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Red sky at night... producing weather forecasts 
directly from observations
Tony McNally, Christian Lessig, Peter Lean, Matthew Chantry, Mihai Alexe, 
Simon Lang

ECMWF is embarking on a radical and ambitious project to investigate if weather forecasts can be made 
directly from meteorological observations, harnessing the power of machine learning (ML).

Highly skilful ML weather forecasts have challenged our approach to numerical weather prediction 
(NWP), prompting the development at ECMWF of our own ML forecasting system called AIFS (see 
the article on the AIFS in this Newsletter). Its performance is already highly competitive with that of 
established systems like Pangu-Weather and GraphCast. ML prediction systems (including the AIFS) 
have been trained to forecast future weather by learning from long historical records of past weather, 
typically provided by ECMWF reanalyses, such as ERA5. These datasets are well suited to training 
ML forecasts: they are highly accurate descriptions of the atmosphere and they provide conveniently 
gridded values of all required parameters, available at all locations and at all times for very long historical 
periods. In addition, our reanalysis datasets have been freely available to the wider research community, 
including the commercial sector. This has been a major factor in the rapid rise of ML forecast systems 
and the impressive levels of accuracy they have already achieved. However, while reanalyses, and initial 
conditions generated through data assimilation, are currently still crucial for ML forecasts, it is unclear 
if this will remain so in the future. Fundamentally, atmospheric analyses are just a fusion of an existing 
short-range forecast with the available meteorological observations, and an obvious question is if ML 
forecast systems could be trained and initialised directly from these observations. It is an intriguing 
science question, but also one that could potentially have huge implications for how weather forecasting 
is done in the future.

The use of observations in conventional forecast models 
The many millions of meteorological observations made each day require highly sophisticated data 
assimilation (DA) systems to transform the raw measurements at irregular times and locations into data on 
a regular grid and into the variables required to initialise forecast models. This is an extremely challenging 
task because traditional forecast models demand initialisation on a fine spatial grid over the entire globe, 
even where there may be no observations, and with meteorological variables that may not be directly 
measured. For example, the overwhelming majority of observations come from weather satellites which 
measure thermal radiation emanating from broad vertical layers of the atmosphere. They do not directly 
measure temperature or humidity, and the extraction of this information requires a detailed understanding 
of complex radiative transfer processes in the atmosphere. Downward looking satellites cannot provide 
information on fine vertical scales, either. To meet the demands of forecast model initialisation, the 
measurements must be carefully blended with gridded fine-scale information from a previous short-range 
forecast background. ECMWF has been extremely successful in the development of its data assimilation 
system and has ambitious plans to extend its capability in a number of exciting directions. However, 
exploiting observations in this way remains a highly demanding scientific and technical activity. 

Is there an alternative? 
Much of the complexity described above stems from the fact that conventional forecast models demand 
initial conditions for all meteorological variables on a regular spatial grid. The strategy employed by 
conventional models to produce accurate weather forecasts is to represent the real atmosphere as 
comprehensively as possible, explicitly describing a myriad of fine-scale physical processes and 
interactions between variables at every grid point over the entire globe, from the surface up to the 
mesosphere. However, it has been demonstrated recently that ML systems operating with far fewer 
variables than conventional models and on significantly coarser spatial grids are capable of producing 
highly skilful medium-range forecasts of important weather parameters. This begs the intriguing question 
if ML forecast models could learn and be initialised directly from observations, obviating the need 
to convert observations to a fine grid of unmeasured physical variables dictated by the NWP model. 
If training of a ML model from observations was successful, large fractions of the conventional data 
assimilation process could be circumvented, potentially allowing forecasts to be produced more quickly 
as soon as observations are available. Direct Observation Prediction (DOP) with ML models may also 
be able to exploit additional observations that are currently not used by conventional data assimilation 
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systems. For example, satellite radiance measurements in the visible part of the spectrum have such 
complex radiative transfer that they are not yet assimilated in global NWP systems. Yet in any animation 
of visible imagery one can clearly see the movement of weather patterns around the globe, and it seems 
entirely plausible that an ML forecast system could readily exploit this information to predict how weather 
patterns will evolve in the future. Another aspect is that an observation-based forecasting system does 
not require the approximative modelling of unresolved physical processes. These ‘parametrizations’ are 
a source of considerable uncertainties in conventional models. Instead, the ML model would rely on the 
feedback from small-scale processes that is captured in the observations to implicitly resolve processes 
that, for example, take place at small scales.
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The network takes as input microwave radiance observations for several different channels, which are first subdivided 
into tokens, which represent all of the data in small location–time neighbourhoods. This huge amount of input 
training data (including the location-time information) is then mapped through a process called embedding to a 
highly compact and efficient vector representation for input to the transformer core (or backbone) neural network. 
Transformer networks are used extensively in many applications and are the driving force behind Large Language 
Models, such as ChatGPT. In here, the algorithm learns relationships between the observations at different spatial 
locations and times by randomly masking (or hiding) portions of the training data and creating predictions for the 
hidden values. The end result is that the network develops an ability to predict observations where they do not exist 
and, crucially, to predict observations at times when they do not exist – in other words, forecast future observations.

