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A revolution is beckoning in weather forecasting: machine 
learning methods are moving into the field, and they 
could radically change the way weather forecasts are 
created in the next ten years or so. Machine learning 
applications are based on sample data to make predictions 
or take decisions. In numerical weather prediction, the 
traditional approach is to use the laws of physics to make 
predictions, although these are combined with statistical 
approaches for observation processing, data assimilation 
and post-processing. It is clear that machine learning 
could be useful along this whole spectrum of activities in 
weather forecasting. One relevant area is highlighted in 
this Newsletter: developing a machine learning tool for 
the detection and classification of observation anomalies. 
This application, which is still being tested, will improve the 
classification of events by severity and cause and help to 
monitor satellite data from a growing number of platforms. 
This is only one of the many applications of machine 
learning which are being investigated at ECMWF. For those 
interested in the potential of machine learning in numerical 
weather and climate predictions, we have set up a Massive 
Open Online Course (MOOC) on the subject that will run 
until April.

Looking ahead to the next 12 months, there are many 
more developments lined up that will take us, and the EU 
services in which we participate, forward decisively. One of 
these is the next upgrade of our Integrated Forecasting 
System (IFS) to Cycle 48r1, which is planned for June. 
This is inextricably linked to us moving from our previous 
Cray high-performance computing facility (HPCF) to a 
new Atos one in October last year. The new HPCF helps 
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Machine learning

us to increase the 
frequency of extended-
range forecasts and 
to include twice as 
many extended-range 
ensemble members as 
before. It also gives us 
the resources to upgrade the resolution of our ensemble 
forecasts (ENS) from 18 km to 9 km, which is currently the 
resolution of our single high-resolution forecast (HRES). 
This materialises the strategic objective, laid out in our 
ten-year Strategy in 2016, of making the ensemble our 
primary forecast.

Two articles in this Newsletter describe areas where 
we have work to do to facilitate further moves to 
higher resolution: observations, used to help determine 
the starting conditions of forecasts, should include 
unconventional ones so that they become as dense as 
possible; and our facilities to verify forecasts of precipitation 
and cloudiness have to be adapted to work well at higher 
resolution. Another article describes how we can predict 
the forecast impact of future observing systems that are 
being considered. This capacity is being extensively used in 
partnership with satellite agencies, such as EUMETSAT and 
ESA, and can be a key resource for the optimisation of the 
Global Observing System. Machine learning work is thus 
important, but it is far from the only issue to keep us busy 
in the new year.

Florence Rabier 
Director-General

Editor Georg Lentze  •  Typesetting & Graphics Anabel Bowen  •  Cover See the article starting on page 2
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The track of the Peter I storm over its lifetime. Spots show positions from ERA5 at 6 h intervals, numbers indicate the date in 
October 2022; no UTC time given means 00 UTC. Contours show ERA5 mean sea level pressure at the time of maximum depth (17th, 
06 UTC). Green shades denote analysed sea ice cover on 17th (10–90% and >90%). White areas adjacent to Antarctica are permanent 
ice sheets. The inset shows the storm’s central pressure trace in hPa (y-axis) from ERA5 over the lifetime (October date on x-axis).
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On 9 October 2022, a small 
depression developed in the south 
Pacific, near Tonga, and in subsequent 
days this moved towards Antarctica. 
In so doing it developed explosively to 
become, so far as we can tell, the 
deepest extratropical cyclone of 
modern times. The system’s central 
pressure fell by over 100 hPa to reach 
a minimum around 900 hPa at 06 UTC 
on the 17th, near the edge of the 
Bellingshausen Sea, and close to the 
tiny Norwegian dependency of Peter I 
island. Accordingly, we name this the 
‘Peter I storm’ (Peter-the-first). 
Our primary data source for this study 
is ECMWF’s ERA5 reanalysis, as low 
surface observation density in the 
areas concerned precludes 
observation-based analysis.

Evolution
The ERA5-based cyclone track figure 
shows that following genesis in the 
tropics, the cyclone spent a day or so 
(10 October) around 23°S, before 

progressing slowly south-
southeastwards on the 11th and 12th, 
during which time central pressure 
changed little. On 13th, the low 
accelerated and turned towards the 
east-southeast, near 35°S. In tandem, 
isobars elongated markedly along this 
track orientation, with renewed 
development taking place at the 
eastern end, causing an apparent 
track jump between 06 and 12 UTC 
on the 13th. Such an evolutionary 
feature is not uncommon in the 
extratropical North Atlantic, when 
cyclones enter the core of the main 
extratropical jet. The forward 
development is referred to as a warm 
front wave. In the current case, the 
warm front wave then started 
deepening and turning poleward, also 
in a way that is very reminiscent of 
North Atlantic cyclones. As it 
approached the Antarctic sea ice 
edge on the 16th, deepening rates 
peaked: the maximum 6 h fall was 
19 hPa. Part of the Peter I storm’s 

The deepest extratropical cyclone of modern times?
Tim Hewson, Jonathan Day, Hans Hersbach

pressure fall can be attributed to 
migration into a broadscale annulus of 
low pressure ‘cyclone debris’ that 
commonly encircles Antarctica 
(e.g. see track figure). The lowest 
pressure value (900.7 hPa) occurred 
over sea ice, with a coincident 
near-surface model temperature 
around –10°C. In the next three days, 
the cyclone filled slowly and moved 
slowly in a loop, becoming part of the 
‘debris’ and finally losing its identity 
on the 20th. This 10-day life cycle is 
much longer than is typically seen 
over the North Pacific and North 
Atlantic, though there are cases of 
(much less deep) Arctic cyclones 
lasting as long, particularly in summer. 
Even if the storm ended up being very 
cold at its core, latent heat input 
attributable to its tropical origins may 
have helped the pressure fall so low.

Forecasts
From six days before the event, 
ECMWF high-resolution forecasts 
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(HRES) were remarkably consistent in 
predicting a very deep low in the right 
general area. Pressure minima were 
generally in the range 895–910 hPa. 
This reiterates that modern-day 
models are perfectly capable of 
producing realistic forecasts of 
never-before-seen conditions if the 
initial conditions are conducive. Note 
also that one would expect a slightly 
lower minimum in HRES than in ERA5, 
due to its higher horizontal resolution 
(9 km versus 31 km).

Climatological context and 
physical considerations
Circumpolar plots of extreme annual 
surface pressure minima, for the 
extratropics, highlight that the 
southern hemisphere consistently 
experiences lower values than the 
northern hemisphere. This can be for a 
variety of reasons, with the very 
different land–sea distributions being 
one. The southern hemisphere 
sequence also shows how the 2022 
event really stands out, with pressure 
values about 10 hPa lower than 
anything else in the 1950–2021 period. 
This gives us some confidence that 

the Peter I storm was the extreme 
event of modern times, even if a 
dearth of surface pressure 
observations reduces our confidence 
in the absolute value. 

It is also interesting that the vast 
majority of the southern hemisphere 
annual minima appear to have been 
over sea ice. They also coincide with 
months when sea ice is most extensive 
(maximum extent tends to be in mid–
late September). In the northern 
hemisphere virtually all the annual 
minima are, meanwhile, over open sea 
water, with their peak occurrence 
tending to be closer to the coldest part 
of the year. These remarks probably 
have physical significance. 
The frictional retardation of lower 
tropospheric flow is less over sea ice 
than over stormy seas, since sea ice 
typically has a lower surface 
roughness. Indeed, over oceans there 
are destructive feedbacks, whereby the 
ocean wave growth that coincides with 
cyclone deepening and attendant 
strengthening winds ordinarily 
increases surface roughness. 
As friction tends to fill cyclones, if other 
things are equal greater roughness 

would favour lower deepening rates 
and higher central pressures.

On the other hand, due to lack of 
experimental evidence there is 
considerable uncertainty in roughness 
lengths over sea ice, particularly if the 
ice has been distorted or broken up 
by wave action and strong winds, and 
this coupled with the low observation 
density could have conspired to make 
ERA5 cyclones over sea ice deeper 
(or indeed shallower) than they should 
be. This is an area where more 
research is warranted.

Relative to the ERA5 October 
climatology for 1990–2020, sea ice 
cover for the current storm (see track 
plot) was depleted west of the Antarctic 
Peninsula, out to about 100°W, and 
then more extensive beyond that; these 
anomalies may also have physical and/
or dynamical relevance for the surface 
pressure evolution.

Finally, even though the Peter I storm 
was a standout event, the time 
sequence graphs do not seem to 
provide evidence of any long-term 
trends in these particular extremes.

Locations of annual mean 
sea level pressure minima. 
The locations and values are 
shown for each year from 1950 
to 2021 (annual extremes), and 
for 1 Jan – 31 Oct 2022, for 
latitudes >40°N (left), and >40°S 
(right), as extracted from full 
resolution ERA5 reanalysis data 
at 6 h intervals (00, 06, 12 and 
18 UTC). 40° latitude limits aim to 
exclude tropical cyclones. Green 
shades denote ERA5 
climatological average sea ice 
cover (10–90% and >90%) for 
1990–2020, for 15 January 
(left-hand panel) and 
15 September (right-hand panel).  
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Updating land and aerosol properties to improve 
reanalyses and seasonal forecasts 
Magdalena A. Balmaseda, Tim Stockdale, Souhail Boussetta, Retish Senan, Gianpaolo Balsamo, 
Angela Benedetti, Tanya Warnaars 

CONFESS is a European Horizon 
2020 project initiated in 2020 that 
aims to provide a consistent 
representation of boundary forcings in 
reanalyses and seasonal forecasts 
(https://confess-h2020.eu/). It is 
intended to evolve the capabilities of 
the EU‑funded Copernicus Climate 
Change Service (C3S), run by 
ECMWF, to monitor and predict 
extreme events and represent climate 
trends. CONFESS has three main 
strategic objectives:

• introduce for the first time temporal 
variations of land cover and 
vegetation in C3S systems by 
exploiting state‑of‑the‑art 
Copernicus observational datasets

• improve temporal representation 
of tropospheric aerosols by 
harmonising datasets from the 
Coupled Model Intercomparison 

Project Phase 6 (CMIP6) and the 
EU’s Copernicus Atmosphere 
Monitoring Service (CAMS) run 
by ECMWF

• increase predictive skill by 
inclusion of prognostic vegetation 
and new capabilities for 
responding to volcanic and 
biomass burning emissions.

Together with project partners 
Météo‑France, Italy’s Institute of 
Atmospheric Sciences and Climate 
(CNR‑ISAC), and the Barcelona 
Supercomputing Center (BSC), 
CONFESS developments are being 
tested in a multi‑model framework to 
assess the robustness of the results. 
This article reports on some of 
ECMWF’s efforts over the past two 
years targeting the inclusion in the 
next generation of C3S reanalyses and 
seasonal forecasts. Beyond the 

immediate implementation, 
developments in CONFESS will 
prepare the ground for the rapid 
uptake of new Earth observations, 
thus supporting the continuous 
evolution of monitoring and 
forecasting systems used for 
operational seamless predictions and 
Copernicus services.

Land cover, use and 
vegetation
Land cover and vegetation 
observations are of paramount 
importance to properly constrain the 
land surface models that are included 
in current reanalysis and seasonal‑to‑
decadal prediction systems. 

