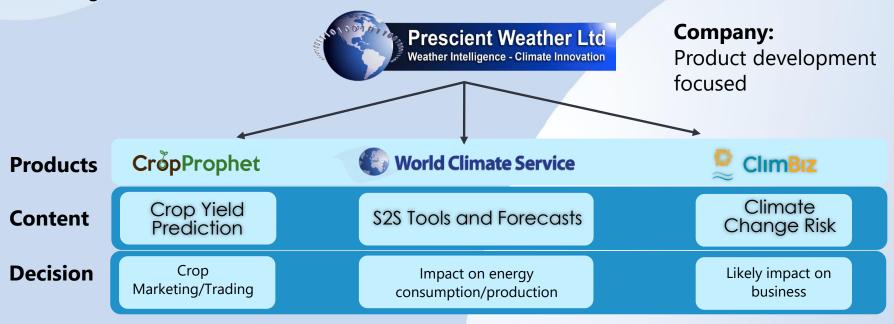


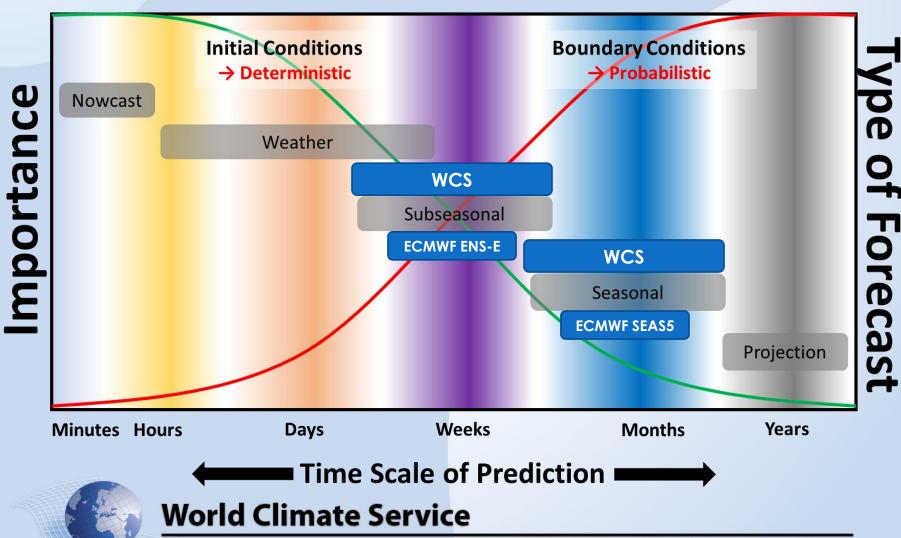
Real-time Refinement of ECMWF Subseasonal Forecast Confidence


June 2020

Dr. Jan F. Dutton, CEO Prescient Weather

Founded in 2009

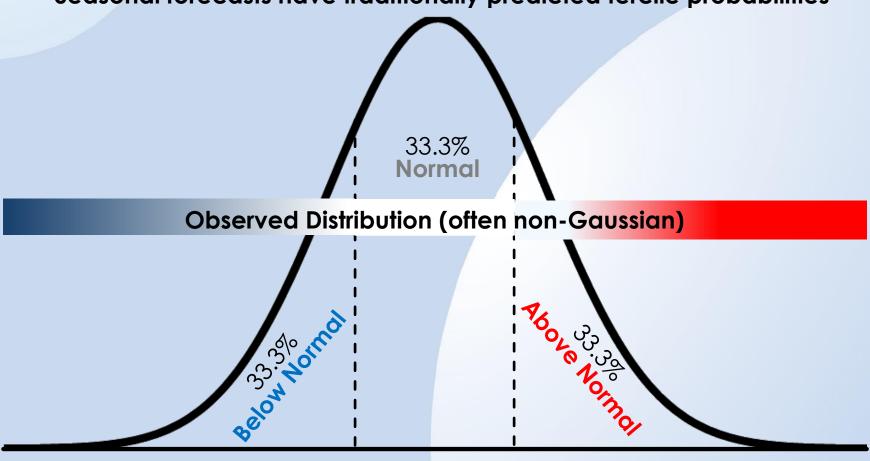
- 11-year history of CropProphet
- 16-year history of World Climate Service
- Significant R&D funding from U.S. government Small Business Innovation Research grants (SBIRs) focused on weather and climate risk



