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cloudiness at ECMWF
Llorenç Lledó, Thomas Haiden, Josef Schröttle, Richard Forbes

As part of ECMWF’s continuous efforts to improve the representation of physical processes of the Earth 
system, an increasing number of km-scale simulations are performed. These activities are supported by 
the EU’s Destination Earth initiative (DestinE), in which ECMWF aims to create a high-resolution digital 
twin of our planet. Although higher-resolution simulations can improve the prediction of smaller-scale 
features and increase model fidelity, often the features’ exact location cannot be precisely determined. 
This results in traditional metrics such as root-mean-square error (RMSE) being degraded. Spatial 
verification techniques can provide a better indication of the value of such forecasts than traditional 
verification metrics by evaluating if the forecasts have the right statistics over a certain neighbourhood. 
Such techniques have been used in the limited-area modelling community for some time. In this article 
we describe how the Fractions Skill Score is being tested at ECMWF as a first step towards a more 
comprehensive evaluation of performance improvements at high resolution.

Verifying high-resolution forecasts 
ECMWF’s current operational high-resolution global forecast (HRES) has a grid spacing of 9 km. 
Experimental forecasts with 4.5 km grid spacing are being generated as part of the first phase of 
DestinE, and even higher resolution runs have been performed in test mode. In order to evaluate the skill 
of surface fields at increasingly high resolution, methods beyond the standard point-wise matching of 
forecasts and observations need to be adopted. This is because of the so-called ‘double-penalty’ issue. 
A forecast predicting a feature with sharp gradients such as precipitation from a convective cell will be 
doubly penalised if it predicts the feature at a wrong space or time: once for missing the feature in the 
correct spot/at the right time, and once for the false alarm in the wrong place/at the wrong time (Figure 1). 
Hence the error will be twice as large as for a ‘flat’ forecast that does not predict the feature at all. Given 
the potential value of the forecast indicating the event, even if somewhat shifted, human judgement 
would consider the flat forecast as worse than the wrong-location/wrong-time forecast, especially if the 
displacement is small. The interpretation of gridded forecasts to issue warnings or assist decision-making 
typically relies on neighbourhood analyses rather than a literal interpretation of grid-point values. Double 
penalty issues are especially relevant for high-resolution fields with strong gradients and sharp features, 
such as precipitation or cloudiness. 
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Figure 1 Illustration of the double penalty 
effect: a forecast that is able to predict an 
observed feature but not its exact location or 
time (top panel) has a higher mean absolute 
error (MAE) than a forecast with no feature 
(bottom panel).
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For a given level of imperfect association between forecasts and observations (a correlation coefficient 
smaller than 1), forecasts that minimise the point-wise RMSE have less variability than the observations. 
Therefore, a model with low variability (i.e. a lack of fidelity) will score better than a model with the right 
amount of variability. Based on the RMSE or related measures, it might be tempting to tune models 
towards lower variability. Hence, if physical realism of a model is sought, the RMSE may not be the proper 
metric to optimise.

One way of dealing with the double penalty issue is to compute scores for differently sized areas instead 
of just point-wise. A number of different spatial verification techniques have been developed (Brown 
et al., 2011). One of these, the Fractions Skill Score (FSS) introduced by Roberts and Lean (2008), has 
been widely used for the verification of limited-area model precipitation forecasts and is being tested 
at ECMWF as part of the move towards higher resolution. It gives a more complete picture of forecast 
performance for fields such as precipitation or cloudiness, since they may exhibit little skill at the grid 
scale but significant skill at larger scales. It also provides a natural framework for comparing forecasts at 
different resolutions, which is needed for km-scale model development and evaluation.

The Fractions Skill Score
The FSS is a spatial verification technique that does not automatically penalise location errors such as the 
one depicted in Figure 1. It answers the question: did the observed feature occur in a nearby location in 
the forecast? To do so, it counts the fraction of grid points in a neighbourhood at which a given threshold 
(e.g. of precipitation amount) is exceeded, both in forecasts and in observations (Figure 2). Then it 
compares the two fractions by computing their squared difference. The neighbourhood analysis is done 
separately at each grid point and then averaged over the region of interest. The Fractions Skill Score is 
then obtained by normalising by the worst score that could be obtained from rearranging the forecast 
fractions field. Analysing multiple thresholds and neighbourhood scales makes it possible to get an idea 
of the spatial scales at which the statistics of the number of exceedances in the forecasts match the 
statistics of the observations. By constraining the statistics to a neighbourhood, the FSS requires some 
degree of association at larger scales, while allowing for smaller-scale location and shape errors.