ECMWF has produced a harmonised 
temporal record spanning the period 
1993–2019 of Land Cover (LC), Land 
Use (LU) and Leaf Area Index (LAI) by 

Leaf area index anomaly (m2/m2)
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Leaf Area Index anomaly in July 2010. The map shows the leaf area index (LAI) anomaly values in July 2010 with respect to the 
2009–2019 climatology. A prominent negative LAI anomaly is visible over the location of the 2010 Russian heatwave.

https://confess-h2020.eu/


news

5ECMWF Newsletter 174 • Winter 2022/23

Black carbon, July 1975 Black carbon, July 2015

Sulphate, July 1975 Sulphate, July 2015

Aerosol column burden (mg/m2)
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Change in tropospheric aerosol between 1975 and 2015. The image shows the change in vertically integrated black carbon (top) and 
sulphate (bottom) between July 1975 (left) and July 2015 (right). The effects of increased forest fires at high latitudes, pollution controls in 
Europe and North America, and the growth of emissions in India and the Middle East are all visible. Sulphate aerosols over China have 
peaked and are now declining.

merging records from C3S and the 
Copernicus Global Land Services 
(CGLS). The first figure shows an 
example of the anomaly in LAI in July 
2010 from the harmonised datasets.  

These temporal records have been 
implemented in different Land Surface 
Models (LSM), namely ECLand at 
ECMWF, Surfex at Météo-France and 
the EC-Earth HTESSEL-LPJGuess. 
With each LSM, pairs of offline 
simulations, driven by atmospheric 
forcing using ECMWF’s ERA5 
reanalysis, have been conducted with 
and without time-varying land 
properties. The sensitivity of water and 
energy fluxes to the temporal land 
variations have been evaluated and 
verified against available observations. 
The multi-model assessment makes it 
possible to quantify the uncertainty 
arising from differences in model 
configuration and parametrizations. 
Results show that anomalously low 
LAI conditions, such as those during 
the European drought in 2003 and the 
Russian heatwave in 2010, 
consistently decrease latent heat flux 

and increase sensible heat flux, in 
agreement with observations. This 
response is likely to impact the 
estimation and prediction of extremes.

Aerosol forcing
Decadal variations of tropospheric 
aerosols (see the black carbon figure 
as an example) can have a strong 
impact on the production of 
reanalyses and seasonal re-forecasts. 
Currently, ERA5 and ECMWF’s 
seasonal forecasting system (SEAS5) 
use tropospheric sulphate aerosol 
forcing from CMIP5, which is outdated 
and not consistent with the aerosol 
climatology used in numerical weather 
prediction (NWP). In preparation for 
ERA6 and SEAS6, CONFESS has 
produced a homogenous and 
consistent multi-decadal record of 
tropospheric aerosols, exploiting the 
atmospheric composition capabilities 
that CAMS has introduced into 
ECMWF’s Integrated Forecasting 
System (IFS). A time-varying 
climatology of multiple aerosol species 
is calculated based on data from a 

multi-decadal set of Cycle 47r3 
IFS-COMPO forecasts constrained by 
ERA5 meteorology, and with 
continuously evolving chemistry and 
aerosols driven by specified 
emissions. So far, we have considered 
the periods 1971–2019 forced by 
CMIP6-style emission data, and 
2003–2020 forced by CAMS 
emissions. Creating data back to 1940 
will be straightforward using the newly 
created ERA5 reanalysis for that 
period. The aerosol records are then 
smoothed with a nine-year running 
mean to represent decadal variability. 
The resulting product has the added 
advantage that the last nine years can 
be used as a representation of the 
current climate aerosol values for 
NWP. We plan to use the resulting 
forcing fields in the IFS cycle used for 
the next generation of ECMWF 
seasonal forecasts SEAS6 and the 
upcoming C3S reanalysis ERA6. 
Having an up-to-date aerosol 
climatology that is consistent with the 
latest CAMS aerosols also helps us to 
benchmark the impact of interactive 
aerosols on NWP.
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are being tailored to this specific 
domain with compelling results.   

Thematic focus
The workshop was structured 
according to separate themes 
designed to cover the main application 
areas of ML in Earth observation, 
numerical weather prediction (NWP), 
and climate prediction: 

• Machine learning for Earth 
observations

• Hybrid machine learning in data 
assimilation

• Machine learning for model 
emulation and model discovery

• Machine learning for user-oriented 
Earth science applications

• Machine learning at the network 
edge and high-performance 
computing

In this edition, the last theme was 
added to the first four traditional 
areas. The aim was to encourage 
discussion of emerging topical areas 
of ML applications, such as 
observation processing on board of 
satellites (see the talk by Vit Ruzicka 
and poster presentations by Giacomo 
Acciarini and Andrea Spichtinger) and 
futuristic applications of AI/ML in 
quantum computing. In this latter area, 
the talks by Lisa Wörner and Bertrand 
Le Saux provided a fascinating 
snapshot of current and planned 
developments for the application of 

ECMWF–ESA Workshop on Machine Learning for 
Earth Observation and Prediction
Massimo Bonavita (ECMWF), Rochelle Schneider (ESA ESRIN Φ-lab)

The third edition of the ECMWF–ESA 
Workshop on Machine Learning for 
Earth Observation and Prediction took 
place from 14 to 17 November 2022 at 
ECMWF’s headquarters in Reading, 
UK (https://events.ecmwf.int/
event/304/). While the first two 
editions of the workshop were held 
online due to Covid restrictions, this 
one ran in a hybrid format, with an 
in-person component (about 
120 people) and a large and active 
online participation (about 
700 registered participants). These 
attendance numbers, together with a 
record number of 121 abstract 
submissions, confirm both the large 
interest in machine learning (ML) in the 
Earth system sciences and the fact 
that the ECMWF–ESA workshops 
have established themselves as a 
reference meeting and discussion 
venue in this area.   

One of the aims of the event was to 
provide an up-to-date snapshot of the 
state of the art in this rapidly evolving 
field. The two invited talks by Prof. 
Stephen Penny (Sofar Ocean 
Technologies) and Prof. Damien Borth 
(University of St. Gallen) set the stage, 
with overview presentations of the 
state of the art, current challenges, 
and opportunities for adopting AI/ML 
solutions in data assimilation and 
Earth observation. From these talks, it 
was apparent that increasingly 
sophisticated ML techniques have 
further spread into research and 
operational practice in the Earth 
sciences and, more importantly, they 

these techniques to Earth observation.

Another topic at the heart of numerous 
presentations and discussions is the 
possibility that in the not-too-distant 
future ML tools will completely 
supersede foundational NWP 
activities, such as data assimilation, 
model development and model 
emulation. Unsurprisingly, views were 
varied. While most participants felt 
that a more likely development path 
would involve ML components being 
introduced in specific parts of the 
NWP value chain, others advocated a 
bolder approach. This would involve 
substituting entire NWP activities with 
potentially faster and cheaper ML 
counterparts (see for example the 
talks by Sid Boukabara and Stephen 
Rasp). What is not controversial is the 
fact that things appear destined to 
move fast as big commercial players, 
such as NVIDIA and Google, enter the 
field of ML model emulators.

Working groups
Working group discussions for different 
thematic areas were organised to help 
participants explore the main ideas 
emerging from the in-person and 
poster presentations. They also served 
to report on the main current and 
predicted trends in each of the areas. 
The working groups were held in a 
hybrid format, with both in-person and 
online attendees, which allowed a 
broad and very diverse participation. 
Preliminary findings from the working 
groups are available on the workshop 

On-site participants. The event was a hybrid on-site and online event, with about 120 people attending in person.

https://events.ecmwf.int/event/304/
https://events.ecmwf.int/event/304/
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website (https://events.ecmwf.int/
event/304/timetable/), while a more 
detailed report is in preparation.

Outlook
We are very encouraged by the large 

and unabated interest in this series 
of workshops, the excellent level of 
the presentations and discussions, 
and the very positive feedback 
received from participants. This 
confirms that the field of ML in the 
Earth sciences is still on an upward 

trajectory. The ECMWF–ESA 
workshops have a significant role to 
play in its development and in 
building a strong community of 
developers and practitioners. 

Stay tuned for the next edition!

Improvements to the Climate Data Store Virtual 
Assistant
Kevin Marsh, Michela Giusti, Xiaobo Yang, Anabelle Guillory

The Climate Data Store (CDS) of the 
EU’s Copernicus Climate Change 
Service (C3S) run by ECMWF now has 
over 165,000 users and provides a 
wealth of climate data and 
information. The aim of the CDS 
Virtual Assistant (VA) is to help users 
find the answers they need as simply, 
quickly and efficiently as possible. 
The VA, or ‘Knowledge Duck’, was 
first released on the CDS on 1 July 
2021. It has now been extensively 
improved to enhance its capabilities.

The user support journey 
and the Knowledge Duck
Various support channels are available 
for C3S users. These include the VA, 
the Knowledge Base, the User Forum, 
and the Jira-based service desk. 
These form the basis of the user 
support journey which was 
implemented in early 2022. The aim of 
this is to promote user self-help and 
direct users who are looking for 
information. At the end of the journey, 
users are still able to contact the 
Support team if direct assistance is 
needed. As shown in the user support 

journey figure, the VA is the first step 
in this process.

The VA is accessed via the Knowledge 
Duck icon on the CDS web interface. 
Here, users can type in a question, and 
the VA will respond with answers drawn 
from various information sources. These 
include the ECMWF parameter 
database and existing documentation 
stored on the CDS itself. 

During the first six months of 
operation, the Data Support Team 
monitored user interactions and 
improved the responses provided. 
In particular, cases where 
conversations led to negative 
feedback, or the VA was unable to 
answer/understand (‘dead ends’), 
were identified and addressed as 
quickly as possible. It was also seen 
that the questions asked by users 
rapidly increased in complexity over 
time, with more free-text questions 
being asked. These were challenging 
for the VA to understand and respond 
to correctly. These issues formed the 
basis for a short project undertaken by 
an external contractor and managed 
by Data Support.

The project ended in July 2022 and 
delivered several improvements, many 
of which go beyond what the previous 
version of the VA provided: 

• A significant reduction in the 
likelihood of conversation ‘dead 
ends’

User support journey. Four stages are available for users who need support.

The Knowledge 
Duck. Located on the 
bottom right of CDS 
web pages, the 
Knowledge Duck can 
provide helpful answers 
to many questions from 
CDS users.

• The introduction of structured flows 
(‘guided conversations’) to direct 
users through the content of the 
CDS and C3S products and 
services. This allows users to ‘click 
through’ to find answers to 
common questions

• The CDS VA interface was 
redesigned, to improve the look 
and feel so that information is more 
accessible to users

• Better variables and improved 
spatial and temporal searching; 
pseudonyms, locations and specific 
years can now be searched for, and 
spelling mistakes are handled in a 
much better way. Users are also 
able to filter the results of a dataset 
search by a number of facets, such 
as variable and product type

• The ability for a user to raise a 
Support Jira ticket directly from 
the VA interface. In this case, the 
user is prompted to enter their 
email address and the details of 
their question. If the user is not 
registered with ECMWF, they are 
prompted to register. Once it has 
been confirmed that the user has a 
valid ECMWF account, they can 
enter the details of their question, 
and a Jira ticket is automatically 
created. The user is provided with 
a link to the query, so they can 
follow progress

• The ability for users to leave a 
feedback comment, which is then 

https://events.ecmwf.int/event/304/timetable/
https://events.ecmwf.int/event/304/timetable/
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CDS Virtual Assistant statistics. The chart summarises VA statistics from August to 
November 2022 following the update.

