day 4, and improved tropical winds out to day 8-9 (e.g., 200, 100 hPa).  

4.2.2. GNSS-RO impact with observation number 
Harnisch et al. (2013) applied the EDA method to estimate the impact of increasing the number of GNSS-RO 
measurements. The question at that time was whether there would be additional benefit from increasing the 
measurement numbers above the present levels of ~2500 occultations per day. Poli et al. (2008) had already 
demonstrated that the GNSS-RO impact on humidity and geopotential forecast errors was reduced when only 
half of the available GNSS-RO measurements were assimilated, but it was not clear how the impact might 
scale beyond the current numbers, or where “saturation” of impact might occur.  

The EDA experiments covered the period July-August, 2008, and were performed for the ~2500 real GNSS-
RO observations per day available at that time, and 2000, 4000, 8000, 16000, 32000, 64000 and 128000 
simulated GNSS-RO measurements per day. 

The large range of the GNSS-RO numbers was intended to investigate the possible onset of saturation of 
GNSS-RO impact, but the key result from the study was that the EDA spread values continued to reduce, even 
when moving from 64,000 to 128,000 simulated observations (Figure 9). (Note that the economic case for 
extending the GNSS-RO numbers to 128,000, versus other possible non GNSS-RO changes to GOS, was not 
considered or discussed in this work.) 
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The failure to achieve saturation was explained by the assumed GNSS-RO uncertainty model, where all 
vertical and horizontal GNSS-RO error correlations were assumed to be zero. It was argued that even perfectly 
correlated observations, with uncorrelated observation errors, will appear to provide useful information in the 
EDA system, because the additional observations effectively reduce the random measurement errors through 
repetition. It was also recognised that the concept of “saturation” was ambiguous, particularly when 
assimilating observations with uncorrelated errors. For example, in the idealised scalar case shown in Figure 
1, the standard deviation of the analysis error scales as 1/√1 + 𝑛, and this will continue to fall as more data is 
added, albeit with a reduced rate, so “saturation” is difficult to define objectively.   

The study concluded that there was a good case to increase the GNSS-RO numbers, but also encouraged work 
on OSSEs to test this further. Recent GNSS-RO OSSEs by Privé et al. (2022) have now shown that the GNSS-
RO impact does not saturate at 100,000 occultations per day in their system. The Harnisch results informed an 
International Radio Occultation Working Group (IROWG) target of 20,000 occultations per day. Recent results 
showing the benefits of assimilating additional GNSS-RO from both COSMIC-2 and Spire suggest it was a 
reasonable target (Figure 7, Figure 10).   

However, it must be acknowledged that if we reran the Harnisch study today, we would not achieve the 
percentage reductions in spread shown in Figure 9, which are only valid for the NWP system and observation 
usage in July-August, 2008. This is because the background EDA spread values have reduced since 2008, 
primarily because the total number of observations assimilated has increased over the period (although other 
improvements to the NWP system will also have an impact). In 2008, the number of observations assimilated 
per day was below 10 million, but by 2020 it exceeded 30 million. The “no RO” 12-hour temperature spread 
values at 100 hPa are now around 0.15-0.2 K lower than in the 2008, which is a ~20-30 % spread reduction. 
We have also increased the assumed GNSS-RO error statistics used to assimilate the data. Consequently, the 
additional GNSS-RO measurements will have a lower information content today, in both an absolute and 
relative sense, because other observations are providing more information and GNSS-RO slightly less. This 
highlights potential problems that will arise if we try to compare spread reductions from different EDA 
experiments. The information content of the new observations will depend on the quality of the NWP system, 
resolution and observations used in the control experiment, and this must be common in any comparisons.   
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Figure 9: The change in normalised (divided by the “no RO” spread values) analysis EDA spread 
as a function of the number of simulated GNSS-RO measurements, from Harnisch et al. (2013).  

4.3 Recent application to GNSS-RO  
We have recently completed an ESA study in collaboration with the Met Office and EUMETSAT, testing the 
combined impact of (~) 3900 COSMIC-2 and 6800 Spire GNSS-RO measurements per day in two NWP 
systems (Lonitz et al., 2021). The total number of GNSS-RO was ~13,000 profiles per day. The experiments 
covered the period January 1 to March 31, 2020. The main aim of the study was to determine the actual forecast 
impact of this real data, to help inform agency commercial data buy decisions. It was also used as an 
opportunity to compare the impact of simulated and real measurements in the current EDA system, and to 
examine the real EDA spread-skill relationship, as the GNSS-RO numbers increased significantly.  

Figure 10 shows the combined impact of the COSMIC-2 and Spire data on the Z500 RMSE scores in the 
northern and southern hemisphere extra-tropics, verified against both own analysis (a) and operations (b). The 
impact of GNSS-RO has roughly doubled at the short-range with the addition of the new data. This is 
comparable to spread reductions given in the Harnish study, which showed a factor of ~3 enhancement in the 
SH Z500 impact at short-range, when moving from 2000 to 16000 simulated observations per day (See their 
Figure 6b). However, as discussed in Section 2.1.1 (See Figure 3), the magnitude of the GNSS-RO impact at 
short-range is sensitive to the choice of verifying analyses, particularly the degradation seen when removing 
all GNSS-RO from the system, because these observations are used in the operational analyses. This 
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complicates direct comparisons between EDA spread reductions and the improved forecast scores computed 
in OSEs. 

