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Observation error and the cost function

 Every observation has an error vs the truth:

- Systematic error 

 Needs to be removed through bias correction (see separate 

lecture)

- Random error 

 Mostly assumed Gaussian; described by observation error 

covariance “R” in the observation cost function:

 R is a matrix, often specified through the square root of the 
diagonals (“σO”) and a correlation matrix (which can be the 
identity matrix).
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Role of the observation error

 R and B together determine the weight of an observation 
in the assimilation.

 In the linear case, the minimum of the cost function can 
be found at xa:

- “Large” observation error → smaller increment, analysis draws 

less closely to the observations

- “Small” observation error → larger increment, analysis draws 

more closely to the observations
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Contributions to observation error

 Measurement error

- E.g., instrument noise for satellite radiances

 Forward model (observation operator) error

- E.g., radiative transfer error

 Representativeness error

- E.g., point measurement vs model representation

 Quality control error

- E.g., error due to the cloud detection scheme missing some 

clouds in clear-sky radiance assimilation
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Situation-dependence of observation 
error

 Observation errors can be situation-dependent, especially 

through situation-dependence of the forward model error.

 Examples:

- Cloud/rain-affected radiances: Representativeness error is much 

larger in cloudy/rainy regions than in clear-sky regions

- Effect of height assignment error for Atmospheric Motion Vectors:
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Current observation error specification 
for satellite data in the ECMWF system

 Globally constant, dependent on channel only:

- AMSU-A, MHS, ATMS, HIRS, AIRS, IASI

 Globally constant fraction, dependent on impact 
parameter:

- GPS-RO

 Situation dependent:

- MW imagers: dependent on channel and cloud amount

- AMVs: dependent on level and shear (and satellite, channel, 
height assignment method)

 Error correlations are neglected.
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How can we estimate observation errors?

 Several methods exist, broadly categorised as:

- Error inventory:

 Based on considering all contributions to the 
error/uncertainty

- Diagnostics with collocated observations, e.g.:

 Hollingsworth/Lönnberg on collocated observations

 Triple-collocations

- Diagnostics based on output from DA systems, e.g.:

 O-b statistics

 Hollingsworth/Lönnberg

 Desroziers et al 2006

 Methods that rely on an explicit estimate of B

- Adjoint-based methods
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Basic departure-based diagnostics

 If observation errors and background errors are uncorrelated then:

 Statistics of background departures give an upper bound for the true 

observation error.
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Departure-based diagnostics

 Standard deviations of o-b give information on 
observation and background error combined.

 Departure-based diagnostics try to separate 
contributions from background and observation errors 
by making assumptions (which may or may not be true).

- Assume we know the background error → subtract background error

- Assume a certain structure of the errors → Hollingsworth/Lönnberg

- Assume weights used in the assimilation system are accurate → 

Desroziers diagnostic
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Observation error diagnostics:
Hollingsworth/Loennberg method (I)

 Based on a large database of pairs of departures.

 Basic assumption:

- Background errors are spatially correlated, whereas observation 

errors are not.

- This allows to separate the two contributions to the variances of 

background departures:
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Observation error diagnostics:
Hollingsworth/Loennberg method (II)

 Drawback: Not reliable when observation errors are 

spatially correlated.
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 Similar methods have been used 

with differences between two 

sets of collocated observations:

- Example: AMVs collocated with 

radiosondes (Bormann et al 2003).

 Radiosonde error assumed 

spatially uncorrelated.
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Observation error diagnostics:
Desroziers diagnostic (I)

 Basic assumptions:

- Assimilation process can be adequately described through linear 

estimation theory.

- Weights used in the assimilation system are consistent with true 

observation and background errors.

 Then the following relationship can be derived:

with                                     (analysis departure)

(background departure)

(see Desroziers et al. 2005, QJRMS)

 Consistency diagnostic for the specification of R.
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Observation error diagnostics:
Desroziers diagnostic (II)

 Desroziers diagnostic can be applied iteratively.

 Simulations in toy-assimilation systems:

- Good convergence if the correlation length-scales for 

observation errors and background errors are sufficiently 

different. 