11,781 interactions 4,315 sessions

Tickets created from CDS VA: 31

Top questions: 
CDS cache, what is ERA5,

CDS variable definitions 

1 August 2022 to 
30 November 2022 

sent to the relevant user support 
team

• Multimedia (e.g. videos) can now be 
incorporated into VA responses

• The way feedback is managed has 
been simplified, so that a more 
agile service can be provided

• Behind the scenes, the VA backend 
was redesigned so that it now uses 
Botpress (https://botpress.com), 
which allows complex conversational 
flows to be implemented.

Taken together, the recent 
improvements to the VA mean that it is 
now a very capable starting point for 
the user support journey. 

Outlook
In its first year, the VA has proved a 
valuable addition to the user support 
channels available, and the backend 
developments have made it more 
straightforward to manage and extend. 
In addition, we are considering having 
a support person behind the service for 

specific periods each week, who could 
either interact with users directly or 
provide a customised response in a live 
user conversation. It is anticipated that 
VAs will also be used for the 
Atmosphere Data Store (ADS) of the 
EU’s Copernicus Atmosphere 
Monitoring Service (CAMS) 
implemented by ECMWF – and 
ultimately the merged Climate and 
Atmosphere Data Store – as well as for 
other ECMWF systems to complement 
existing user support services. 

The VA is an efficient and powerful way 
to bring information to users. With more 
users attracted to our data and 
services, our support function needs to 
scale up. In this way, we will be able to 
continue to deliver a high-quality 
support service to more and more 
users. We look forward to the 
continuing development of the VA over 
the coming years.

You can access the CDS and the 
Knowledge Duck at: https://cds.
climate.copernicus.eu .

Summer of Weather Code becomes Code for Earth
Esperanza Cuartero, Jörn Hoffmann

The ECMWF Summer of Weather 
Code (ESoWC) has been engaging 
external coders to work on open-
source developments for the last five 
years. Several of the software 
solutions developed have advanced 
our web services, visualisation or 
other services. It has been an exciting 
opportunity for mentors from many 
sections across ECMWF to work with 
motivated participants from around 
the world, who receive a stipend of 
€5,000 per selected project. 

ESoWC has become well known in 
the community and is becoming a key 
driver of innovation at ECMWF. 
However, with Earth-science-related 
services which ECMWF runs for the 
EU becoming more and more 
involved in ESoWC, the name no 
longer fully reflects what ESoWC is 
about. Also, the community 
addressed by the event is expanding. 
We have therefore decided to 
continue the event in 2023 under a 
new name: ‘Code for Earth’.

The programme will continue to drive 
Earth science innovation while 
fostering cutting-edge developments 

to fulfil specific needs in data analysis, 
data management, visualisation or 
services across ECMWF activities. 

ESoWC 2022 teams. Participants in ESoWC 2022 show their certificates during the final 
day at ECMWF’s premises in Bonn.

https://botpress.com
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
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Observations Main impact Activation date

Atmospheric Motion Vectors from Himawari-9 
(replacing Himawari-8) Tropospheric wind 13 December 2022

Clear-Sky Radiances from Himawari-9  
(replacing Himawari-8) Tropospheric humidity and wind 13 December 2022

New observations since October 2022
The following new observations have been activated in the operational ECMWF assimilation system in October – December 2022.

These include core activities, the 
EU-funded Copernicus Climate 
Change and Atmosphere Monitoring 
Services run by ECMWF, and the EU’s 
Destination Earth initiative, in which 
ECMWF participates.

Time for new challenges
Now is the time for ECMWF staff to 
think about challenges for Code for 
Earth 2023. These are topics relating 
to ECMWF’s core activities, 
Copernicus and Destination Earth 
that can be addressed by our 
participants. They could include 
solutions for web services, 
developing innovative visualisation or 
workflows, managing data and 
machine learning applications. 
Challenges are overseen by mentors 
from ECMWF. In the past, mentors 
might promote implementations they 
were looking for, but they also had a 
chance to pursue innovative 
approaches in their area of work, test 
research ideas and learn new 
perspectives from external talents 

while enjoying a fun experience.

What’s next?
Code for Earth will launch on 
27 February with a list of software 
challenges proposed by ECMWF staff 
in line with core activity and Copernicus 
and Destination Earth workflows. 
The projects will publish their materials 
on the open-source hosting service 
GitHub. External data scientists and 
open-source programmers are invited 
to submit an innovative and feasible 
proposal by 7 April. 

The announcement of the selected 
teams on 20 April will lead to the 
coding phase. During this four-month 
period, from 2 May to 30 August, 
ECMWF mentors and developers will 
team up to work closely on the 
proposed software challenges.

The Final Presentation Day in 
September will mark the official 
closure of the sixth edition of Code for 
Earth. All developer teams will be 

invited to showcase their results at an 
in-person event – for the first time in 
Bologna, Italy. 

Beneficial partnerships
Code for Earth 2023 will be 
supported by the two Copernicus 
services operated by ECMWF, 
Destination Earth, and two cloud 
services: the European Weather 
Cloud and the Copernicus DIAS 
service WEkEO. These partnerships 
help to reinforce the innovation role of 
Code for Earth within the 
meteorological, climate and 
atmosphere community.

Code for Earth links:

Website: https://esowc.ecmwf.int

Twitter: https://twitter.com/esowc_
ecmwf

GitHub: https://github.com/esowc

YouTube: https://www.youtube.com/
channel/
UCWLn6evyZ6tTktvUSTE1Xow

Six innovations in 2022

ESoWC 2022 ended with a full day of presentations at 
ECMWF’s premises in Bonn, Germany, on 28 September 
2022. After two years of virtual events, the six teams 
selected last year could meet face-to-face with their 
mentors to present their final outcomes. The talks were 
also livestreamed. The new open-source projects focused 
on web development, software development, and applied 
data science.  

Two projects concerned Copernicus activities. They were 
‘Adjusting climate projections’ by Fiona Spuler and Jakob 
Wessel, who created a flexible and user-friendly toolkit for 
the bias correction of climate models; and a ‘Wildfire 
emission explorer’ by Giovanni Paolini and Ainhoa Murillo 
Iraola, who developed a graphical user interface (GUI) that 
simplifies the creation of wildfire emission plots allowing 
users to select data on demand.

Three projects referred to web development applications to 
help internal and external users optimise their operational 

environments. An ‘ECMWF user dashboard’ by Adarsh 
Narayan Pandey built on the user dashboard prototype 
developed initially during ESoWC 2021 through the 
integration of widgets from individual applications and web 
services. A ‘CliMetLab web application’ by Akshaj Verma 
concerns the implementation of a web-based graphical user 
interface (GUI) to make the configuration settings of the 
CliMetLab Python package easier. ‘Bringing Magics weather 
maps to Matplotlib’ by Alish Dipani improved the Python 
interface for Magics using the libraries Matplotlib and 
Cartopy. Magics is the geospatial visualisation library widely 
used by ECMWF and its Member and Co-operating States.  

Another project, ‘CW4Floods’, explored the hydrological 
citizen data CrowdWater and its application in flood 
forecasting. Mohit Anand, Emiliana Myftari, Beatrice Rinaldi 
and Enxhi Sulkja developed a Python package to facilitate 
the use of crowdsourced hydrological measurements for 
forecast validation.  

https://esowc.ecmwf.int
https://twitter.com/esowc_ecmwf
https://twitter.com/esowc_ecmwf
https://github.com/esowc
https://www.youtube.com/channel/UCWLn6evyZ6tTktvUSTE1Xow
https://www.youtube.com/channel/UCWLn6evyZ6tTktvUSTE1Xow
https://www.youtube.com/channel/UCWLn6evyZ6tTktvUSTE1Xow
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Towards using unconventional observations
Ulrike Falk, Simon Smart, Fredrik Wetterhall, Tiago Quintino, Vincent-Henri Peuch

As the complexity and resolution of 
global Earth system models (ESM) 
increase, so does the need for 
high-resolution data in space and time 
for the initialisation, verification and 
post-processing of models. As an 
example, convection-permitting 
models require very high-resolution 
initial conditions to provide a gain in 
forecast skill. A higher data density 
can be achieved by getting access to 
more weather stations. However, 
tapping into so-called unconventional 
or novel observations can complement 
conventional meteorological 
measurements to increase spatial and 
temporal resolutions. Here we 
describe ECMWF’s involvement in 
projects that investigate the use of 
such observations.

Multiple sources
Novel observations can be collected 
from devices that are designed to 
collect meteorological observations, 
such as personal weather stations. 
Parameters include temperature, air 
pressure, humidity and geographical 
information. They can also be time 

series of geophysical variables 
derived from different data sources, 
e.g. rainfall from telecommunication 
tower networks. Novel data sources 
also include the Internet of things 
(IoT) and crowdsourced information. 
There is a continuous growth in data 
from high-frequency, diverse, 
unmanaged sources. Harnessing 
these data has the potential to 
improve weather forecasts. However, 
it requires substantial development to 
combine the information from novel 
data with conventional observations. 
Challenges of these novel 
observations include the low reliability 
of data streams, uncertainties in 
measurement quality, and the 
heterogeneity of data types.

Three projects
ECMWF is involved in three European 
projects that have a focus on using 
citizen science and collecting novel 
observational data from private and 
public sensors, crowdsourced data 
and the IoT. The projects are 
I-CHANGE (Individual Change of 
Habits Needed for Green European 

transition – a Horizon 2020 project), 
TRIGGER (SoluTions foR mItiGatinG 
climate-induced hEalth thReats – a 
Horizon Europe project), and AD4GD 
(All Data for Green Deal). The main 
objectives of this work are: (1) the 
development of new infrastructure 
and the adaptation of existing 
infrastructure for data acquisition; 
(2) the adaptation and establishment 
of data storage infrastructure; and 
(3) the processing of observations, 
including a generic quality control 
framework.

A core task of these projects is 
developing and maintaining data 
hubs, which will need to perform 
quality control, encode observations 
in standardised forms, and store and 
index the observations. The data will 
follow standards including Open 
Geospatial Consortium (OGC), FAIR 
data, and European Data 
Governance standards (see the 
graph for an overview of the 
envisioned data infrastructure). 
The data processing includes data 
quality monitoring and flags, filtering, 
and encoding before the data are 

Data
encoding 

Quality
analysis &
filtering  

Acquisition
ECPDS

Existing data pathway
• Meteorological observations
• Remote sensing

SAPP

IFS
modelObservation

store 

New data pathway
• IoT & unconventional observations
• Citizen science

MARS

Perpetual 
archive

ECMWF’s envisioned data infrastructure including IoT and unconventional observations. The infrastructure relies on ECMWF 
software such as ECPDS (ECMWF Production Data Store), SAPP (Scalable Acquisition and Pre-Processing system), and MARS 
(Meteorological Archival and Retrieval System) to provide initial conditions for the IFS (ECMWF’s Integrated Forecasting System).
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in partnership with

Register now for the
Massive Open Online 
Course (MOOC) on
Machine Learning in 
Weather & Climate

Discover how 
cutting-edge techniques 
impact our characterisation 
of weather & climate

made available to users. 
The TRIGGER and I-CHANGE 
projects also share the idea of 
engaging citizens in the active 
collection of hydrometeorological, 
health and other data in real-life 
environments, so-called Living Labs 
(LLs). A number of these LLs are 
directly involved in setting up the 
envisioned data infrastructure to 
facilitate the assimilation and 

ECMWF’s role

ECMWF’s contribution to AD4GD is 
about connecting new observation 
sources to the EU’s Copernicus 
Atmosphere Monitoring Service 
(CAMS) run by ECMWF and 
supporting pilot studies that assess 
the value of socioeconomic and IoT 
data for estimating greenhouse gas 
concentrations. I-CHANGE aims to 
raise awareness of climate issues by 

making it easier to observe the 
environmental impacts of human 
activities, whereas TRIGGER looks at 
impacts on human health from 
weather and climate hazards. Both 
projects will collect environmental 
and socioeconomic data for further 
use within the project and for 
building applications for users. 
ECMWF’s role is to create data hubs.

distribution of datasets to the 
general public. In TRIGGER, data 
containing personal health 
information will be randomised and 
anonymised already in the labs 
(i.e. clinics participating in TRIGGER) 
to protect patient confidentiality. 
The LLs will also be directly involved 
in the quality control and uncertainty 
assessment of the datasets before 
submitting them to the project’s data 

infrastructure. Project experts are 
tasked with the development of tools 
for increasing data usability and 
interoperability.