 

Figure 10: The impact of assimilating Spire (black), COSMIC-2 (red) and (Spire+COSMIC-2) 
(green) on Z500 RMSE scores. The control experiment includes all measurements used 
operationally. Removing all GNSS-RO from the control is also shown (blue). Verification is against 
own analysis (a) and against operational analysis (b), noting the different vertical scales. 

4.3.1. Consistency of real and simulated COSMIC-2 observations in the EDA  
One important new result is a comparison of the impact of real and simulated COSMIC-2 GNSS-RO 
measurements in the EDA system. The Harnish study established that similar numbers of real and simulated 
GNSS-RO data had a similar impact in the EDA, but the new results are a more systematic study. This is done 
by simulating GNSS-RO measurements at the observed COSMIC-2 times and locations, using the ECMWF 
operational analyses with the bending angle simulation code and the observation uncertainty model developed 
in the Harnisch study.  

Figure 11 shows vertical profiles of the 12-hour forecast temperature spread reductions obtained with both real 
and simulated COSMIC-2 data. Overall, the agreement between the real and simulated data is very good, and 
we also see similar levels of consistency for geopotential, wind and relative humidity. These results suggest 
that the simplifications and approximations in the GNSS-RO simulation process (Section 4.1.3) do not have a 
significant impact on the EDA spread estimates, and that we are able to predict the performance of real GNSS-
RO data in the EDA reasonably accurately.  

There are some small differences in the tropics, with the simulated data giving larger spread reductions in the 
troposphere, and smaller reductions above 100 hPa. The differences in the troposphere are still under 
investigation, but they may be related to a lack of vertical error correlations in the simulated data. In the tropical 
stratosphere, we have found that the simulated (o-b) departures are too large when compared to real data 
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because of an ad-hoc inflation of the observation errors introduced by Harnisch et al. (2013) to reproduce the 
large observed departure statistics near the tropical tropopause.  When this factor is reduced or removed, and 
the consistency between the real and simulated departure statistics is improved, the spread values show much 
better agreement.  

Overall, the results show that the simulated data provides a good approximation of how the real COSMIC-2 
data changes the spread values in the current EDA system. It is also worth emphasising that the real COSMIC-
2 measurements improve the estimate of the atmospheric state in the OSEs, but the simulated data does not, 
making the point that similar spread reductions do always not lead to the same forecast impact.  

 

Figure 11: The vertical profile of 12 hour forecast temperature spread reductions, comparing the 
impact of real (black) and simulated (green) COSMIC-2 measurements in the EDA. The results are 
given as a percentage of the temperature spread of the control experiment. The spread is computed 
for the period January 10 to February 10, 2020. The comparisons are limited to ±40 latitude band 
sampled by the COSMIC-2 data. The control experiment includes GNSS-RO measurements used 
operationally in this period.   

4.3.2. Relationship between EDA spread and radiosonde departure statistics  
We have progressively added real GNSS-RO measurements in both OSEs and EDA simulations to investigate 
the relationship between the EDA spread changes and the OSE short-range forecast error statistics. Some of 
these results were presented to the SAC in 2021.  

The change of radiosonde short-range forecast departure statistics computed from OSEs are compared with 
the corresponding “raw” EDA spread values. More specifically, ignoring correlations between the observation 
and short-range forecast errors, it was assumed that the change in variance of the radiosonde departures, 𝜎($%&)( , 
could be written as linear function of the EDA spread squared, 𝑠(, using 

𝜎($%&)( = 𝑚𝑠( + 𝑐 
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where ideally the intercept, 𝑐, should be related to the radiosonde observation error statistics. An example is 
shown in Figure 12, for the tropics at 100 hPa where the GNSS-RO information content is high.  

 

  

Figure 12: The variance of radiosonde short-range forecast temperature departures at 100 hPa in 
the tropics from the OSEs, versus EDA spread variance, as the number of GNSS-RO measurements 
is increased. 

In general, the linear model is a good representation of the spread-skill relationship in the lower/middle 
stratosphere up to 10 hPa, but as noted by the SAC in 2021, the gradient values, 𝑚, tend to be too large, and 
in some cases the computed offset, 𝑐, can be negative, implying a negative radiosonde uncertainty value. The 
gradient values in the stratosphere are typically in the range m=5-11, depending on level and region. We obtain 
similar results when we compare the EDA spread values with the departure statistics of the EDA control 
member, so the resolution difference between the OSE and EDA does not account for this.   

The EDA system is under-dispersive (Section 3.2), so it is expected that the absolute impact of the GNSS-RO 
will be underestimated. As discussed in Section 3.2, a global scaling factor of 1.34 is currently applied to 
derive background error standard deviations from the raw EDA spread, so introducing a factor of 1.8 
(=1.34()	in the m values would be consistent with this. However, this factor has been derived primarily to 
optimise 4D-Var forecast performance, rather than to calibrate spread/skill relationships for specific levels. 
The factors found here are more in line with results from an evaluation of spread/skill relationships for 
radiosonde temperature departures obtained by Bormann and Bonavita (2013, see their Figure 4), albeit using 
an older EDA system over a different period. In their study, they noted that different scaling factors were 
applicable to different observations, and scaling factors required for AMSU-A channels 8-9 were much lower 
than for radiosondes in the same vertical interval. One interpretation is that the EDA represents uncertainty at 
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broader vertical scales more accurately than at the fine vertical scales, and this may be one explanation for the 
scaling factors observed here. However, this interpretation still requires further investigation. 