Properties of the FSS
Like any verification metric, the FSS has some specific properties to be aware of. If the number 
of threshold exceedances in the forecast and observations are overall different due to imperfect 
calibration of a forecast, this will be penalised. It can be avoided by using quantile thresholds instead 
of absolute thresholds. Another property to note is that the FSS is not symmetric with respect to the 
definition of feature and non-feature. It will give different results depending on whether the grid points 
exceeding a threshold are counted or the ones below it. Finally, the FSS is not a traditional skill score 
that measures improvement over a fixed reference forecast, and although it ranges between 0 and 
1, positive values do not automatically mean that the forecast is useful. According to Mittermaier & 
Roberts (2010) and Skok & Roberts (2016), a threshold of FSS = 0.5 may in most cases be a useful 
lower limit, although FSS values below 0.5 may still be regarded as useful for some applications if the 
forecasts are not perfectly calibrated. 
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Figure 2 The Fractions Skill Score measures 
the squared difference of the number of 
exceedances above a certain threshold over 
a neighbourhood. In this example the model 
and observations agree perfectly on a scale 
of 20 grid points.
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Verification of HRES precipitation 
Figure 3 shows the skill of daily-accumulated precipitation forecasts from the operational HRES over 
Europe (12.5°W–42.5°E and 35°N–60°N) for different thresholds in a winter and a summer month of 2019 
(top and bottom rows, respectively). The observational dataset used for this evaluation is GPM-IMERG, 
which is a satellite-based, gauge-corrected gridded precipitation estimation. GPM-IMERG covers the 
latitudinal band between 60°S and 60°N and provides data every 30 minutes with a spatial resolution of 
0.1 degrees. As a satellite-derived precipitation product, it has the advantage of providing high-resolution 
information across a large portion of the globe, while it shares the general weaknesses of satellite-
derived estimates. Due to the indirect nature of the relationship between satellite measurements and 
precipitation amounts, both random and systematic errors are introduced. Gridded precipitation analyses 
based on rain gauges are more robust in this regard. However, they are typically available only at coarser 
resolution (0.25 to 0.5 degrees at most) and quite uneven in coverage. On the other hand, radar products 
provide information at very high resolution, but coverage is limited, and calibration procedures can be 
inhomogeneous across different countries’ networks.

Figure 3 Fractions Skill Score of HRES precipitation forecasts over Europe for four thresholds, presented at multiple 
spatial scales and for lead times of up to 10 days ahead, for (a) December 2019 and (b) June 2019. Purple colours 
indicate a useful spatial scale at particular lead times.

The 9 km HRES forecasts have been re-gridded to match the observations with a conservative 
interpolation method. Each panel in Figure 3 shows the FSS as a function of forecast lead time and 
neighbourhood scale from the grid-scale up to about 200 km. As expected, skill increases with scale 
at all lead times. Values above 0.5 (in purple) indicate that the forecast is useful at that scale. At a 
threshold of 1 mm in winter (leftmost panel of Figure 3a), the HRES is skilful for nearly all lead times and 
scales shown. In summer (leftmost panel of Figure 3b), forecast skill is lost after about 8 to 9 days, even 
at larger scales of 100 to 200 km. Moving to higher thresholds, the FSS generally decreases, so that at 
20 mm some skill is left only in the short range and at large scales in winter, and little skill in summer. 
Generally, there is a substantial gain in skill when moving from the grid-scale to the next-bigger scale 
(boxes with 3x3 grid points).  
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Using a threshold of FSS = 0.5 to determine the usefulness of a forecast is strictly applicable only if the 
forecast and observation datasets are unbiased. As this is not the case, even FSS values below 0.5 may 
be useful and provide better-than-random guidance on the spatial precipitation distribution. 

Verifying radiation with the FSS
A useful proxy for the verification of cloud macro-properties, such as total cloud cover and cloud optical 
depth, is the downward shortwave radiation flux at the surface. Like precipitation, it is a flux quantity that 
can exhibit strong gradients and high variability in space and time, and it can be estimated using satellite 
observations. Figure 4 shows how the operational HRES forecast skill for this quantity varies with spatial 
scale and lead time in the summer season in the domain 60°W–60°E and 60°S–60°N. The verification 
dataset used is EUMETSAT’s Climate Monitoring Satellite Application Facility (CM SAF) 24-hour average 
of downward shortwave radiation at the surface. A threshold of 200 W/m2 has been found suitable for 
the domain during summer. The FSS is not sensitive to the exact value of this threshold as long as it 
separates predominantly clear and cloudy areas.  