These projects will pilot the handling 
of novel observations with the goal of 
exploring their potential use in 
operational models at ECMWF as well 
as in the EU initiative Destination 
Earth (DestinE), in which ECMWF 
participates. The end goal is a system 
that can merge novel and 
conventional observations into a 
high-resolution observational dataset 
with an estimated uncertainty and 
quality. There is still a long way to go 
before this becomes a reality, but 
these projects are a first step towards 
using novel observations at ECMWF.

Further information on the three 
projects can be found at:

https://www.ad4gd.eu 
https://trigger-project.eu 
https://ichange-project.eu

https://lms.ecmwf.int/

https://www.ad4gd.eu
https://trigger-project.eu
https://ichange-project.eu/
https://lms.ecmwf.int/
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Predicting the forecast impact of potential 
future observing systems
Niels Bormann, Sean Healy, Katie Lean, Katrin Lonitz

ECMWF’s weather predictions rely on global 
weather observations to help determine the initial 
conditions of forecasts. A key question for the 

evolution of the global observing system is how much 
benefit we expect from new observing capabilities. 
To answer this question, ECMWF is closely working 
together with space agencies, and we are increasingly 
using ensemble methods to estimate expected 
impacts from potential future satellite missions. A key 
tool is the Ensemble of Data Assimilations (EDA), which 
estimates in a statistical sense the expected reduction 
of uncertainty in the forecast from adding observations 
to our forecast system. The tool was first used 15 years 
ago to predict the impact of wind profile observations 
from the Aeolus satellite mission, which was being 
planned at the time. It was subsequently applied to 
gauge the benefit of an increase in available radio 
occultation data. With both of these observing 
capabilities becoming a reality in recent years, we are 
finding that the predictions from many years ago are 
relevant indicators of the actual impact now obtained. 
We can also use these new observations to further 
evaluate the strengths and limitations of the EDA 
method. Looking again into the future, the EDA method 
is now being used to assess the value of more passive 
microwave (MW) sounding observations, 
demonstrating continued strong benefits from an 
increase in the number of available MW sounders. 
The findings help space agencies such as the 
European Space Agency (ESA) and the European 
Organisation for the Exploitation of Meteorological 
Satellites (EUMETSAT) to design an impactful and 
cost-effective constellation.

EDA method
The EDA uses a Monte-Carlo approach to estimate the 
size of short-range forecast error statistics. Multiple data 
assimilation computations are run in parallel, with 
perturbations added to the observations and other input 
parameters (e.g. sea-surface temperature) as well as to 
the forecast model. If these perturbations are chosen 
appropriately, it can be shown that the spread of the 
ensemble is related to the statistical uncertainty in the 
analysis and short-range forecasts. At ECMWF, the main 
role of the EDA is to provide flow-dependent uncertainty 

information for the short-range forecast (background) 
used in the operational numerical weather prediction 
(NWP) assimilation system and to help initialise 
predictions of ensemble forecasts. However, Tan et al. 
(2007) realised that both real and simulated observations 
could be included in the EDA at the same time. This 
means that we can assess how new, simulated 
observations change the EDA spread, and hence how 
they reduce the statistical uncertainty in analyses and 
short-range forecasts. The new observations are 
simulated from a representation of the actual atmosphere, 
such as the ECMWF high-resolution analysis. 
Perturbations are added to the simulated data to mimic 
expected errors in the measurements, for instance arising 
from instrument noise.

The EDA method is conceptually quite different from 
more traditional Observing System Simulation 
Experiments (OSSEs), which are also used to gauge the 
expected impact from a future observing system. 
OSSEs start from a long run of the forecast model, the 
so-called ‘nature run’, which simulates the true evolution 
of the atmosphere. All observations and their error 
characteristics are simulated from this nature run, and 
these are subsequently assimilated as if they were real 
observations. New observations can also be simulated 
from the nature run, and assimilated alongside the 
existing observations, and so the impact of new data 
can be assessed. Ensuring that all existing observations 
are simulated in a realistic way is a very significant 
effort. The EDA method has the advantage that real 
observations can be used alongside simulated ones, 
and the method directly benefits from any refinement, 
made for the EDA, used in the background-error 
modelling in the operational NWP system. While 
ECMWF provides nature runs to support OSSEs 
performed at other organisations, we currently use the 
EDA method for assessing new observations.

Previous impact predictions
The EDA method was first used 15 years ago in an 
ESA-funded study to predict the benefit expected from 
line-of-sight wind-profile information from the Aeolus 
Doppler wind lidar satellite mission. The study suggested 
that we would see a clear positive impact from the 
assimilation of Aeolus data, with particular benefits in the 
tropical troposphere and over oceans. This significant 
impact was largely confirmed a few years ago when real 

doi: 10.21957/3f7nb8wlsh
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Northern hemisphere extratropics
Tropics
Southern hemisphere extratropics
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FIGURE 1 Better impact from more RO profiles as predicted in 
2013. The figure shows the spread of the EDA for (a) temperature at 
100 hPa, (b) temperature at 500 hPa, (c) geopotential height at 
500 hPa, and (d) relative humidity at 850 hPa, normalised by the 
value of an EDA that does not assimilate RO data, as a function of 
the number of the simulated RO profiles used. The different lines 
indicate different geographical regions as indicated in the legend. 
Results are for the period 8 July 2008 to 15 August 2008. (From 
Healy et al., 2013)

Aeolus data became available, at least in a qualitative 
sense. The underlying observing system and the ECMWF 
assimilation system of course changed considerably in 
the meantime, making a strict quantitative one-to-one 
comparison impossible. But overall the impact of the real 
data showed many of the characteristics of the earlier 
predictions. This underlines that the EDA method can 
indeed provide useful guidance on which observations 
will make a big impact in the global observing system, 
and it can indicate where this impact will be strongest.  

Another previous application of the EDA method 
suggested in 2013 that we would see very significant 
benefits from an increased number of radio occultation 
(RO) observations. These measurements provide primarily 
information on temperature and humidity at high vertical 
resolution, and they play an important role in controlling 
bias corrections for other satellite observations. At the time 
the EDA-based predictions were made, RO was a 
comparatively new observation type with relatively few 
observations available, and it was unclear how their impact 
would scale with more available observations. Surprisingly, 
the study indicated continued positive impact when 
increasing the number of RO observations per day beyond 
the 2,500 observations available at the time even out to 
128,000 (Figure 1), with the clearest benefit for the first 
20,000 profiles (see Healy et al., 2013). This gave strong 
motivation to invest in increasing the number of RO 
measurements made. In recent years, the number of real 
RO observations has indeed increased very significantly, 
particularly through the introduction of COSMIC-2 data 
and access to Spire observations. This has resulted in a 
very significant improvement in the impact of RO 
observations on forecasts, in line with previous predictions 
(see Lonitz et al., 2021). 

Verifying previous impact predictions for 
radio occultation data
The new RO data has also allowed us to revisit some 
specific aspects of earlier predictions to further test the 
behaviour of the EDA method. Firstly, we looked at how 
actual short-range forecast error statistics change as the 
number of RO observations increases, and we compared 
this with EDA spread reductions. One example is shown in 
Figure 2, for temperatures at 100 hPa in the tropics. As the 
number of RO measurements increases, the short-range 
forecasts fit radiosonde temperature measurements more 
closely and the EDA spread values are reduced. This 
illustrates the link between spread-reduction and forecast 
improvement, as expected. The differences between 
radiosonde values and short-range forecasts are affected 
by measurement and representation errors, so a perfect 
one-to-one relationship is not expected. What is more 
important here is that the different impact results appear to 
follow a linear relationship, suggesting a strong link 
between the two measures. The slope of the linear 
relationship is larger than one, that is, the forecast errors are 

reduced more strongly than the EDA spread values as more 
RO data is assimilated. This is likely related to the EDA 
being under-spread, an aspect that is well-established and 
that is actively being worked on in the context of refining 
our background error specification for operational NWP. 
The linear relationship nevertheless suggests that relative 
impacts appear to be adequately captured by the EDA.
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A second aspect we investigated is how EDA spread 
reductions obtained with real RO measurements 
compared to those obtained with simulated 
observations. As real observations we used COSMIC-2 
measurements provided by the US University 
Corporation for Atmospheric Research (UCAR). 
The simulated measurements have the same times and 
locations as the real data, but they are simulated from 
ECMWF analyses in a similar way as in the Healy et al. 
(2013) study. The agreement in the EDA spread 
reduction between the real and simulated COSMIC-2 
data is quite impressive (Figure 3). The simulated data 
tends to result in slightly larger spread reductions in the 
troposphere and slightly smaller reductions in the 
stratosphere, particularly in the tropics. These small 
differences are still under investigation but appear to be 
related to the noise added to the simulated data. 
However, the key finding is that the EDA calculations 
with simulated COSMIC-2 RO provide a useful estimate 
of the spread reductions expected with real data.  

New impact predictions: MW sounding 
The EDA method is now being used in an ESA-funded 
study to estimate the expected impact from a potential 
future constellation of passive MW sounders (Lean et al., 
2022). Currently, MW sounders are flown on a few large 
satellites, such as EUMETSAT’s Metop satellites, the US 
National Oceanic and Atmospheric Administration 
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FIGURE 3 Consistency of EDA spread reductions from real and simulated observations. The figure compares EDA temperature spread 
reductions achieved with real COSMIC-2 measurements (black line) and with simulated COSMIC-2 data (green line). Values are given as a 
percentage of the spread in the control run without COSMIC-2 data. The charts show (a) global statistics computed for the ± 40° latitude 
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FIGURE 2 Link between EDA spread values and forecast errors as 
seen by radiosonde data resulting from an increased number of RO 
measurements assimilated. The figure shows the variance of the 
short-range forecast departure statistics for 100 hPa temperature 
measurements from radiosondes as a function of the EDA 
temperature variance in the tropics. The different data points are the 
result of varying the number of real RO observations assimilated, as 
indicated by the colour scale. The experiments were carried out 
from 10 January to 10 February 2020.
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(NOAA) Joint Polar Satellite System (JPSS), and China’s 
FY-3 satellites, providing global coverage at selected 
overpass times. MW sounding from core polar orbits is 
part of the backbone observing system identified by the 
Coordination Group for Meteorological Satellites (CGMS). 
The motivation for complementing this backbone with 
further MW sounders is two-fold: 1) we continue to see 
significant forecast benefits from adding further existing 
MW sounding observations to our NWP data assimilation 
system, prompting the question of how much further 
forecast benefit could be obtained from even better 
temporal sampling from an optimised constellation of 
these instruments; and 2) developments in satellite and 
sensor technology make it feasible to launch MW 
sounding instruments on small satellites or even cube-
sats, thus making constellations of these instruments a 
possibility. But how many more satellites would be 
cost-effective, in what constellation should they be flown, 
and what sensing capabilities should they have?