Preliminary investigations: observations predicting future observations
Research is at a very early stage, and the first question we are attempting to answer is how much 
predictive skill can be achieved when training on observations alone. When models like AIFS and 
GraphCast are trained from reanalysis datasets like ERA5, they are learning to predict the weather from 
past observations, but also from the conventional forecast model (the Integrated Forecasting System, 
IFS) used in the ERA5 data assimilation process. This conventional model plays an important role in the 
production of a coherent gridded representation of the atmospheric state. As a preliminary step, we are 
therefore investigating if an ML algorithm with only observations as input can be trained to predict future 
observations, completely removing any influence of a conventional forecast model in the training process. 
Our first experiments use microwave radiance measurements from satellites. These have the advantage 
that they provide high-quality observations with homogeneous coverage over long historical periods 
of time. However, they also come with the limitation of rather coarse vertical and horizontal resolution. 
A prototype Transformer Neural Network (Box a) has been trained with ten years of real satellite 
observations to make 12-hour predictions, essentially using observations in one 12-hour assimilation time 
window as input and predicting the observations that would be obtained in the next 12-hour window. 

How does the prediction work? A
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It can be seen in Figure 1 that the 12-hour predicted values are certainly realistic in terms of structure and 
variability compared to the real observations obtained 12 hours later. Furthermore, one can clearly see the 
movement of conspicuous meteorological features in the real observations from one 12-hour window to 
the next, and that the ML prediction correctly captures this movement.

These results are encouraging and suggest there is indeed predictive skill (at least over 12 hours) that 
can be learned from the observations alone. A next step is to challenge the algorithm with completely 
different types of observations. We will use land-surface temperature measurements from SYNOP 
weather stations, to test if meteorological variation can still be learned from the data in the presence 
of a strong diurnal cycle. This will also bridge the gap between the radiances used in the current 
experiments and variables of relevance to users, such as 2 m temperature or wind. Finally, in this 
preliminary part of the project we will investigate to what extent complementary information from 
different observing systems enhances the quality of the prediction. An exciting example of this will be 
combining visible and infrared imagery with SYNOP surface temperature observations. We know that in 
nature the presence of cloud cover can have a strong impact upon the magnitude of the land surface 
temperature diurnal cycle. Can the algorithm improve its prediction of surface temperature using cloud 
information learned from the imagery?  