The EDA only provides an estimate of the random error statistics, but the GNSS-RO measurements also have 
an additional role as anchor measurements within the NWP system. It is difficult to isolate the additional value 
of this anchoring in the EDA computations, but it may improve the radiosonde temperature departure statistics 
by correcting spatially varying biases. Figure 13 illustrates the size and spatial variability of the mean 
temperature analysis differences at 100 hPa, comparing all RO minus no RO. These changes in the mean state 
are large when compared to the changes in the EDA spread values.  

 

Figure 13: Mean temperature analysis difference (K) at 100 hPa. ALL RO, including COSMIC-2 
and Spire, minus no RO. 

4.3.3. Summary of recent GNSS-RO work 
The assimilation of real COSMIC-2 and Spire observations has a clear positive impact. Importantly, we have 
found that real and simulated COSMIC-2 observations have a similar impact on the EDA spread. The 
improvements in radiosonde departure statistics indicate that the changes in the EDA spread underestimates 
the absolute impact of the GNSS-RO measurements in the lower/middle stratosphere. The global scaling factor 
used to inflate the raw EDA spread values for operational applications does not resolve this problem, and 
further work is required (See also Figure 18).  

4.4 Constellations of small satellites carrying microwave sounders 
The most recent application of the EDA-method is to estimate the expected impact from potential future 
constellations of small satellites carrying microwave (MW) sounding instruments, as part of an ESA-funded 
study (Lean et al., 2021a, b). The aim of such a constellation is to provide higher temporal sampling than 
currently available. This is expected to be beneficial to observe fast-evolving cloud and humidity features, but 
also to reduce the effective observation noise through higher measurement numbers. The continued benefit of 
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adding MW sounding data has been demonstrated in observing system experiments with existing observations 
(Duncan et al., 2021), raising some expectation that further improvements in temporal sampling would lead to 
further benefits. Developments in satellite and sensor technology make it feasible to launch MW sounding 
instruments on small satellites or even cube-sats, thus making such constellations a possibility, as a 
complement to the backbone global observing system.  

The study considered different orbit and instrument scenarios to probe two key aspects of the constellation 
design: how the impact varies with the number/ distribution of satellites, and the relative benefits of different 
sets of channels (183 GHz humidity-sounding only or with additional temperature sounding in the 50 GHz 
band). The constellations vary in size between 8 and 20 satellites, and the orbital planes are optimised to 
complement four existing MW sounders in the 9:30 (Metop) and 13:30 (JPSS) orbits (Table 1), part of the 
CGMS backbone constellation. Hypothetical instrument payloads were considered, with channels based on 
sub-sets of channels envisaged for the Arctic Weather Satellite. 

Table 1: Satellite constellations with MW sounding considered. In the real-data cases, combinations 
of AMSU-A/MHS or ATMS were normally used, with the exception of the 5th orbit in the 
Metop/JPSS+ constellation, for which a combination of the NOAA-15 AMSU-A and the F-17 SSMIS 
was used (both in approximately a 6:30 orbit during the study period). For each constellation with 
MW sounding data, separate EDA experiments were run with humidity-sounding channels 
assimilated only, and with temperature and humidity-sounding channels assimilated.  

(*) Strictly, 8 satellites with real data are used, though only 7 sets of temperature + humidity 
sounding capabilities. 

Constellation name Type of orbits Number of 
orbital planes 

Number of 
satellites 

Real data 

No MW sounders - 0 0 

Metop/JPSS baseline Sun-synchronous 2 4 (Metop-A/B; S-
NPP, NOAA-20) 

Metop/JPSS+ Sun-synchronous 5 8* (Metop-A/B; S-
NPP, NOAA-15/ 
18/19/20, F-17) 

Simulated new data, added to the Metop/JPSS baseline with real data 

Polar Sun-synchronous 4 8 
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Polar+ Sun-synchronous 7 14 

Polar++ Sun-synchronous 10 20 

4x2 Mid-inclination (60º) 4 8 

6x2 Mid-inclination (60º) 6 12 

Polar + 4x2 Sun-synchronous + 
mid-inclination (60º) 

8 16 

 

4.4.1. Observation-specific adaptations  
The new observations were simulated and assimilated in the all-sky framework developed for MW-sounding 
radiances (Geer et al., 2014, Duncan et al., 2022), using RTTOV-SCATT as the observation operator (Geer et 
al., 2021). The overall approach of simulating the new observations largely followed that of the recent GNSS-
RO work, that is, the observations were simulated from high resolution (TCo1279, 9km) ECMWF analysis 
trajectories. Over land and snow/sea-ice, where the assimilation of real sounding data relies on an emissivity 
retrieval from window-channel observations, alternative approaches to specify the surface emissivity needed 
to be used, as the emissivity retrieval is not possible. Here, values from an emissivity atlas were employed 
over snow-free land, and typical values over snow and sea-ice surfaces. The latter are relatively crude 
assumptions, reflecting the current lack of sufficiently accurate physically-based surface emissivity modelling. 