To answer these questions, we have considered a 
number of potential constellations, designed in 
collaboration with ESA and other partners (Table 1). 
In these constellations, we explore different numbers of 
satellites (ranging from 8 to 20, in 4 to 10 orbital planes) 
and different types of orbit (sun-synchronous polar 
orbits as well as mid-inclination orbits, which cover 
latitude bands between 75°S and 75°N only). For each 
of these, we also considered whether the satellite 
instrument only includes channels for humidity sounding 
(around 183 GHz, complemented by channels at 89 and 
165 GHz) or additionally includes temperature-sounding 
capabilities (in the 50 GHz band). This is an important 
question as it strongly affects the design of the 
instrument; an instrument with humidity-sounding only 
can be accommodated on an even smaller and more 
economical satellite. For our investigations, a 

Constellation 
name Type of orbit Number of 

orbital planes
Number of  
satellites

Real data

Metop/JPSS 
baseline Sun-synchronous 2

4 (Metop-A/B; Suomi 
National Polar-

orbiting Partnership 
(S-NPP), NOAA-20)

Metop/JPSS+ Sun-synchronous 5
8 (Metop-A/B; 
S-NPP, NOAA-

15/18/19/20, F17)
Simulated new data, added to the Metop/JPSS baseline with real data

Polar Sun-synchronous 4 8
Polar+ Sun-synchronous 7 14
Polar++ Sun-synchronous 10 20
4x2 Mid-inclination (60º) 4 8
6x2 Mid-inclination (60º) 6 12

Polar & 4x2 Sun-synchronous + 
mid-inclination (60º) 8 16

TABLE 1 Satellite constellations with MW 
sounding considered. In the real-data cases, 
combinations of the Advanced Microwave 
Sounding Unit-A (AMSU-A)/Microwave 
Humidity Sounder (MHS) or Advanced 
Technology Microwave Sounder (ATMS) were 
normally used, with the exception of the 
5th-orbit in the Metop/JPSS+ constellation, for 
which a combination of the NOAA-15 AMSU-A 
and the F-17 Special Sensor Microwave 
Imager/Sounder (SSMIS) was used (both in an 
early-morning orbit during the study period). 
For each constellation with MW sounding data, 
separate EDA experiments were run with 
humidity-sounding channels assimilated only, 
and with temperature and humidity-sounding 
channels assimilated. 

hypothetical MW sounding instrument was considered, 
consistent with being deployable on a small satellite, 
with characteristics broadly in line with those of the 
instrument considered for ESA’s Arctic Weather Satellite 
(www.esa.int/aws).

Results from the EDA experimentation show a clear 
continued benefit from adding further MW sounders. This 
can be seen in Figure 4, which shows the spread 
reduction from MW sounder assimilation as a function of 
the number of sounding locations assimilated. Results 
are shown relative to a system in which no MW sounders 
are assimilated, but otherwise the full observing system is 
used. The different data points represent spread 
reductions for the different constellations considered. 
The data point furthest to the left represents a baseline 
system in which real MW sounding data from two Metop 
and two JPSS satellites is assimilated. The next two data 
points depict the spread reduction resulting from adding 
three existing MW sounders to this baseline, either with 
humidity-sounding capabilities only (red) or with 
temperature and humidity sounding (black). The 
remaining data points show spread reductions from 
adding instead simulated data from the potential 
constellations considered here, again either with 
humidity-sounding (red) or temperature- and humidity-
sounding capabilities (black). The trend of the data points 
from adding simulated data extends smoothly from those 
using only real observations, adding further confidence in 
the simulation results. 

The results show that even the smallest constellations 
considered (‘Polar’ or ‘4x2’, i.e. eight satellites in four 
orbital planes) bring sizeable benefits, more than 
doubling the impact of MW sounders compared to the 
Metop/JPSS baseline. This aspect is further 
highlighted in Figure 5, which compares the spread 

http://www.esa.int/aws
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reduction of the two ‘Polar’ constellations with that 
achieved by four existing MW sounders. From 
observing systems with real data, we know that the 
impact of these existing MW sounders translates to 
gains in forecast skill of several hours, suggesting that 
this would be a very significant improvement.

There is a very clear benefit from having the temperature 
sounding channels available for the additional MW 
sounders. While the scenarios with just humidity-
sounding show significant benefit from more 
observations, the benefit is even larger when temperature 
and humidity sounding capabilities are combined 
(Figure 4 and Figure 5). This result was not necessarily 
expected, since atmospheric humidity exhibits smaller 
spatial and temporal scales than temperature. Higher 
temporal sampling could thus be expected to be even 
more beneficial for humidity. It is possible in this context 
that our findings are underestimating the benefit of the 
humidity-only constellations as the observation 
simulations may not capture the full variability, or as the 
spatial resolution employed in the EDA may not be 
sufficient to make full use of the spatial variability (model 
resolution: TCo399, i.e. 25 km; final incremental analysis 
resolution: TL255, i.e. 80 km). In the case of the added 
temperature channels, it appears that the reduction in the 
effective noise from having multiple observations plays an 
important role, most likely a result of the already rather 
small size of our typical short-range forecast errors for 
these channels. 

Our findings also indicate a clear benefit for wind 
forecasts from the assimilation of MW sounding data. 
This is a well-established result from Observing System 
Experiments with real observations, and the study shows 
that this impact increases further when even more data 
are available. The wind impact is commonly attributed to 
the ability of 4D-Var data assimilation to infer wind 
information from balance relationships as well as through 
tracing the evolution of humidity or cloud structures 
during the 12-hour assimilation window. Temperature and 
humidity channel sets are contributing to this wind impact 
in different ways, and this appears to be reflected in the 
geographical variations of the additional benefit that 
results from including the temperature-sounding channels 
(Figure 5): the benefit of the temperature-sounding 
channels for wind is largest in the extratropics and at high 
latitudes, enabled by geostrophic balance relationships. 
In contrast, the benefit of adding these channels is 
smaller in the tropics, probably as the humidity/cloud-
tracing effect dominates. The EDA captures these 
different mechanisms in a physically plausible way.

One rather practical aspect encountered during the study 
was the role of thinning applied prior to the assimilation 
of MW sounding data, an aspect that becomes 
particularly relevant for large constellations. In line with 
current practice for real data, observations for the 

simulated data were thinned spatially, selecting only one 
observation within a 110 km distance per half-hour 
time-slot. This is to limit the effect of spatially correlated 
observation errors, which we can currently not account 
for during the assimilation. Data from all satellites of the 
hypothetical future constellation were thinned together, 
resulting in many observations being thinned out at 
higher latitudes, where there is most overlap in coverage. 
This is the reason why the increase in the number of data 
points shown in Figure 4 for the different constellations is 
not as large as might be expected, given the increase in 
the number of satellites. To investigate the role of thinning 
the constellation together, we also ran a pair of EDA 
sensitivity experiments in which we assimilated the 
largest constellation, Polar++, with the satellites spatially 
thinned separately rather than all together. This most 
extreme point in the number of observations in Figure 4 
suggests that for using temperature and humidity or 
humidity-only channels, it is possible to approach a point 
where the benefit from additional measurement slows 
considerably. These findings highlight the sensitivity of 
the EDA results to practical assimilation choices and 
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FIGURE 4 Continued benefit from adding more MW sounding data. 
The graphic shows the normalised EDA spread reduction relative to a 
MW-sounder denial EDA experiment as a function of the number of 
sounding locations added. Statistics are shown for 500 hPa 
geopotential height over the northern hemisphere extratropics for the 
period 8–28 June 2018. Black and red symbols indicate, respectively, 
the addition of temperature and humidity sounding or humidity 
channels only to the baseline of four existing MW sounders with 
temperature and humidity sounding capability (point furthest to the 
left). Different symbols denote the different simulated data scenarios: 
‘Polar’, ‘Polar+’, and ‘Polar++’ use 8, 14, and 20 satellites in 4, 7, 
and 10 sun-synchronous orbital planes, respectively; ‘4x2’ (eight 
satellites in four orbital planes) and ‘6x2’ (12 satellites in six orbital 
planes) use 60° inclination orbits. The effect of adding three existing 
satellites to the baseline is also shown.
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assumptions on error characteristics, an important 
element to keep in mind when interpreting the results. 

Outlook
In partnership with EUMETSAT, we have now started 
applying the EDA method to two specific future satellite 
missions currently under consideration at EUMETSAT: 
the Sterna constellation of small satellites carrying MW 
sounding instruments, and a future Doppler wind lidar 
as a follow-on to the Aeolus satellite mission. These two 
mission concepts will be evaluated in a consistent way, 
over the same study period, and the comparability of 
the benefits and the synergies of the two missions will 
be a subject of the study. We also intend to collaborate 
with NOAA on the evaluation of their planned future MW 
sounding mission.

Our experience with using the EDA method has shown 
that it is a powerful tool to provide useful estimates of 
expected impact of future observations. We continue to 
actively investigate the performance of the EDA method 
and its strengths and limitations. However, as with any 
tools aimed at predicting future impacts, the results are 
subject to the assumptions made and they require careful 
analysis and interpretation, to make sound decisions about 
the future evolution of the global observing system. 
Importantly, any prediction of future impact can only reflect 
our current use of observations. For instance, the results 
for MW sounders shown here benefit from the all-sky 
assimilation of observations. By that we mean the use of 
satellite data in clear, cloudy and rainy conditions, a 
relatively recent innovation at several NWP centres. 
Results would probably have looked quite different 

15 years ago, when MW sounding data were assimilated in 
clear-sky situations only. These aspects are important to 
bear in mind for future instrument decisions, particularly 
with the current drive to a more complete exploitation of all 
Earth system information in a coupled data assimilation 
framework. This development is expected to see 
significant changes in the amount and type of information 
that we extract from observations. Evaluations using the 
EDA method should hence be accompanied by further 
scientific considerations that take into account the 
untapped potential of future observations that is not yet 
accessible through our present use of observations.
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Scale-dependent verification of 
precipitation and cloudiness at ECMWF
Llorenç Lledó, Thomas Haiden, Josef Schröttle, Richard Forbes

As part of ECMWF’s continuous efforts to 
improve the representation of physical 
processes of the Earth system, an increasing 

number of km-scale simulations are performed. 
These activities are supported by the EU’s 
Destination Earth initiative (DestinE), in which 
ECMWF aims to create a high-resolution digital twin 
of our planet. Although higher-resolution simulations 
can improve the prediction of smaller-scale features 
and increase model fidelity, often the features’ exact 
location cannot be precisely determined. This results 
in traditional metrics such as root-mean-square error 
(RMSE) being degraded. Spatial verification 
techniques can provide a better indication of the 
value of such forecasts than traditional verification 
metrics by evaluating if the forecasts have the right 
statistics over a certain neighbourhood. Such 
techniques have been used in the limited-area 
modelling community for some time. In this article we 
describe how the Fractions Skill Score is being 
tested at ECMWF as a first step towards a more 
comprehensive evaluation of performance 
improvements at high resolution.

