The Satellite Global Observing System

Stephen English

- 1. A brief introduction to the Satellite GOS
- 2. OSCAR WMO's database for information on observations, user requirements and gap-analysis

What types of satellites are used in NWP?

Advantages

Disadvantages

Regional coverage

No global coverage by single satellite Global Geostationary Satellite Coverage

- Temporal coverage

LEO

- Global coverage with single satellite

Example of 6-hourly satellite data coverage

Satellite orbits

AM + PM
* MetOp-A * NOAA-18

Satellite orbits

Equator-Crossing Times (Local)

1987-2015, Ascending Passes (F08 Descending)

Image by Eric Nelkin (SSAI), 13 November 2014, NASA/Goddard Space Flight Center, Greenbelt, MD.

Anomaly correlation of 500hPa height forecasts

Dee DP, Balmaseda M, Balsamo G, Engelen R, Simmons AJ, Thépaut J-N. 2014. Toward a consistent reanalysis of the climate system. Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00043.1.

EEECMWF

Combined impact of all satellite data

EUCOS Observing System Experiments (OSEs):

- 2007 ECMWF forecasting system,
- winter & summer season,
- different baseline systems:
 - no satellite data (NOSAT),
 - NOSAT + AMVs,
 - NOSAT + 1 AMSU-A,
- general impact of satellites,
- impact of individual systems,
- all conventional observations.

← 500 hPa *geopotential height* anomaly correlation

Types of sensor

- Orbit
- View geometry
- Wavelength
- Passive or Active

Issues

- Calibration accuracy
- Signal to noise ratio
- Complexity of interpretation
- 3D spatial and temporal resolution

Strengths / Weakness

	Satellite obs	In situ obs
Data coverage	+++	
Representitivity error	++	
Modern formats	+	-
Diversity	++	+
Data quality – random errors	+++	+++
Ease of transmission on GTS	-	+
Data quality – absolute errors		-
Complexity of observation operators		++
Vertical resolution		+++

Global Observing System is essential to weather forecasting

In the past technology driven....a more integrated user driven approach been encouraged by WMO

Mass is well observed: 1. MW sounders; 2. IR sounders; 3. RO

Moisture – satellite observations are data rich but poorly exploited. Radar and lidar will become more important.

Dynamics – wind observations are scarce in many areas. Methods are indirect e.g. AMVs or surface only e.g. scatterometer

Composition – NWP techniques have been successfully extended to environmental analysis and prediction but more observations are needed.

Surface –SST, sea ice, soil moisture, snow all need real-time analysis; plus climatologies for land use, biomass, albedo, orography, lakes and rivers...)

User requirements

http://www.wmo-sat.info/db/

OSCAR

- OSCAR = Observation Systems Capability Analysis and Review
 - A tool developed by WMO to assist with the "Rolling Requirements Review" and the development of "WMO Integrated Global Observing System" WIGOS
 - What do we need?
 - What is there?
 - Where are the gaps?
- But OSCAR is more than this. It provides valuable and usually very up to date information both to satellite data specialists and the wider interested meteorological community.

http://www.wmo-sat.info/oscar/

Some details!

Sun-Synchronous Polar Satellites

Instrument	Early morning orbit	Morning orbit	Afternoon orbit
High spectral resolution IR sounder		IASI	Aqua AIRS NPP CrIS
Microwave T sounder	F16, 17 SSMIS	Metop AMSU-A FY3A MWTS DMSP F18 SSMIS Meteor-M N1 MTVZA	NOAA-15, 18, 19 AMSU-A Aqua AMSU-A FY3B MWTS, NPP ATMS
Microwave Q sounder + imagers	F16, 17 SSMIS	Metop MHS DMSP F18 SSMIS FY3A MWHS	NOAA-18, 19 MHS FY3B MWHS, NPP ATMS
Broadband IR sounder		Metop HIRS FY3A IRAS	NOAA-19 HIRS FY3B IRAS
IR Imagers		Metop AVHRR Meteor-M N1 MSU-MR	Aqua+Terra MODIS NOAA-15, 16, 18, 19 AVHRR
Composition (ozone etc).		NOAA-17 SBUV	NOAA-18, 19 SBUV ENVISAT GOMOS AURA OMI, MLS ENVISAT SCIAMACHY GOSAT