An important new aspect to address during the simulation of the cloud-affected brightness temperatures was 
how to treat representation error. For all-sky assimilation of MW radiances, this is considered dominant in 
cloudy situations, and this aspect is reflected in the situation-dependent observation error model used during 
the assimilation (Geer and Bauer, 2011). The observation error model assigns larger values in cloudy regions, 
dependent on a cloud indicator which characterises the presence of clouds in the observations or the 
background. Applying a similar model during the simulation of the new observations (prior to the EDA) was 
considered. However, during the course of the work it was found that adding random perturbations according 
to the instrument noise alone led to 4D-Var background departure statistics that were remarkably consistent 
with those of real observations. An example of this is given in Figure 14 which shows standard deviations of 
background departures as a function of the cloud indicator used in the observation error model. The good 
agreement is likely the result of several factors. One is chaotic error growth relating to clouds. Another is 
differences in the spatial resolution, as the brightness temperatures were produced using TCo1279 (9km) 
trajectories, but assimilated at lower resolution (TCo399, ~25 km, as in the EDA configuration), hence 
introducing some form of spatial representation error. Differences in the moist physics may also play a role, 
with the old physics parametrization used in the observation simulations, whereas the new moist physics 
(Bechtold et al., 2020) were used in the assimilation, hence introducing a representation error relating to the 
cloud-representation. Given these results, it was decided to only add random perturbations consistent with the 
specified instrument noise when producing the simulated observations. Note, however, that the perturbations 
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subsequently added in the EDA were nevertheless based on the full all-sky observation error model, with larger 
values in cloudy regions. The parameters for this error model were chosen in line with values used in the 
assimilation of real data. 

 

Figure 14: Increase in standard deviation of O-B (solid lines) with increasing presence of cloud 
signal for real Metop-A AMSU-A channel 5 data (black) and simulated small-satellite data for the 
equivalent channel (red). Low values of the cloud indicator indicate clear-sky regions, whereas 
increasing values indicate increasing presence of cloud signals. Crosses indicate the number of 
observations (right x-axis). Data are from the period 9-14 June 2018, over land surface only and 
from latitudes between 60ºN-60ºS. 

To test the sensitivity to the perturbations applied during the observation simulation, an additional EDA 
experiment using the Polar (8 satellite) constellation without these initial perturbations was also run. The 
observation error modelling applied in the EDA (and hence the perturbations applied in the EDA) were 
unchanged. Figure 15 shows a representative example that the effect of the initial perturbations applied has 
very little impact on the overall changes in EDA spread compared to the overall signal. It gives some further 
indication that the modelling of the perturbations applied during the simulation of the observations is a 
secondary influence on the EDA spread, at least as long as these perturbations are smaller than the perturbations 
subsequently added in the EDA.  
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Figure 15: Vertical profile of normalised percentage reduction in EDA spread for the U wind 
component in the northern hemisphere for experiments where the simulated data have been 
assimilated with and without initial perturbations (red and blue lines respectively) or real MW data 
have been added or denied (black and grey lines respectively) compared to a baseline with 4 MW 
sounders.   

One aspect not previously encountered in either the Aeolus or the GNSS-RO work was the question of how to 
deal with observational biases for the simulated data. Observational biases are a common feature in the 
assimilation of radiance observations, arising, for instance, from systematic errors in the calibration or the 
observation operator. For real data, these are removed during the assimilation using Variational Bias 
Correction (VarBC). For the simulated data, we made no attempt at modelling such observational biases. This 
was a pragmatic decision, motivated by the fact that any modelling of bias structures would be highly 
speculative and subject to the maturity of the level-1 processing of the new data. To avoid that the EDA treats 
the new observations as anchors for the bias correction of other observations, we however activated VarBC 
for the new observations, so required the system to estimate bias correction parameters. Corrections to the 
small satellite data remained stable and small in magnitude compared to those applied to real MW data as 
expected. The approach used is considered equivalent to assuming that there are no significant biases that are 
systematic for all satellites across the constellation, and that inter-satellite biases for a given channel average 
out to near zero when all satellites are considered together. In terms of global biases, this is consistent with the 
current experience from, for instance, AMSU-A, MHS, or ATMS data. The approach is also justified by 
assuming that the constellations considered complement a backbone observing system of MW sounders which 
could be used for inter-calibration exercises. Nevertheless, it remains an open question to what extent 
observational biases and their treatment through VarBC affect the EDA spread - an aspect that would be worth 
investigating further in the future. 
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4.4.2. EDA spread results for different constellation choices  
Figure 16 illustrates some of the key results in terms of the EDA spread reduction for the constellations 
considered as a function of the number of sounding locations assimilated. Reductions are shown relative to a 
system in which all MW sounding data were denied, but otherwise the full real observing system was used. 
The data point furthest to the left represents the Metop/JPSS baseline using real data. The next two datapoints 
depict the spread reduction resulting from adding three existing MW sounders to this baseline (Metop/JPSS+), 
either with humidity-sounding capabilities only (red) or with temperature and humidity sounding (black). The 
remaining datapoints show spread reductions from adding instead simulated data from the potential future 
constellations considered, again either with humidity-sounding (red) or temperature- and humidity-sounding 
capabilities (black). The trend of the data points from adding simulated data extends smoothly from those using 
only real observations. This is an important and very reassuring result which adds further confidence in the 
simulations. 

 

Figure 16: Percentage EDA spread reductions with increasing observation numbers for geopotential 
height at 500 hPa from a baseline with no MW sounder data for all constellation options and 
baselines. Black and red symbols indicate respectively the addition of temperature and humidity 
sounding channels or humidity channels only to the Metop/JPSS baseline. Different symbols denote 
the different simulated data scenarios or the use of real MW data where the additional “Polar++ 
RT” refers to the reduced thinning sensitivity experiment (see main text). Data are from the Northern 
Hemisphere (latitude > 20°) over the period 8-28 June 2018. 

Some key points are readily apparent from Figure 16, providing relevant guidance for the constellation design:  

1. There is continued benefit from adding MW sounding data, within the range covered, and even the 
smallest constellation considered (“Polar”, ie 8 satellites in 4 orbital planes) brings sizeable 
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benefits, more than doubling the impact of MW sounders compared to the Metop/JPSS baseline. 
As we know from OSEs, this is a very significant impact (Duncan et al., 2021).  