Verifying high-resolution forecasts 
ECMWF’s current operational high-resolution global 
forecast (HRES) has a grid spacing of 9 km. 
Experimental forecasts with 4.5 km grid spacing are 
being generated as part of the first phase of DestinE, 
and even higher resolution runs have been performed in 
test mode. In order to evaluate the skill of surface fields 
at increasingly high resolution, methods beyond the 
standard point-wise matching of forecasts and 
observations need to be adopted. This is because of the 
so-called ‘double-penalty’ issue. A forecast predicting a 
feature with sharp gradients such as precipitation from a 
convective cell will be doubly penalised if it predicts the 
feature at a wrong space or time: once for missing the 
feature in the correct spot/at the right time, and once for 
the false alarm in the wrong place/at the wrong time 
(Figure 1). Hence the error will be twice as large as for a 
‘flat’ forecast that does not predict the feature at all. 
Given the potential value of the forecast indicating the 
event, even if somewhat shifted, human judgement 
would consider the flat forecast as worse than the 

wrong-location/wrong-time forecast, especially if the 
displacement is small. The interpretation of gridded 
forecasts to issue warnings or assist decision-making 
typically relies on neighbourhood analyses rather than a 
literal interpretation of grid-point values. Double penalty 
issues are especially relevant for high-resolution fields 
with strong gradients and sharp features, such as 
precipitation or cloudiness. 

For a given level of imperfect association between 
forecasts and observations (a correlation coefficient 
smaller than 1), forecasts that minimise the point-wise 
RMSE have less variability than the observations. 
Therefore, a model with low variability (i.e. a lack of fidelity) 
will score better than a model with the right amount of 
variability. Based on the RMSE or related measures, it 
might be tempting to tune models towards lower 
variability. Hence, if physical realism of a model is sought, 
the RMSE may not be the proper metric to optimise.

One way of dealing with the double penalty issue is to 
compute scores for differently sized areas instead of 
just point-wise. A number of different spatial 
verification techniques have been developed (Brown 
et al., 2011). One of these, the Fractions Skill Score 
(FSS) introduced by Roberts and Lean (2008), has 
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FIGURE 1 Illustration of the double penalty effect: a forecast that is 
able to predict an observed feature but not its exact location or time 
(top panel) has a higher mean absolute error (MAE) than a forecast 
with no feature (bottom panel).

doi: 10.21957/c92loli749
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FIGURE 2 The Fractions Skill Score measures the squared 
difference of the number of exceedances above a certain threshold 
over a neighbourhood. In this example the model and observations 
agree perfectly on a scale of 20 grid points.

been widely used for the verification of limited-area 
model precipitation forecasts and is being tested at 
ECMWF as part of the move towards higher resolution. 
It gives a more complete picture of forecast 
performance for fields such as precipitation or 
cloudiness, since they may exhibit little skill at the grid 
scale but significant skill at larger scales. It also 
provides a natural framework for comparing forecasts 
at different resolutions, which is needed for km-scale 
model development and evaluation.

The Fractions Skill Score
The FSS is a spatial verification technique that does not 
automatically penalise location errors such as the one 
depicted in Figure 1. It answers the question: did the 
observed feature occur in a nearby location in the 
forecast? To do so, it counts the fraction of grid points 
in a neighbourhood at which a given threshold (e.g. of 
precipitation amount) is exceeded, both in forecasts and 
in observations (Figure 2). Then it compares the two 
fractions by computing their squared difference. 
The neighbourhood analysis is done separately at each 
grid point and then averaged over the region of interest. 
The Fractions Skill Score is then obtained by 
normalising by the worst score that could be obtained 
from rearranging the forecast fractions field. Analysing 
multiple thresholds and neighbourhood scales makes it 
possible to get an idea of the spatial scales at which the 
statistics of the number of exceedances in the forecasts 
match the statistics of the observations. By constraining 
the statistics to a neighbourhood, the FSS requires 
some degree of association at larger scales, while 
allowing for smaller-scale location and shape errors.

Properties of the FSS
Like any verification metric, the FSS has some specific 

properties to be aware of. If the number of threshold 
exceedances in the forecast and observations are overall 
different due to imperfect calibration of a forecast, this will 
be penalised. It can be avoided by using quantile 
thresholds instead of absolute thresholds. Another 
property to note is that the FSS is not symmetric with 
respect to the definition of feature and non-feature. It will 
give different results depending on whether the grid points 
exceeding a threshold are counted or the ones below it. 
Finally, the FSS is not a traditional skill score that 
measures improvement over a fixed reference forecast, 
and although it ranges between 0 and 1, positive values 
do not automatically mean that the forecast is useful. 
According to Mittermaier & Roberts (2010) and Skok & 
Roberts (2016), a threshold of FSS = 0.5 may in most 
cases be a useful lower limit, although FSS values 
below 0.5 may still be regarded as useful for some 
applications if the forecasts are not perfectly calibrated. 

Verification of HRES precipitation 
Figure 3 shows the skill of daily-accumulated 
precipitation forecasts from the operational HRES over 
Europe (12.5°W–42.5°E and 35°N–60°N) for different 
thresholds in a winter and a summer month of 2019 (top 
and bottom rows, respectively). The observational 
dataset used for this evaluation is GPM-IMERG, which 
is a satellite-based, gauge-corrected gridded 
precipitation estimation. GPM-IMERG covers the 
latitudinal band between 60°S and 60°N and provides 
data every 30 minutes with a spatial resolution of 
0.1 degrees. As a satellite-derived precipitation product, 
it has the advantage of providing high-resolution 
information across a large portion of the globe, while it 
shares the general weaknesses of satellite-derived 
estimates. Due to the indirect nature of the relationship 
between satellite measurements and precipitation 
amounts, both random and systematic errors are 
introduced. Gridded precipitation analyses based on 
rain gauges are more robust in this regard. However, 
they are typically available only at coarser resolution 
(0.25 to 0.5 degrees at most) and quite uneven in 
coverage. On the other hand, radar products provide 
information at very high resolution, but coverage is 
limited, and calibration procedures can be 
inhomogeneous across different countries’ networks.

The 9 km HRES forecasts have been re-gridded to 
match the observations with a conservative interpolation 
method. Each panel in Figure 3 shows the FSS as a 
function of forecast lead time and neighbourhood scale 
from the grid-scale up to about 200 km. As expected, 
skill increases with scale at all lead times. Values above 
0.5 (in purple) indicate that the forecast is useful at that 
scale. At a threshold of 1 mm in winter (leftmost panel of 
Figure 3a), the HRES is skilful for nearly all lead times 
and scales shown. In summer (leftmost panel of 
Figure 3b), forecast skill is lost after about 8 to 9 days, 
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even at larger scales of 100 to 200 km. Moving to higher 
thresholds, the FSS generally decreases, so that at 
20 mm some skill is left only in the short range and at 
large scales in winter, and little skill in summer. 
Generally, there is a substantial gain in skill when 
moving from the grid-scale to the next-bigger scale 
(boxes with 3x3 grid points).  

Using a threshold of FSS = 0.5 to determine the 
usefulness of a forecast is strictly applicable only if the 
forecast and observation datasets are unbiased. As this 
is not the case, even FSS values below 0.5 may be 
useful and provide better-than-random guidance on the 
spatial precipitation distribution. 

Verifying radiation with the FSS
A useful proxy for the verification of cloud macro-
properties, such as total cloud cover and cloud optical 
depth, is the downward shortwave radiation flux at the 
surface. Like precipitation, it is a flux quantity that can 
exhibit strong gradients and high variability in space and 
time, and it can be estimated using satellite 

observations. Figure 4 shows how the operational HRES 
forecast skill for this quantity varies with spatial scale 
and lead time in the summer season in the domain 
60°W–60°E and 60°S–60°N. The verification dataset 
used is EUMETSAT’s Climate Monitoring Satellite 
Application Facility (CM SAF) 24-hour average of 
downward shortwave radiation at the surface. 
A threshold of 200 W/m2 has been found suitable for the 
domain during summer. The FSS is not sensitive to the 
exact value of this threshold as long as it separates 
predominantly clear and cloudy areas.  

In terms of absolute FSS, we can see similar values 
(0.85 to 0.9) at large scales and short lead times as for 
summer precipitation with a low threshold of 1 mm 
(shown in Figure 3b). As for precipitation, skill becomes 
small beyond forecast days 7 to 8, and this limiting lead 
time is not very sensitive to scale.

Evaluating brightness temperature for 
case studies
The Fractions Skill Score is also useful for evaluating 

FIGURE 3 Fractions Skill Score of HRES precipitation forecasts over Europe for four thresholds, presented at multiple spatial scales and 
for lead times of up to 10 days ahead, for (a) December 2019 and (b) June 2019. Purple colours indicate a useful spatial scale at particular 
lead times.
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FIGURE 4 Fractions Skill Score for HRES forecasts of daily 
averages of downward solar radiation in June–July–August 2022 
in the domain 60°W–60°E and 60°S–60°N, verified against CM 
SAF data. 

FIGURE 5 Brightness temperature images (infrared 10.8 μm band) over western Europe for the Ciara storm on 8 February 2020 at 00 UTC, 
(a) as observed by Meteosat-11, (b) as simulated by ECMWF’s Integrated Forecasting System (IFS) at a grid spacing of 9 km, and (c) as 
simulated by the IFS at a grid spacing of 4.5 km, in both cases with a lead time of 48 hours. The blue box (~500 x 1,100 km) encloses a 
region of cold air with smaller-scale cloud structures, and the orange box (~800 x 1,700 km) contains the bulk of a frontal system.

individual cases, such as the ones currently being 
investigated in the Extremes Digital Twin of DestinE. 
The FSS makes it possible to compare the 
performance of different model configurations during 
specific events that were relevant to society due to 
their impacts. This type of individual case study 
analysis does not replace a statistical verification over 
longer periods but can uncover weaknesses which 
are difficult to detect in statistical performance 
summaries. 

The left-hand panel in Figure 5 is a satellite image 
showing cloudiness during storm Ciara that affected 
western Europe between 7 and 9 February 2020. 
A large-scale synoptic trough over the North Atlantic 
has a clearly developed frontal cloud. The grey scale 
indicates brightness temperature from the infrared 
window band of 10.8 µm. Light colours can be used as 
a proxy for cloud top height, while darker colours 
indicate surface temperatures under clear-sky 
conditions. The central and right panels show 
simulated satellite images derived from experimental 
ECMWF forecasts at 9 and 4.5 km with a lead time of 
48 hours. In the blue domain, a region of cold air 
advection, the 4.5 km experiment produces smaller-
scale clouds than the 9 km run, which are prone to 
double-penalty issues. In the orange domain, the 
frontal system is wider in the 4.5 km experiment than in 
the 9 km run. Both experiments underpredict a narrow 
band of lower clouds to the southeast of the front.