Figure 4 Fractions Skill Score for HRES 
forecasts of daily averages of downward solar 
radiation in June–July–August 2022 in the 
domain 60°W–60°E and 60°S–60°N, verified 
against CM SAF data. 
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In terms of absolute FSS, we can see similar values (0.85 to 0.9) at large scales and short lead times as 
for summer precipitation with a low threshold of 1 mm (shown in Figure 3b). As for precipitation, skill 
becomes small beyond forecast days 7 to 8, and this limiting lead time is not very sensitive to scale.

Evaluating brightness temperature for case studies
The Fractions Skill Score is also useful for evaluating individual cases, such as the ones currently 
being investigated in the Extremes Digital Twin of DestinE. The FSS makes it possible to compare 
the performance of different model configurations during specific events that were relevant to 
society due to their impacts. This type of individual case study analysis does not replace a statistical 
verification over longer periods but can uncover weaknesses which are difficult to detect in statistical 
performance summaries. 
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The left-hand panel in Figure 5 is a satellite image showing cloudiness during storm Ciara that affected 
western Europe between 7 and 9 February 2020. A large-scale synoptic trough over the North Atlantic 
has a clearly developed frontal cloud. The grey scale indicates brightness temperature from the infrared 
window band of 10.8 µm. Light colours can be used as a proxy for cloud top height, while darker 
colours indicate surface temperatures under clear-sky conditions. The central and right panels show 
simulated satellite images derived from experimental ECMWF forecasts at 9 and 4.5 km with a lead time 
of 48 hours. In the blue domain, a region of cold air advection, the 4.5 km experiment produces smaller-
scale clouds than the 9 km run, which are prone to double-penalty issues. In the orange domain, the 
frontal system is wider in the 4.5 km experiment than in the 9 km run. Both experiments underpredict a 
narrow band of lower clouds to the southeast of the front.

Figure 6 compares the FSS of the 9 and 4.5 km experiments for the two selected regions. As these 
simulated satellite images are known to have a warm bias, the FSS has been computed for quantiles 
instead of absolute thresholds. These quantiles are derived from the distribution of brightness 
temperatures within the selected domains. For the cold air region, we can see that the FSS is below 0.5 
at grid scale, and there are no clear differences between the two runs. However, when looking at larger 
scales, the 4.5 km run produces better agreement with the observations for all quantiles, becoming useful 
already at a neighbourhood size of 5x5 grid points for quantiles 0.2 and 0.25. For the frontal region the 
situation is reversed: the 9 km experiment performs better than the 4.5 km one at all scales and for all 
chosen quantiles. In the 4.5 km run, the front is too wide when compared to observations, and this large-
scale error is only compensated in the FSS when evaluating rather large neighbourhoods. This single 
case serves to illustrate how the relative skill in predicting cloud systems between runs at different grid 
spacings can vary strongly with the type of system. A more systematic evaluation of the FSS for different 
cloud regimes will help identify possible causes of such differences.  

Figure 5 Brightness temperature images (infrared 10.8 μm band) over western Europe for the Ciara storm on 
8 February 2020 at 00 UTC, (a) as observed by Meteosat-11, (b) as simulated by ECMWF’s Integrated Forecasting 
System (IFS) at a grid spacing of 9 km, and (c) as simulated by the IFS at a grid spacing of 4.5 km, in both cases with a 
lead time of 48 hours. The blue box (~500 x 1,100 km) encloses a region of cold air with smaller-scale cloud structures, 
and the orange box (~800 x 1,700 km) contains the bulk of a frontal system.
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Outlook
The method described here to evaluate forecasts with a scale-dependent metric as an additional 
verification measure will be important in the future as model resolution increases. Spatial verification 
techniques have been developed and used for some time within the limited-area modelling community, 
such as in ECMWF’s Member and Co-operating States, and ECMWF is benefiting from these efforts. 
Although those techniques are well established, new developments that simplify and facilitate the 
interpretation of verification results are still taking place (e.g. Skok, 2022). Another essential aspect 
to be improved is the availability of high-resolution, high-quality observational datasets with wide 
coverage for verification. There is a need to understand the associated uncertainties and potential 
biases of existing observational datasets used in verification. For precipitation in particular, it will be 
important to compare different gridded verification datasets to assess their respective strengths and 
weaknesses. Scale-dependent metrics are relevant for other highly variable fields, such as clouds, 
and infrared and visible satellite images can be used to verify cloudiness as a function of scale. 
Computation of the FSS or similar scores will therefore be part of future evaluations of operational 
changes for the HRES as well as ensemble forecasts (ENS), and it will help to provide a more complete 
picture of the performance of new model cycles.  
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Figure 6 Fractions Skill Score of brightness temperatures for the 4.5 km and the 9 km 
experiments in (a) the cold air domain indicated by the blue box in Figure 5, and (b) in the frontal 
system region indicated by the orange box in Figure 5.
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