2. There is a clear added benefit from the temperature sounding channels (compare red and black 
data points), highlighting the value of a more complex instrument that includes such capabilities. 
The benefit from temperature-sounding capabilities most likely results from the effective noise 
reduction due to repetitive measurements: for MW temperature-sounding, the size of typical errors 
in the background is comparable to that of the instrument noise of the available observations, 
hence reducing the effective noise is especially beneficial.  

3. As in the case of the GNSS-RO data, the rate of the spread reduction decreases for larger 
constellations, with the shape of the curve broadly similar to that seen for the GNSS-RO data.  

The EDA also captures that the assimilation of MW-sounding observations leads to improvements for wind 
forecasts, through the ability of 4D-Var to infer information on the dynamics from observations primarily 
sensitive to temperature, humidity, and clouds. This is highlighted in Figure 17, which shows the EDA spread 
reduction for the Northern Hemisphere and the Tropics for some selected constellations. The relative benefit 
for wind of adding temperature-sounding channels to the humidity-sounding channels differs between the two 
regions shown (compare, for instance, the purple solid and dashed lines). The different importance is consistent 
with the primary mechanisms considered relevant for obtaining wind information: over the Tropics, the 
humidity-sounding channels play a larger role, via the 4D-Var humidity/cloud tracing, whereas over the extra-
tropics there is more significant benefit from the temperature-sounding channels, as geostrophic balance 
becomes a leading mechanism. The real data show a similar behaviour (compare the solid black and dotted 
lines), and the finding is also consistent with experiences from OSEs. It is reassuring that the EDA captures 
these different behaviours. 

 

Figure 17: Change in the EDA spread relative to the Metop/JPP constellations for the u-component 
of wind over the Northern Hemisphere extra-tropics (left) and the Tropics (right) for the 
constellations listed in the legend. Dashed lines indicate experiments with humidity-sounding only, 
whereas solid lines indicate combined use of temperature and humidity-sounding. 

One rather practical aspect encountered during the study was the role of thinning applied prior to the 
assimilation of MW-sounding data. In line with current practice for real data, observations for the simulated 
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data were thinned spatially, selecting only one observation within a 110 km distance per half-hourly time-slots. 
This is to limit the effect of spatially correlated observation errors which we can currently not account for 
during the assimilation. In addition, data from all satellites of the hypothetical future constellation were thinned 
together (following the AMSU-A approach), resulting in many observations being thinned out at higher 
latitudes where there is most overlap. The thinning practice is the reason why the increase in the number of 
data points shown in Figure 16 for the different constellations is not as large as might be expected given the 
increase in the number of satellites. The effect of this was particularly severe as the phasing of the satellites in 
the small-satellite constellations was not optimised to avoid this.  

To investigate the role of thinning all satellites of the constellation together, we also ran a pair of EDA 
sensitivity experiments in which we assimilated the largest, Polar++ constellation with the satellites spatially 
thinned separately rather than all together. This most extreme point in the number of observations in Figure 16 
suggests that it is possible to approach a point where the benefit from additional measurements slows 
considerably (see “Polar++ RT”). Note, however, that the additional data here comes from observing a similar 
location at a similar time, and hence the only mechanism to provide further information is effective noise 
reduction, rather than the observation of temporally evolving structures. This likely explains at least partly the 
lack of further spread decrease for the humidity-only scenario, as instrument noise is not considered a limiting 
factor for these observations. The comparison also highlights the sensitivity of the EDA results to practical 
assimilation choices and assumptions on error characteristics, an important element to keep in mind when 
interpreting the results. 

4.4.3. Comparing EDA spread reductions and OSE results 
The four EDA experiments with real observations also allowed a comparison of the EDA spread reductions 
and forecast error reductions in a similar way as presented in Section 4.3.2 for the GNSS-RO work. The 
measure of short-range forecast error was again the variance of background departures for radiosondes. As for 
the GNSS-RO results, in general there is a trend for increasing variance of the radiosonde O-B with variance 
of the EDA spread such as in the examples shown in Figure 18. While the low number of data points limits 
interpretation, many levels/regions show a broadly linear relationship, though this is less clear for the 
troposphere in the tropics, where the signal in the EDA spread reduction is weaker. The broadly linear 
relationship again highlights that there is a reasonable agreement between the EDA and the OSEs in these 
areas, at least for relative forecast impacts. Nevertheless, the slope and intercepts of the regression lines vary 
between pressure levels and variables within the MW study, with slopes for temperature in the range of 1.1-
2.2 over the Northern Hemisphere extra-tropics and 1-7 elsewhere. Results for wind are broadly similar. As 
discussed in Section 4.3.2, the recognised under-spread of the EDA is likely a factor why the forecast error 
reduction measured by radiosondes is larger than the EDA spread reduction, as indicated by slope-values larger 
than one. 
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Figure 18: Scatter plot of the variance of the radiosonde (O-B) and variance of the EDA spread for 
temperature at 100 hPa (left) and 500 hPa, both Northern Hemisphere (right). 