Figure 6 compares the FSS of the 9 and 4.5 km 
experiments for the two selected regions. As these 

simulated satellite images are known to have a warm 
bias, the FSS has been computed for quantiles 
instead of absolute thresholds. These quantiles are 
derived from the distribution of brightness 
temperatures within the selected domains. For the 
cold air region, we can see that the FSS is below 0.5 
at grid scale, and there are no clear differences 
between the two runs. However, when looking at 
larger scales, the 4.5 km run produces better 
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FIGURE 6 Fractions Skill Score of 
brightness temperatures for the 
4.5 km and the 9 km experiments in 
(a) the cold air domain indicated by 
the blue box in Figure 5, and (b) in 
the frontal system region indicated 
by the orange box in Figure 5.

Further reading
Brown, B.G., E. Gilleland, & E.E. Ebert, 2011: Forecasts of 
Spatial Fields. In Jollife, I.T., D.B. Stephenson (editors), 
Forecast Verification, Wiley, 95–117. 
Doi:10.1002/9781119960003.ch6

Mittermaier, M. & N. Roberts, 2010: Intercomparison of 
Spatial Forecast Verification Methods: Identifying Skillful 
Spatial Scales Using the Fractions Skill Score, Weather and 
Forecasting, 25(1), 343–354. Doi:10.1175/2009waf2222260.1

Roberts, N.M. & H.W. Lean, 2008: Scale-Selective 
Verification of Rainfall Accumulations from High-Resolution 
Forecasts of Convective Events. Monthly Weather Review, 
136(1), 78–97. Doi:10.1175/2007mwr2123.1

Skok, G. & N. Roberts, 2016: Analysis of Fractions Skill 
Score properties for random precipitation fields and ECMWF 
forecasts. Quarterly Journal of the Royal Meteorological 
Society, 142(700), 2599–2610. Doi:10.1002/qj.2849

Skok, G., 2022: A New Spatial Distance Metric for Verification 
of Precipitation. Applied Sciences, 12(8), 4048. Doi:10.3390/
app12084048

agreement with the observations for all quantiles, 
becoming useful already at a neighbourhood size of 
5x5 grid points for quantiles 0.2 and 0.25. For the 
frontal region the situation is reversed: the 9 km 
experiment performs better than the 4.5 km one at all 
scales and for all chosen quantiles. In the 4.5 km run, 
the front is too wide when compared to observations, 
and this large-scale error is only compensated in the 
FSS when evaluating rather large neighbourhoods. 
This single case serves to illustrate how the relative 
skill in predicting cloud systems between runs at 
different grid spacings can vary strongly with the type 
of system. A more systematic evaluation of the FSS 
for different cloud regimes will help identify possible 
causes of such differences.  

Outlook
The method described here to evaluate forecasts with 
a scale-dependent metric as an additional verification 
measure will be important in the future as model 
resolution increases. Spatial verification techniques 
have been developed and used for some time within 
the limited-area modelling community, such as in 
ECMWF’s Member and Co-operating States, and 
ECMWF is benefiting from these efforts. Although 
those techniques are well established, new 
developments that simplify and facilitate the 
interpretation of verification results are still taking 
place (e.g. Skok, 2022). Another essential aspect to 
be improved is the availability of high-resolution, 
high-quality observational datasets with wide 
coverage for verification. There is a need to 
understand the associated uncertainties and potential 
biases of existing observational datasets used in 
verification. For precipitation in particular, it will be 
important to compare different gridded verification 
datasets to assess their respective strengths and 
weaknesses. Scale-dependent metrics are relevant 
for other highly variable fields, such as clouds, and 

infrared and visible satellite images can be used to 
verify cloudiness as a function of scale. Computation 
of the FSS or similar scores will therefore be part of 
future evaluations of operational changes for the 
HRES as well as ensemble forecasts (ENS), and it will 
help to provide a more complete picture of the 
performance of new model cycles.  
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Use of machine learning for the detection 
and classification of observation anomalies
Mohamed Dahoui

For the last few years, an automatic data checking 
system has been used at ECMWF to monitor the 
quality and availability of observations 

processed by ECMWF’s data assimilation system 
(Dahoui et al., 2020). The tool is playing an important 
role in flagging up observation issues and enabling 
the timely triggering of mitigating actions. The system 
is performing well and has a good detection efficiency. 
However, its behaviour is less optimal when assigning 
a severity level to detected events. The statistical 
procedure used to assign the severity requires tuning, 
and the behaviour is different from one kind of 
observation quantity to another. As a result, 
occasionally less significant events can be 
communicated as considerable or severe. When the 
day-to-day variability is small, moderate changes can 
be interpreted as severe from a statistical point of 
view. Given that not every threshold violation is a 
problem, there is a need for an improved way of 
inferring severity.

Another weakness of the current system is its inability to 
consider warnings affecting individual data types in the 
context of what is happening with the rest of the 
observing system and the type of weather activity 
dominating in the affected areas. Most anomaly 
detection tests are based on first-guess departures, 
i.e. the differences between a short-range forecast and 
observations. In these, uncertainties from observations 
and the short-range forecast are combined, which 
means that the generated warnings are not necessarily 
caused by observation problems. Factors causing the 
statistics to deviate are diverse. They require novel 
methods to attribute the cause and decide on the 
relevance of the detected event. 

Machine learning techniques offer the possibility to 
improve the anomaly detection via a better detection of 
patterns, and to improve the classification of events by 
severity and cause. They do not need a periodic 
adjustment of threshold limits, either, which makes them 
useful for the monitoring of satellite data from a growing 
number of satellite platforms. As part of a wider 
movement at ECMWF to use machine learning 
operationally (see Düben et al., 2021), a new version of 
the automatic data checking system has been designed. 
It is based on an unsupervised recurrent neural network 

algorithm for the detection of abnormal statistics, and 
on a supervised learning algorithm (random forest) to 
classify the detected events. The automatic checking of 
observations is mainly used internally at ECMWF, but 
severe notifications are shared with selected users from 
EUMETSAT and the Numerical Weather Prediction 
Satellite Application Facility (NWP SAF) consortium. 
Improving the severity assignment will ensure delivered 
warnings are reliable. The new automatic detection 
framework is planned to be implemented operationally 
in 2023 after further testing. 

In this article, we describe the design and technical 
implementation of the new system and how it aims to 
address the limitations of the current operational 
framework. Avenues for evolving the system are also 
presented. 

Design of the machine learning 
observational data checking system
The machine learning version of the observational data 
checking system (Figure 1) has inherited many aspects 
of the current operational framework, in particular the 
statistics pre-processing, a set of static plausibility 
checks, the ignore facility, and the delivery of warnings 
to subscribed users. The anomaly detection module has 
been completely modified to rely on an unsupervised 
neural network algorithm to detect large deviations of 
statistics. This module aims to flag up sudden changes 
and slow drifts of statistics. The anomaly detection is 
performed separately for all observation types. 
The combined results are analysed by a supervised 
machine learning classifier (random forest) to adjust the 
severity (including a dismissal of the event), indicate the 
likely cause, and suggest whether action is needed. 
The classification results are then processed for each 
individual data type in order to generate relevant plots 
and archive warnings in an event database. 

Unsupervised detection of observation 
anomalies
Two neural network models are applied to each 
individual data group to learn from the short-term 
behaviour (past three months) and the long-term 
evolution (past 12 months when available). The neural 
networks are autoencoders with long short-term 
memory (LSTM) cells. The choice of LSTM is mainly 

doi: 10.21957/n64md0xa5d
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FIGURE 1 Schematic of the data checking system. The autoencoder LSTM has five layers. The first two encoding layers (with 16 and 
8 units respectively) are designed to create a compressed representation of the input data. The third layer processes the compressed 
vector to provide input for the subsequent decoding layers, and the last two decoding layers (with 8 and 16 units respectively) aim to 
reconstruct the input data from the compressed representation. 

intended to enable multi-feature analysis, which is 
useful to scale up the system in order to support large 
amounts of data. 

The short-term model is trained every data assimilation 
cycle using recent statistics and excluding the last two 
days. The training dataset contains only statistics that 
are considered to be ‘normal’. Previously detected 
events and outliers are excluded. As part of the training, 
we determine the resulting reconstruction error, which is 
conservatively chosen as the upper tail of the calculated 
loss in the training set. The trained model is then applied 
to the latest data sample (spanning the last few days) to 
reconstruct/predict the current statistics. 
The comparison of the neural network model and actual 

statistics will be larger than the reconstruction error 
when abnormal statistics are encountered (Figure 2). 
Statistics that are provided as input to the short-term 
model must be scaled typically between 0 and 1 based 
on minimum/maximum values. The scaling is necessary 
to ensure a better convergence of the neural network 
training. Some observation quantities need to be 
adjusted to remove periodic signals in order to avoid 
interpreting ups and downs as abnormal signals. 
For short-term models, a periodicity removal is 
necessary for satellite data counts due to periodic dips 
in counts caused by orbital movements or routines 
operations. For long-term models, it is important to 
remove seasonal periodic signals affecting random 
errors of departures and bias correction. 
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FIGURE 2 Time series of scaled standard deviation of observations 
minus first-guess forecasts (background departures) for AMSU-A 
channel 11 on Metop-B satellite over the tropics. Actual statistics 
are shown in red, predicted statistics are shown in blue.

The number of training epochs is set high to ensure 
convergence. However, an early stopping mechanism is 
used to avoid overfitting and reduce the training time. 

The aim of the long-term trained model is to detect a 
slow drift of statistics. The model is trained once every 
quarter using the past 12 months of statistics (if 
available). To speed up the training and smoothen 
day-to-day variability, the data are sampled over periods 
of ten days. As part of the training, we determine the 
resulting reconstruction error, which is chosen as the 
upper tail of the calculated loss in the training set. 
The trained model is then applied to the latest data 
sample (spanning the last few weeks sampled every 
10 days) to reconstruct the current statistics. Large 
differences between reconstructed statistics and 
observed ones indicate a significant change compared 
to long-term behaviour. Such a change can take the 
form of a step change (due to a model upgrade) or a 
slow drift of the observation quantity being monitored. 
The main interest is to detect a slow drift of statistics. 
This is achieved thanks to a monotonic slope detection 
algorithm applied to cases flagged up by the neural 
network. If the slope is not monotonic, the event is 
discarded. 

The distribution of both neural network reconstruction 
errors is used to define an initial estimation of the event 
severity, by deriving a Z score. The classification module 
will adjust or consolidate these attributes.

The data checking is applied separately to individual 
data groups. The grouping represents the desired 
granularity of observation quantities to be checked. 
For satellite data, a group represents an observation 
quantity (such as the standard deviation of observations 
minus first-guess forecast) from a specific channel (or a 
pressure layer) over a specific geographical area. 
For some satellite data, additional dimensions are 
considered, such as the orbital mode (ascending/
descending orbits), phase (for GNSS Radio Occultation 
measurements), or wind type (for atmospheric motion 

vectors). For in-situ data, the data groups are similar to 
satellite data for area-based statistics. In addition to 
area-based statistics, the data checking is monitoring 
observation quantities for each individual station, 
leading to a large number of items to check. The training 
of neural networks is fast for each data group, but when 
done sequentially for all items (for each observation 
type), the training can be very time-consuming. 
The LSTM ability to use multi-features enables a more 
efficient way of performing the training. Each data group 
(such as the data count from channel 16 from the IASI 
instrument on EUMETSAT’s Metop-B satellite over the 
tropics) is considered to be a feature. A multi-feature 
vector is constructed from a large number of data 
groups. Such a structure enables the training to be done 
efficiently at once for a multitude of groups. Although 
features are considered together, the neural network can 
learn the behaviour of each data group. This enables the 
possibility to detect anomalies affecting one data group 
and not any other. The multi-feature vector is 
nevertheless constructed from data groups that are 
likely to be correlated (e.g. because they originated from 
the same satellite or from surface stations in the same 
country), which enables the detection of events affecting 
the whole group. 