How might we predict weather parameters directly from observations?
In the experiments described above, the ML algorithm is learning to predict future observations at real 
observation locations and times. However, provided there is sufficient information in the training data 
and with a suitable network architecture, ML algorithms are capable of learning spatial and temporal 
relationships between observations. Through this, they can generalise the predictions to locations and 
times where there are no direct measurements. Thus, if the algorithm can successfully learn to predict the 
surface temperature patterns from SYNOP stations, it should be possible to predict surface temperature 
at any location, even locations where there are no SYNOP stations. The same approach would apply for 
upper air information if the algorithm can learn to successfully predict radiosonde observations. All of 
this remains speculative at the moment. But with the existing network architecture and training protocol, 
we have identified a plausible mechanism allowing weather information for any time or location to be 
generated from a prediction algorithm trained directly on observations. There are, however, a number of 
different options for DOP that can be explored in the future (see Box b).

a ATMS radiances in 12-hour window b ATMS radiances in subsequent 12-hour window

c ML predicted values

Figure 1 Here we show (a) observed 
Advanced Technology Microwave Sounder 
(ATMS) channel 18 radiances in an arbitrary 
12-hour window provided as input to the ML 
prediction, (b) ATMS observations obtained in 
the subsequent 12-hour window, and (c) the 
ML predicted values. 
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Learning from observations: different approaches that could be taken
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The current generation of analysis-driven ML models 
takes gridded (re)analysis data as input and is trained 
to predict the same fields at a future time (as shown 
under 1). Learning directly from observational data 
could take several different forms as illustrated in 
the figure. Firstly, observations could be used as a 
target ‘truth’ in the training, while still using gridded 
analysis data as input (shown under 2). For example, 
the existing AIFS could be trained to predict SYNOP 
observations – free from any systematic model biases 
present in the analysis datasets.

Alternatively, the ML model could be initialised 
directly from observational data (shown under 3–6). 
An ML model could be trained to map from input 
observations to the gridded 4D-Var analysis valid at 
the same time (shown under 3). By emulating 4D-Var 
in this way, a gridded analysis could be generated far 
more quickly than through the current computationally 

expensive data assimilation system. However, 
any model biases present in the existing system 
would be inherited by the ML model, and such an 
approach would never be able to surpass the quality 
of the current 4D-Var analysis.

Panel 4 shows a scenario where the ML model takes 
observations as input but is trained to predict a 
gridded state in the future. This has the advantage 
that gridded forecasts could be generated for all 
model variables. However, a physical model and data 
assimilation would still be needed to generate the 
training dataset.

In the exploratory work discussed in this article, we 
are using a neural network which takes observations 
as input and is trained to predict the future state 
using observations as the ground truth (panel 5). This 
approach only includes observational data in the 
training dataset.

B
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Moving towards longer-range predictions
The acid test of any observation-based prediction system is if it can be extended to forecast ranges of 
multiple days or even weeks. Data-driven forecast models (such as the AIFS, GraphCast and Pangu-
Weather) trained from reanalysis data have clearly demonstrated this capability, so we have good reason 
for optimism with DOP. To extend the range of predictions, we will investigate the use of the different 
types of neural network available (e.g. the Transformer Network described here, but we will also explore 
the Graph Networks employed by the AIFS). We will also explore different options for training longer-
range predictions (auto-regressive vs fixed forecast length) to assess which is most suitable for longer-
range direct observation forecasting. Here, our efforts will be accelerated by drawing extensively upon 
the experience gained in the development of the AIFS. Another interesting area of exploration will be 
enhancing the information content of the initialisation of the DOP algorithm with windows significantly 
longer than 12 hours (e.g. several days of observations). The aim will be to better inform on the past and 
current trajectory of weather systems and to provide an analogue of the background information used in 
conventional data assimilation. Here we will directly benefit from the highly sophisticated scientific and 
technical observation handling infrastructure that already exists at ECMWF. 

Summary
We believe there is a strong strategic and scientific motivation for exploring this exciting new approach 
to weather forecasting. Direct observation-driven prediction is a very radical approach and, as such, 
pursuing this direction comes with no guarantee of success. However, we believe that our observation 
handling and assimilation experience, combined with our rapid uptake of ML technology, makes ECMWF 
very well placed to explore this pioneering and potentially paradigm-shifting area of research. This effort 
will very soon be complemented by a joint project with ECMWF Member States, where ML-assisted data 
assimilation will be addressed as one of the topics.
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