The slope values have also been compared to those obtained from the GNSS-RO study, and the values differ 
considerably, with the GNSS-RO scaling factors typically larger than the ones for the MW. However, the two 
studies were conducted over different seasons and years (June 2018 for the MW work, and January-March, 
2020 or the GNSS-RO work), so a direct comparison of the scaling factors is questionable, as at least some of 
the differences likely reflect seasonal and inter-annual differences in the performance of the EDA. In line with 
seasonal aspects playing a particular role, profiles of EDA spread for the two studies differed strongly in size 
for the extra-tropics when comparing the same hemispheres, but they were broadly similar when comparing 
spread values for opposite hemispheres. Values for the variance of radiosonde departures also showed better 
agreement for the opposite hemispheres. The relevance of the scaling factor and any similarities and 
differences for different observing systems nevertheless warrants further research. One aspect currently being 
considered is whether the spatial sampling of the different observing systems also influences these gradient 
values. 

4.5 Medium-range impact assessment with the EDA 
Ideally, we would like to provide an estimate of the observation impact at medium-range, but the EDA studies 
usually focus on spread reductions achieved at the short-range where the observation signal is clearest. In 
general, if we reduce the errors at short-range, we are likely to improve the medium-range errors, but this is 
only considered a partial predictor of medium-range skill. We encounter a similar situation for the 
interpretation of FSOI, which also only estimates short-range forecast skill. In principle, we can extend the 
EDA spread calculations to longer ranges (without adding the singular vectors used in the ENS system) as part 
of the assessment studies. For example, Figure 19 compares the EDA temperature spread reductions achieved 
with real and simulated COSMIC-2 measurements at day-5. There is still reasonable consistency between the 
real and simulated data which is encouraging, and as expected the COSMIC-2 spread reductions are smaller 
than achieved at 12 hours (Figure 11).  
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Figure 19: As Figure 11 but showing day-5 EDA temperature spread reductions for real (red line) 
and simulated (green line) COSMIC-2 measurements. This includes a revised error model for 
simulated data (black line), which gives better consistency with the real data for 12 hr spread values.  

An open question is whether the day-5 spread estimates provide useful additional information, given that we 
know the EDA alone does not fully characterise the forecast error statistics in the medium-range, and that 
singular vector-based perturbations are needed to obtain a reliable ensemble forecast (Section 3.3). Also, to 
obtain statistically significant spread differences, we would probably need to run longer experiments, which 
would increase the cost of the EDA experimentation.   

4.6 New/planned activities  
Two new EDA studies started in June 2022, through a EUMETSAT-funded activity. In these studies, we will 
consider two potential future missions, namely the EPS-Sterna constellation and a future Doppler Wind Lidar 
as Aeolus follow-on. A new aspect is that both missions will be investigated in a consistent way, over the same 
period, using the same baseline observing system of real observations. This will allow cross-comparisons of 
the impact and investigations into the complementarity of these missions. We have not previously performed 
such comparisons of different observing systems with the EDA-method. Given the potential differences in 
scaling factors when translating EDA spread results into forecast error reductions noted earlier, such 
comparisons will require some care.  

EPS-Sterna Constellation 

The EPS-Sterna constellation consists of a fleet of small satellites with cross-track scanning MW instruments, 
with temperature and humidity sounding capabilities in the 50, 183, and 325 GHz bands. It is intended to 
complement the 3-orbit CGMS baseline, to provide better temporal sampling for MW sounding. The 
requirements for the constellation are currently being refined by EUMETSAT in collaboration with ESA, users 
and industry, for instance, in terms of the number of orbits covered, satellites flown, and expected instrument 
performance.  
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The EDA simulations to be conducted will build on and complement the work presented in Section 4.4, and 
results are expected to contribute to the required trade-off analyses. A particularly novel aspect will be 
estimating the impact of the new 325 GHz channels which are similar to channels to be flown on the Ice Cloud 
Imager on EPS-SG, but are not currently available from space.  

Future Doppler Wind Lidar  

The Aeolus Doppler Wind Lidar (DWL) did not meet the pre-launch mission requirements, but the horizontal 
line of site (HLOS) winds have had a significant positive impact in NWP systems (Rennie et al., 2021).  

An operational follow-on DWL mission is being considered, and Phase 0 of preparation activities started at 
ESA and EUMETSAT in 2020. Consolidated requirements are also currently being compiled. It seems 
reasonable to expect that a future DWL mission will improve upon the Aeolus performance in terms of HLOS 
quality. Therefore, it is useful to estimate how this anticipated improvement will translate into an additional 
DWL impact in an NWP system. The EDA approach will be used to test this. One simulated DWL dataset will 
be produced with noise characteristics consistent with the actual Aeolus performance, and the other will be 
based on the expected performance of the future DWL system.   

Future MW-sounding systems from NOAA  

In addition, a further EDA-activity will be done in collaboration with NOAA and the Cooperative Institute for 
Satellite Earth System Studies (CISESS). The aim will be to evaluate the NWP benefit from a future MW 
sounder that is being considered by NOAA as a follow-on to the ATMS instrument, with added channel 
capabilities in the 118 GHz band. The study will consider the impact of such an instrument in the 13:30 and 
5:30 orbits, and relate this impact to that of the MW sounders on the current heritage POES satellites as well 
as that of ATMS.  

5. Summary 
This paper has reviewed and summarised approaches used at ECMWF to evaluate the benefit of observations 
in global NWP. The main emphasis has been on evaluating the expected impact of future observations for 
which ECMWF has established a 4D-Var information-content approach that builds on the operational EDA 
system. However, we have also reviewed methodological aspects of the use of OSEs and FSOI for measuring 
impact of existing observations, as well as key features of the performance of the ECMWF EDA. 