The use of neural networks to detect anomalies without 
the need for periodic adjustment of threshold limits is 
important to efficiently monitor the evolving number of 
satellite data. Data providers are planning to fly 
constellations of small satellites to provide weather 
data. This is expected to significantly increase the 
number of satellite platforms to monitor. In-situ data are 
also expected to increase in number and diversify due 
to the emergence of crowdsourced data and the 
inclusion of national second-tier observations. 

Supervised classification of detected 
anomalies
Once the anomaly detection has been performed 
separately for all data types, all detected events are 
grouped together in a warnings basket. Each event is 
then augmented by a list of additional features reflecting 
common events from other data types, significant 
weather conditions, and the number of past 
occurrences of the event. A machine learning classifier 
(random forest) is then applied to define attributes of the 
detected warnings. These include false alarm (yes/no), 
slight event (yes/no), considerable event (yes/no), severe 
event (yes/no), cause (data/other) and action required 
(yes/no). The machine learning classifier has been 
trained using a population of previously generated 
warnings from the current operational system. 
The training set has been labelled to define the target 
attributes. Through the training process, the system is 
expected to learn the rules that lead to labelling 
decisions based on event attributes (see Figure 3). 
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All preliminary warnings

Data category (satellite, conventional,
 ocean, OSTIA sea-surface temperature)

Type of event 
(missing, out of range)

Observation quantity
(such as bias correction)Location or area

Number of past similar events Severity of deviation Are similar datasets in the 
area, and how many are affected?

Is the Ensemble of Data 
Assimilations spread increased?

Severe weather events
in the area How many areas affected? Parameters affected?All levels/channels 

affected

Data counts Usage status (satellite data)

False alarm (yes/no) Considerable (yes/no) Severe (yes/no)Slight (yes/no)

Cause (data/other) Action required (yes/no)

Random forest classifier

FIGURE 3 Features used in the machine learning classifier.

These rules (in the form of decision trees) are then 
applied to warnings to label them. The training dataset 
needs to be pre-processed for each target attribute to 
enable the balancing of the population of possible 
outcomes. The balancing simply involves the duplication 
of items for the less populated categories. 

The labelling process is time-consuming and requires 
domain knowledge. In this first implementation, the 
labelling process was mostly done semi-automatically 
involving some rules gained from the experience of 
using the data checking system. The performance of the 
classification depends largely on the quality of the 
labelling of the training dataset and more importantly on 
the data features selected to characterise an event. 

Figure 3 shows the important features used by the 
classifier to determine the cause of events. Once the 
system is operationally implemented, we plan to repeat 
the training procedure based on a more refined manual 
labelling and to allow ad-hoc labelling of generated 
warnings when relevant (in case of unusual events, for 
instance). Improving the labelling is very important to 
improve the reliability of the data checking system. 

Once the classification of detected events has been 
achieved, a consolidation step is performed for each data 
type. This involves merging common events to reduce the 
number of warnings communicated to users; generating 
time series of warnings; and archiving warnings in the 
event database. An example of consolidated events are 

FIGURE 4 Background departures from 
IASI channel 92 from Metop-B and 
Metop-C satellites on 15 January 2022, 
showing the effect of the Hunga Tonga–
Hunga Ha’apai eruption.
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warnings triggered for many satellite data as a result of 
the shockwave associated with the Hunga Tonga–Hunga 
Ha’apai eruption in mid-January 2022 (Figures 4 and 5). 
The cause of the warnings was attributed to other causes 
(volcano eruption in this case) by the automatic data 
checking system. The classification was mainly driven by 
the number of independent data sources affected by the 
same event. 

Evolution of the machine learning data 
checking system
This first implementation of the machine learning data 
checking system aims to incorporate novel techniques 
in the detection of observation anomalies. The new 
system tends to have fewer false alarms than the 
current operational framework, and it is able to detect all 
relevant anomalies and to assign appropriate severity 
levels. The random forest classifier manages to consider 
each warning in the context of what is happening with 
the other components of the observing system. This 
leads to a better distinction between observation 
anomalies and issues caused by other factors, such as 
data assimilation limitations and unusual atmospheric 
activities. However, the current classifier is mostly 
reproducing rules used during the semi-automatic 
labelling of the training dataset. Improved labelling will 
greatly benefit classification and severity assignment. 
Future upgrades will offer the possibility to continuously 
evolve the training dataset by enabling ad-hoc labelling 
of interesting events. The training of classifiers will also 

FIGURE 5 Time series of normalised 
standard deviation of background 
departures for AMSU-A channel 11 from 
four different satellites. The statistics are 
computed over the southern hemisphere 
extratropics. On 15 January, the standard 
deviations became much bigger because 
of the Hunga Tonga–Hunga Ha’apai 
eruption.0.64
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benefit from simulated scenarios for hacking and data 
tampering that might affect parts of the observing 
system. This will enable the system to issue warnings if 
such scenarios materialise in the future.

Automatic data checking is currently performed after 
data assimilation takes place, which means that 
corrective actions are applied at a later stage. ECMWF 
is planning to implement automatic data checking of 
incoming data before the start of data assimilation. 
The detection results will potentially contribute to 
automatic data selection. A machine-learning-based 
system is well placed to perform pre-assimilation 
checks thanks to its reduced reliance on manual tuning 
and the possibility of improvement due to improved 
labelling. Parallel efforts are being pursued at ECMWF 
to use machine learning within the forecasting system to 
improve data selection and quality control, for example 
relating to machine-learning-based cloud detection for 
infrared satellite data. 

Further reading
Dahoui, M., N. Bormann, L. Isaksen & T. McNally, 2020: 
Recent developments in the automatic checking of Earth 
system observations, ECMWF Newsletter No. 162, 27–31.

Düben, P., U. Modigliani, A. Geer, S. Siemen, 
F. Pappenberger, P. Bauer et al.: 2021, Machine learning at 
ECMWF: A roadmap for the next 10 years, Technical 
Memorandum No. 878 .



28

general

ECMWF Newsletter 174 • Winter 2022/23

The following provides some information about the 
responsibilities of the ECMWF Council and its committees. 
More details can be found at:
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Chair Mr Eoin Moran (Ireland)

Vice Chair Ms Virginie Schwarz (France)
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The FC provides the Council with opinions and 
recommendations on all administrative and financial 
matters submitted to the Council and exercises the 
financial powers delegated to it by the Council.

Chair Dr Gisela Seuffert (Germany)

Vice Chair Mr Lukas Schumacher (Switzerland)
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Vice Chair Dr Susanna Corti (Italy)

Technical Advisory Committee (TAC)
The TAC provides the Council with advice on the technical 
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aspects of the four-year programme of activities.

Chair Dr Sarah O’Reilly (Ireland)

Vice Chair Ms Anne-Cecilie Riiser (Norway)

Advisory Committee for Data Policy (ACDP)
The ACDP provides the Council with opinions and 
recommendations on matters concerning ECMWF Data 
Policy and its implementation.

Chair Mr Paolo Capizzi (Italy)

Vice Chair Ms Monika Köhler (Austria)

Advisory Committee of Co-operating 
States (ACCS)
The ACCS provides the Council with opinions and 
recommendations on the programme of activities of the 
Centre, and on any matter submitted to it by the Council.

Chair Mr Nir Stav (Israel)

Vice Chair Dr Elena Mateescu (Romania)

http://www.ecmwf.int/en/about/who-we-are/governance


29

general

ECMWF Newsletter 174 • Winter 2022/23

ESA Contract Reports
Lean, K., N. Bormann & S. Healy: WP-1000 Review of 
EDA approach and recommendations for small satellite 
configurations. February 2022

Lean, K., N. Bormann & S. Healy: WP-2000 Calibration 
of EDA spread and adaptation of the observation error 
model. February 2022

Lean, K., N. Bormann & S. Healy: WP-3000 Developing 
a flexible system to simulate and assimilate small 
satellite data. February 2022

Weston, P. & P. de Rosnay: Annual SMOS brightness 
temperature monitoring report 2020/21. May 2022

Weston, P. & P. de Rosnay: Q3 2021: Operations Service 
Report. May 2022

Weston, P. & P. de Rosnay: Q4 2021: Operations Service 
Report. May 2022

Weston, P. & P. de Rosnay: Q1 2022: Operations 
Service Report. May 2022

Lean, K., N. Bormann, S. Healy & S. English: Final 
Report: Study to assess earth observation with small 
satellites and their prospects for future global numerical 
weather prediction. November 2022

EUMETSAT/ECMWF Fellowship Programme  
Research Reports
60 Warrick, F. & N. Bormann: Prospects for improving 

AMV spatial coverage between geostationary and polar 
AMVs: LeoGeo and Dual-Sentinel. November 2022

ECMWF publications
(see www.ecmwf.int/en/research/publications)
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names use a hyphen (e.g. j-n.name-name@ecmwf.int).

For any query, issue or feedback, please contact ECMWF’s Service Desk at servicedesk@ecmwf.int. Please specify whether 
your query is related to forecast products, computing and archiving services, the installation of a software package, access to 
ECMWF data, or any other issue. The more precise you are, the more quickly we will be able to deal with your query.

Feb 8–9 CEMS 2nd global Flood Forecasting 
and Monitoring Meeting

Mar 14 Joint European Weather Cloud Advisory 
Group

Apr 21 Advisory Committee for Data Policy 
(virtual) 

Apr 26 Policy Advisory Committee (virtual)
Apr 27 Finance Committee (virtual)

May 2–5 Training course: High Performance 
Computing – Atos

May 15–19 Training course: Data assimilation

May 22–26 Training course: EUMETSAT/ECMWF 
NWP-SAF satellite data assimilation

May 22–26 6th OpenIFS User Meeting, Barcelona 
Supercomputing Center

Jun 5–9 Using ECMWF’s Forecasts
Jun 21–22 Council

Jun 27–30 Atmospheric River Reconnaissance 
Workshop

Sep 4–8 Annual Seminar

Sep 25–29 20th workshop on high-performance 
computing in meteorology

Oct 4–6 Scientific Advisory Committee

Oct 9–12 Training course: Use and interpretation 
of ECMWF products

Oct 19–20 Technical Advisory Committee (virtual)
Oct 24–25 Finance Committee
Oct 25 Policy Advisory Committee

Nov 13–17
Training course: A hands-on 
introduction to Numerical Weather 
Prediction Models: Understanding  
and Experimenting

Nov 20–24 Training course: Parametrization of 
subgrid physical processes

Nov 27–Dec 1 Training course: Predictability and 
ensemble forecast systems

Dec 5–6 Council

http://www.ecmwf.int/en/research/publications
http://www.ecmwf.int/
http://servicedesk@ecmwf.int


www.ecmwf.int

Newsletter | No. 174 | Winter 2022/23
European Centre for Medium-Range Weather Forecasts

http://www.ecmwf.int