Sun-Synchronous Polar Satellites (2)

Instrument	Early morning orbit	Morning orbit	Afternoon orbit
Scatterometer		Metop ASCAT Coriolis Windsat	Oceansat OSCAT
Radar			CloudSat
Lidar			Calipso
Visible reflectance			Parasol
L-band imagery	SMOS SAC-D/Aquarius		

Non Sun-Synchronous Observations

Instrument	High inclination (> 60°)	Low inclination (<60°)
Radio occultation	·	A, COSMIC, TerraSarX (SAC-C), ROSA
MW Imagers		TRMM TMI Meghatropics SAFIRE MADRAS
Radar Altimeter	ENVISAT RA JASON Cryosat	

Data sources: Geostationary Satellites

Product	Status
SEVIRI Clear sky radiance	Assimilated
SEVIRI All sky radiance	Being tested for overcast radiances, and cloud-free radiances in the ASR dataset
SEVIRI total column ozone	Monitored
SEVIRI AMVs	IR, Vis, WV-cloudy AMVs assimilated
GOES	AMVs
MTSAT	AMVs

Future Satellite Systems

Stephen English

- 1. EPS Second Generation / Meteosat Third Generation
- 2. ESA Earth Explorer missions: EarthCARE and Aeolus
- 3. Quick summary of other missions
- 4. Beyond 2035?

EPS Second Generation

A little of the history that led to EPS-SG...

- 1970s: Research sounders with a few channels = SCAMS, VTPR+
- 1979 : TOVS (NOAA) = HIRS/2→/3,MSU,SSU,AVHRR
- 1999 : ATOVS (NOAA) = HIRS/3→/4,AMSU-A,AMSU-B→MHS,AVHRR
- 2002 : A-train: AIRS,MODIS,CloudSat,Calipso+
- 2007 : EPS First Generation (Metop) = ATOVS + IASI, ASCAT, GRAS, GOME-2
- 2011 : S-NPP = ATMS, CrIS, VIIRS, OMPS

- ~2021: EPS-SG
 - EPS-SG-A (3 sats) 2021-2042 = mostly EPS follow on instruments
 - EPS-SG-B (3 sats) 2022-2043 = mostly new instruments

EPS Second Generation

~2021 EPS-SG will have updated counterparts to Metop 2nd generation instruments on EPS-SG-A:

- ATOVS + AVHRR/MODIS → MWS + MetImage
- IASI → IASI-NG
- ASCAT → SCA (on EPS-SG-B)
- GOME-2 → Sentinel-5 UVNS
- GRAS \rightarrow RO

Plus some instruments new compared to Metop, on EPS-SG-A

- MWI: based on SSM/I
- 3MI: based on POLDER and PARASOL (VIS/NIR/SWIR)
- ICI: completely new! Sub-mm imager for cloud ice

EPS-SG: Ice Cloud Imager - ICI

ECMWF

Improving accuracy of scattering radiative transfer

Liu (2008, BAMS) DDA scattering database

Implementation in RTTOV-SCATT: Geer and Baordo (2014, AMT)

Result: We can do allsky assimilation in convective areas at frequencies above 30 GHz for the first time.

Needed for ICI.

EPS-SG: Multi-Viewing Multi-Channel Multi-Polarisation Imaging Mission - 3MI

3MI = POLDER + MODIS heritage

Multi-directional: 10-14 views for one pixel

Exploits bi-directional reflectivity

Multi-polarization: ±60, 0°

Multi-spectral : 12 channels

388 to 2130 nm (close to MODIS specification)

What can be obtained depends on avoiding sun-glint

Examples of POLDER products

Cloud Optical Thickness Mean for May 2012

Aerosol Optical Thickness Mean for May 2012

Aerosol Optical Thickness for Non-Spherical coarse mode Mean for May 2012

Source: www.icare.univ-lille1.fr

Meteosat Third Generation

A little of the history that led to MTG-IRS

- 1977 : Meteosat-1: 3 channel MVIRI instrument (by ESA)
- 1989 : Meteosat-4: first operational Meteosat
- 1995 : EUMETSAT takes over Meteosat operations
- 2002 : 2nd generational Meteosat: 12 channel SEVIRI on Meteosat-8
- 2005 : NASA aspiring to launch first Geo interferometer
- ~ 2019 Meteosat Third Generation
 - MTG-I 2019 (4 sats) 2019-2039
 - MTG-S 2021 (2 sats) 2021-2037

Meteosat Third Generation

~2018 MTG-I will have updated counterpart to SEVIRI on MSG:

- SEVIRI → FCI 16 channel imager
 - European rapid scan 2.5 minutes, full disk 10 minutes.