- Mis-leading results if correlation length-scales for background 

and observation errors are too similar.

 For real assimilation systems, the applicability of the 

diagnostic for estimating observation errors is still 

subject of research.
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Examples of observation error 

diagnostics: AMSU-A
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Spatial covariances of background departures:

(See also Bormann and Bauer 2010)
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Examples of observation error 

diagnostics: AMSU-A
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Diagnostics for σO
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Examples of observation error 

diagnostics: AMSU-A
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Inter-channel error correlations:

Hollingworth/Loennberg Desroziers
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Examples of observation error 

diagnostics: AMSU-A
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Spatial error correlations:

Channel 5 Channel 7
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Examples of observation error 

diagnostics: IASI

Temperature sounding LW
Window

WV
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Examples:

IASI
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Inter-channel error 

correlations:
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Examples:

IASI
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Inter-channel error 

correlations:

Humidity

Ozone
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How to specify observation errors in 
practice?

 Diagnostics can provide guidance for observation error 
specification, including:

- Relative size of observation and background errors:

 For most satellite data, the errors in the observations are 

larger than the errors in the background.

- Presence of observation error correlations.

 BUT: Observation errors specified in assimilation 
systems are often simplified:

- Observation error covariance is mostly assumed to be diagonal.

 Observations with “complicated” observation errors can be 

more difficult to assimilate.

 Assumed observation errors may need adjustments.
NWP SAF training course 2015: Observation errors



Slide 27

 Consider linear combination 

of two estimates xb and y:

 The error variance of the 

linear combination is:
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Too large assumed observation errors 
tend to be safer than too small ones.
Why?
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Danger zone: Too small assumed σo will lead to an analysis 

worse than the background when the (true) σo> σb.

Assuming an inflated σo will never result in deterioration.

 Optimal weighting:



Observation errors:

• Specifying the correct observation error produces an 
optimal analysis with minimum error.

background  error

true OBS 
error

optimal 
analysis

specified OBS 
error

analysis 
error
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What to do when there are error 
correlations?

 Thinning

- Ie, reduce observation density so that error correlations are not 

relevant.

 Error inflation

- Ie, use diagonal R with larger σO than diagnostics suggest.

 Take error correlations into account in the assimilation
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Spatial error correlations and thinning

 If the observations have spatial error correlations, but these 

are neglected in the assimilation system, assimilating these 
observations too densely can have a negative effect. 
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 Practical solution: 

Thinning, ie select one 

observation within a 

“thinning box”.

 Using fewer

observations gives 

better results!

 See Liu and Rabier

(2002), QJRMS: 

“Optimal” thinning when 

r ≈ 0.15-0.2



Slide 31

Example: AMSU-A

 After thinning to 120 km, error diagnostics suggest little 
correlations… 
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Inter-channel error correlations:

Spatial error correlations 
for channel 7:
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Example: AMSU-A

 … diagonal R a good approximation.
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Example: AMSU-A

 … diagonal R a good approximation.
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Examples of observation error 

diagnostics: IASI

Inter-channel error 

correlations:



Slide 35

Example: IASI

 Very common 

approach: Assume 
diagonal R, but with 
larger σO than 

diagnostics 
suggest (“Error 
inflation”).

 Neglecting error 
correlation with no 
inflation can result 

in an analysis that 
is worse than the 
background!
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Assimilation of 
IASI degrades 
upper 
tropospheric 
humidity

Assimilation of 
IASI improves 
upper 
tropospheric 
humidity

Inflation factor for the 
diagonal values of R
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Example: IASI

 Background 

departure statistics 
for other 
observations are a 

useful indicator to 
tune observation 
errors.
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Reduction of assigned 
error beneficial

Adjoint diagnostics for observation 
errors

 Adjoint diagnostics can be used to assess the sensitivity 
of forecast error reduction to the observation error 
specification (e.g., Daescu and Todling 2010).

 Example: Assessment of IASI in a depleted observing 
system with only conventional and IASI data.