The global observing system is evolving, and OSEs are considered the gold-standard for evaluating the present 
impact of real observations. ECMWF complements this with FSOI evaluations for diagnostic purposes. Recent 
OSEs have highlighted challenges in terms of reliable verification of short-range forecast impact, and they 
exhibit a healthy robustness and resilience of the global system to denying single observing systems for NWP. 
Given the current state of the global observing system, it is increasingly important to optimise the 
complementarity of different future systems and to evaluate opportunities offered by new technology. OSEs 
and FSOI can provide important insights into how the global observing system should evolve, but simulations 
of the future impact of specific observing systems are an important ingredient for achieving such an optimised 
design. 
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The EDA method for assessing new observations provides a theoretical estimate of the expected reduction in 
analysis and short-range forecast uncertainty, as a result of assimilating the new data. This information is 
usually averaged over large spatial scales and for periods of order a month, so the EDA results should be 
interpreted statistically.  The EDA is less useful for quantifying the impact of the new data on specific weather 
events or case studies. The method is similar to a 1D-Var information content study, but it is more general, 
because it is a cycling DA system which includes the forecast model, so we are also able to estimate the impact 
on variables that are indirectly related to the measured quantities (e.g., wind impact from MW sounders). The 
current operational EDA is known to be under-dispersive, and this means that the absolute impact of new 
observations is likely to be underestimated. However, future assessments of new observations will 
automatically benefit from improvements in the operational EDA system. In addition, it is usually argued that 
we are comparing the impact of different observation scenarios in a given set of the EDA experiments, and the 
relative impact is important.  

The main results from the early Aeolus (Section 4.2.1) and GNSS-RO (Section 4.2.2) EDA studies are 
reasonably consistent with the subsequent achievements with real data. Aeolus has a good forecast impact for 
a single instrument, for example, improving tropical stratospheric winds out to day-9 (100 hPa). The GNSS-
RO impact on Z500 RMSE scores at short-range roughly doubled when testing COSMIC-2 and Spire (Figure 
10). However, direct comparisons between the EDA spread reductions and improved forecast scores at short-
range are sensitive to the choice of verifying analyses, as discussed in Section 2.1.1. We have also found that 
some of the percentage improvements in EDA spread given in the Harnisch study are not achievable today, 
because the global observing system has improved considerably since 2008, and the baseline “noRO” spread 
values are now much smaller. On the key question of saturation of GNSS-RO impact, Privé et al. (2022) did 
not see saturation when testing up to 100,000 occultations per day in OSSEs, supporting the EDA work.  

The impact of real and simulated measurements in the EDA system has been tested and the results are very 
encouraging from a methodology viewpoint. The direct comparison of real and simulated COSMIC-2 
measurements in the EDA (Figure 11) suggests we can predict the impact of new GNSS-RO data in the EDA 
accurately with the simulation code developed for the Harnisch study. In addition, the EDA response to real 
and simulated microwave data appears to be consistent (Figure 16). Overall, if a simulated dataset has realistic 
(o-b)s, and it is assigned a reasonable R matrix, these results suggest that the spread reductions will be similar 
to what will be achieved with real measurements with the same observation error characteristics.  

There are some outstanding questions that require further work. Firstly, it is clear that changes in the EDA 
spread values can underestimate the actual performance of the observations, particularly for GNSS-RO in the 
stratosphere (Figure 12). This is to be expected in general, because the EDA is under-dispersive. Areas being 
investigated to improve the reliability of the EDA include (Section 3.2): improved model uncertainty 
parameterisations; better modelling of observation errors including horizontal correlations; reduction of the 
resolution gap between the EDA and the high-resolution analysis.  

The different scaling factors required for GNSS-RO and microwave data (Figure 18), albeit for different 
seasons, requires investigation, particularly if we wish to compare different observing systems with the EDA 
in the future. The role of anchor measurements and bias correction may be relevant here. Real GNSS-RO 
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measurements anchor the system because they can be assimilated without bias correction, but this key 
measurement characteristic is not captured in the EDA assessment. In contrast, the microwave measurements 
will require bias correction and they are assimilated with VarBC so that they are not treated as anchor 
measurements, but biases are not currently applied in the simulation process.  

The present EDA studies focus on changes in the spread at short-range, and interpret this as a partial predictor 
of medium-range forecast impact. The EDA experiments can provide an estimate of medium-range impact, 
and we have found that simulated and real COSMIC-2 measurements produce similar spread reductions at 
day-5 which is encouraging (Figure 19). However, the interpretation of such results is complicated by the fact 
that singular vectors are required to produce a reliable ensemble at medium-range. For this reason, we consider 
short-range results to be most robust. The emphasis on short-range impact is in common with the use of FSOI, 
which also is strictly only applicable to characterise short-range impact. 

In principle, well calibrated OSSEs potentially provide more information on the medium-range impact of new 
observing systems, but developing and maintaining a well calibrated OSSE system, which also keeps pace 
with the evolving global observing system, is a major challenge. It is probably easier to test the impact of new 
observations on top of the latest global observing system with the EDA, because it is used in operations and it 
will include the latest observations. However, we do not see the EDA and OSSEs as in direct competition. It 
is important to recognise that the impact of new observations will vary depending on the details of the 
implementation in each NWP system. Having access to both OSSEs and EDA estimations from different 
systems (and possibly other methods, like Sensitivity Observing System Experiments, Marseille et al., 2008) 
should help isolate system dependent aspects from the real impact, and provide better overall guidance to the 
agencies. The recent OSSE results from Privé et al. (2022) illustrate this point. Adding GNSS-RO clearly 
degrades winds in the tropical stratosphere in that system (their Figure 16), but this not case in either the EDA 
experiments or OSEs with real GNSS-RO, so this apparent degradation should be ignored. This kind of 
problem is easy to spot for an existing observing system where OSEs are available, but it will be much harder 
for completely new observation types, so multiple approaches should be useful. In this context, we note that 
the assessments of the future DWL system coordinated by EUMETSAT, will include both ECMWF EDA 
estimates with OSSEs performed with the NOAA system. Similarly, an OSSE will be performed by Météo-
France for the EPS-Sterna constellation, in addition to the EDA experimentation planned at ECMWF.  