Plus new instruments on MTG-I and MTG-S (from ~2020):

- IRS: IR interferometer (never previously launched in Geo orbit)
- LI: Lightning imager (777.4nm)
- UVN: Ultraviolet, Visible and Near IR imager

MTG: Infrared Sounder - IRS

- An imaging Fourier-interferometer with a hyperspectral resolution of 0.625 cm⁻¹ wave-number
- Two bands, the 700–1210 cm⁻¹ Long-Wave InfraRed (LWIR) and the 1600–2175 cm⁻¹ Mid-Wave InfraRed (MWIR)
- Spatial resolution of 4 km.
- Full Disk basic repeat cycle of 60 min.
- Moisture flux convergence from combination of humidity and wind (through feature tracking)
- High potential for nowcasting
- Also very high resolution NWP (~1 km)

MTG: Infrared Sounder - IRS

Aeolus: doppler wind lidar

- Aeolus is a Doppler wind lidar
 - Active measurement of Doppler shift in backscattered laser
 - Direct information on horizontal line of sight wind mostly in the zonal direction
 - Provides a "curtain" of observations along orbit (2D cross section)
 - Vertical resolution 250m (PBL) to 2km (Stratosphere)
 - Horizontal resolution ~90km
 - Winds are derived from molecular (Rayleigh) or particulate (Mie) backscattering
 - Technologically challenging and launch date has changed many times. Now expected ~2017.

Aeolus: doppler wind lidar

Continuous mode

1 basic repeat cycle 30 x 2.85 km each

Simulated Aeolus wind observations

L2B Rayleigh Clear results from file: ene_from_AUX_MET_2011040400_16km/AE_TEST_ALD_U_N_2B_20110404T011556_20110404T024844_0001.TXT

EarthCARE: cloud radar and lidar

The A-Train

- Launched 2006
- NASA
- 700-km orbit
- CloudSat 94-GHz radar
- CALIPSO 532/1064-nm lidar
- MODIS, CERES and AMSR-E radiometers

EarthCARE

- Expected launch c. 2018
- ESA+JAXA
- 400-km orbit (more sensitive)
- CPR: 94-GHz Doppler radar
- ATLID: 355-nm lidar
- MSI and BBR radiometers

EarthCARE: cloud radar and lidar and M Janisková)

(S Di Michele

B

Sept 2013

Some other key missions

- JAXA/JMA
 - Himawari-8 "MODIS on GEO!" (as GOES-R) ★
 - GCOM-W1: AMSR2 🌟
 - GPM = NASA (US) + INPE (Brazil) + JAXA (Japan)

CMA

- Feng Yun satellite series
 - FY-3C similar to Metop
 - FY-4 similar to MTG

Meghatropiques SAPHIR sounder 🜟

- Sentinel-1 SAR
- Begins Sentinel series: 2 to 5 carry many instruments of interest for atmospheric composition, marine and climate.
- Vital component of Copernicus

COSMIC-2 (RO)

DoD, CSA, RosHydroMet, KMA, NSAOS, UCAR, DLR, CONAE, IMD

Beyond 2035?

 MTG and EPS-SG (and equivalent plans elsewhere) mean we (mostly!) know what is coming up to ~2035

- What will we need 2035-2050?
 - What horizontal and vertical resolution will NWP have reached?
 - What quantities will we be interested in?
 - What temporal frequency will we be interested in?
 - If we can't afford what we have now, what will we drop?
 - Will radio-frequency competition have killed passive microwave, which now is the cornerstone of meteorological observation?
- We will need to be answering these questions in ~5 years time.

Anomaly correlation of 500hPa height forecasts

Dee DP, Balmaseda M, Balsamo G, Engelen R, Simmons AJ, Thépaut J-N. 2014. Toward a consistent reanalysis of the climate system. Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00043.1.

EXECMWF