NWP SAF training course 2015: Observation errors

Increase of assigned 
error beneficial (Cristina Lupu, Carla Cardinali)
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Adjoint diagnostics for observation 
errors

 Adjoint diagnostics can be used to assess the sensitivity 
of forecast error reduction to the observation error 
specification.

 Example: Assessment of IASI in a depleted observing 
system with only conventional and IASI data.
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Adjoint-based forecast sensitivity to R:Stdev of o-b, normalised by assumed R:

 Further work required regarding the applicability of this diagnostic 
(consistency of results with estimates of true observation errors).
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Accounting for error correlations

 Accounting for observation error correlations is an area 
of active research.

 Efficient methods exist if the error correlations are 
restricted to small groups of observations (e.g., inter-
channel error correlations).

- E.g., calculate R-1 (y – H(x)) without explicit inversion of R, by 
using Cholesky decomposition (algorithm for solving equations 
of the form Az = b).

- Used operationally for IASI at the Met Office.

 Accounting for spatial error correlations is technically 
more difficult.
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What is the effect of error correlations?

NWP SAF training course 2015: Observation errors
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What is the effect of error correlations?
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Single IASI spectrum 

assimilation experiments (I)
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(all channels considered cloud-free)
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Obs-FG departure
(all channels considered cloud-free)

Temperature increment [K]      

Humidity increment [g/Kg]                 
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Single IASI spectrum 

assimilation experiments (II)
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Effect of error correlations on the 
assimilation of  AIRS and IASI

NWP SAF training course 2015: Observation errors

Assimilation of 
IASI degrades 
upper 
tropospheric 
humidity

Assimilation of 
IASI improves 
upper 
tropospheric 
humidity

Inflation factor for the 
diagonal values of R

Inflation factor for the 
diagonal values of R

With correlations Without correlations



© Crown copyright   Met Office

Correlated observation errors 
for IASI at Met Office

Verification v Observations Verification v Analyses

+0.209/0.302% UKMO NWP Index +0.241/0.047% UKMO NWP Index

The use of correlated observation errors for IASI was implemented 
operationally at the Met Office in January 2013, Weston et al 2014.
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Summary of main points

 Assigned observation and background errors determine 
how much weight an observation receives in the 
assimilation.

 For satellite data, “true” observation errors are often 
correlated (spatially, in time, between channels).

 Diagnostics on departure statistics from assimilation 
systems can be used to provide guidance on the setting 
of observation errors.

 Most systems assume diagonal observation errors, and 
thinning and error inflation are used widely to counter-
act the effects of error correlations.
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Further reading (I)

Bormann and Bauer (2010): Estimates of spatial and inter-channel 

observation error characteristics for current sounder radiances for NWP, 

part I: Methods and application to ATOVS data. QJRMS, 136, 1036-1050.

Bormann et al. (2010): Estimates of spatial and inter-channel observation 

error characteristics for current sounder radiances for NWP, part II: 

Application to AIRS and IASI. QJRMS, 136, 1051-1063.

Daescu, D. N. and Todling, R., 2010: Adjoint sensitivity of the model forecast 

to data assimilation system error covariance parameters. Q.J.R. Meteorol. 

Soc., 136, 2000–2012. 

Desroziers et al. (2005): Diagnosis of observation, background and analysis 

error statistics in observation space. QJRMS, 131, 3385-3396.

Hollingworth and Loennberg (1986): The statistical structure of short-range 

forecast errors as determined from radiosonde data. Part I: The wind field. 

Tellus, 38A, 111-136.
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Further reading (II)

Liu and Rabier (2003): The potential of high-density observations for 

numerical weather prediction: A study with simulated observations. QJRMS, 

129, 3013-3035.

Weston et al (2014): Accounting for correlated error in the assimilation of high-

resolution sounder data. Q.J.R. Meteorol. Soc., 140: 2420–2429. doi: 

10.1002/qj.2306

NWP SAF training course 2015: Observation errors



Slide 51

Cost function diagnostics

 Consistency diagnostic based on the minimum of the 
cost function:

- If background and observation errors are correctly specified, it 

can be shown that 

with the number of observations n and the expectation operator             

(see Talagrand 1999).

- Can be used to check/tune assumed error characteristics.
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