To date, we have used the EDA to assess potentially large changes to the global observing system, but usually 
involving just one observation type which is already used operationally and well understood. Going forward, 
the impact of different observing systems will be compared with the EDA, for instance in the context of the 
DWL and EPS-Sterna constellation work mentioned earlier. Doing so will implicitly assume that the EDA 
response reflects the short-range forecast uncertainty in a similar way for the two observing systems 
considered. As noted above, this aspect requires further investigation, for instance by conducting EDA 
experimentation with real data for the different observing systems over the same period and in the same system. 
At times, space agencies are also interested in more subtle questions for specific instrument design, such as 
how changes in horizontal resolution or sampling for a MW instrument affects the results, or what benefit the 
addition of a specific channel brings. Such questions are very difficult to answer with the EDA method (or 
indeed OSSEs), either as our modelling and assimilation of the observations is not sophisticated enough to 
assess such details, or as the signals are likely to be small, and uncertainties in the EDA method may dominate. 
We consider the EDA method to be best suited for relatively sizeable changes to the observing system. 
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In summary, although there are aspects that require further research, we believe the EDA method can provide 
useful information on the impact of future observing systems, that can complement the information provided 
by other techniques such as OSSEs. 

6. Appendix: Measuring analysis quality and forecast skill 
It is worth explaining some of the fundamentals of forecast verification as they help to explain many of the 
issues encountered when interpreting OSEs (see also ECMWF, 2018, Appendix A).  

A typical measure of forecast skill is the square root of the mean squared error (RMSE). For a forecast or 
analysis 𝑓) and a reference 𝑎), the RMSE is the square root of the MSE: 

RMSE = 3MSE(𝑓) − 𝑎)) = 6
1
𝑛
7(𝑓) − 𝑎))(
*

)+,

 

(Eq. A1) 

The index 𝑖 represents one of 𝑛 samples. A global estimate of the error in the 500hPa geopotential height, for 
example, would use a sample encompassing all latitudes and longitudes and different forecast base times.  

The RMSE can be decomposed in a number of informative ways. First is the decomposition into the quadratic 
sum of the error standard deviation 𝑆 and the mean error 𝑀: 
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(Eq. A2) 

This shows that RMSE comes from a quadratic sum of what could be termed transient and systematic errors.  

However, the reference is not the truth, and the characteristics of the reference have an important bearing on 
the RMSE. This is seen by introducing the non-observable true state of the atmosphere 𝑡) and decomposing 
the RMSE into the true error in the forecast, the true error in the reference, and allowing for the fact that the 
two errors may be correlated. 

RMSE = 3MSE(𝑓) − 𝑡)) + 𝑀𝑆𝐸(𝑎) − 𝑡)) − 2Cov(𝑓) − 𝑡) , 𝑎) − 𝑡)) 
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(Eq. A3) 

Here the error covariance Cov() follows standard definitions (e.g. Wilks, 2006). This decomposition shows 
how the errors in the reference, 𝑀𝑆𝐸(𝑎) − 𝑡)), are part of the RMSE. If these are too large, they can dominate 
the RMSE and it becomes hard to detect changes in what we ultimately want to know, the errors in the forecast, 
MSE(𝑓) − 𝑡)). This may be one of the main problems in using observations as the reference for verifying 
changes in the short-range forecast, since the short-range forecast is often more accurate than any single 
observation. However, if there is any correlation between the errors in the reference and the errors in the 
forecast, then these will artificially reduce the RMSE through the covariance term. This is why it is problematic 
to use analyses to verify the forecast, since these errors can be strongly correlated. There is no perfect reference. 

Another helpful decomposition is similar to the previous one, but instead subtracts a climatology 𝑐): 

  
RMSE = 3MSE(𝑓) − 𝑐)) + 𝑀𝑆𝐸(𝑎) − 𝑐)) − 2Cov(𝑓) − 𝑐) , 𝑎) − 𝑐)) 

(Eq. A4) 

Unlike the truth in the previous decomposition, the climatology can be calculated. In this case (see ECMWF, 
2018, Appendix A) the covariance term is then considered a good measure of true forecast skill beyond what 
we already know about climate. Hence the covariance term is the basis of the anomaly correlation coefficient 
(ACC) which is favoured in some verification contexts. By contrast, the RMSE does not just include the 
covariance term, but also the two MSE terms, which in this case are seen to measure the variability (sometimes 
known as activity) in the forecast and in the reference. When the analysis is used as the reference, observing 
system experiments can be affected by this issue because a change in the observational usage will often change 
the variability in the analysis. Changes in variability are also a confounding factor in any change to the 
forecasting system that alters the smoothness of the fields, such as a model resolution upgrade. 

Although decomposed measures of skill can help mitigate against possible confounding effects in measures of 
total error like RMSE, focusing too strongly on measures such as the error standard deviation or the ACC 
means that other components of the error may be ignored (respectively the mean or the variability). The great 
advantage of the RMSE is that all components of the error are being tracked; the problem is that it takes effort 
to understand the origins of any change in the RMSE, and to decide whether those changes are important or 
not. 
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