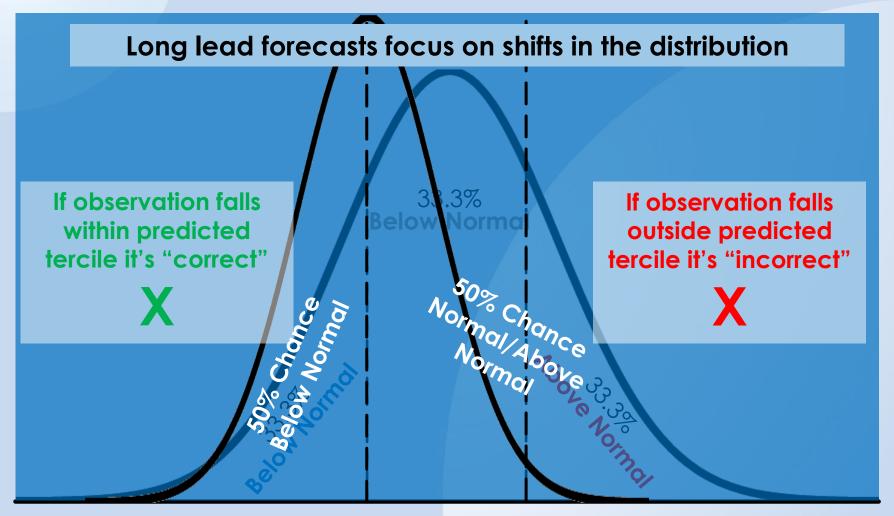
Objective: Create quantitative guidance for weather and climate related decisions based on the best science and information available.

Ethos: Conduct business with integrity, innovation, credibility, and transparency.

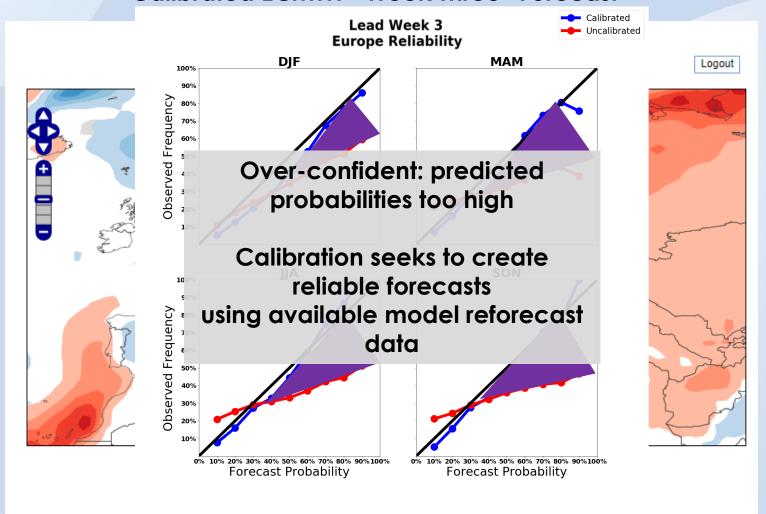
Weather/Climate Timescales


WCS S2S Forecasting Philosophy

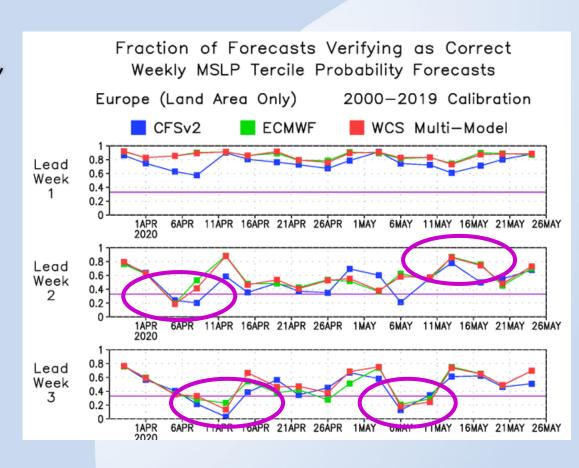
- A toolset to enable weekly, monthly, and seasonal forecast preparation and communication
- Enable risk analysis by providing multiple independent prediction methods
 - Calibrated dynamical ensemble model forecasts (including ECWMF ENS/SEAS5)
 - Statistical forecasts
 - Analog forecasts augmented by human insight/experience
- Emphasize forecast confidence and probabilities


Climate Distribution

Seasonal forecasts have traditionally predicted tercile probabilities


Forecast Application

Example Forecast


Calibrated ECMWF "Week Three" Forecast

Forecaster Challenge

- Weekly predictability, on average, is low
- Time variant skill: windows of opportunity?
- When can the forecast be trusted?

Forecast Rodeo

- US Bureau of Reclamation
- Announced in 2017
- Western US Domain
- Provide week 3&4/week 5&6 temperature and precipitation anomaly forecasts
- O Every week for 1 Year

Contest Results

 WCS/Prescient Weather (prxwx) submitted a simple calibrated ensemble forecast

Team	Week 3-4 Temp	Week 5-6 Temp	Week 3-4 Precip	Week 5-6 Precip	Average
prxwx	0.2265	0.2026	0.1711	0.1208	0.1803
bgzimmerman	0.2855	0.2357	-0.0221	0.0773	0.1441
StillLearning	0.2170	0.2044	0.0227	0.0941	0.1346
lupoa13	0.0895	0.1675	0.1246	0.0931	0.1187
CFSv2	0.1589	0.2192	0.0713	0.0227	0.1180
Salient	-0.1365	-0.0900	0.2144	0.2162	0.0510
asanteko2000	0.0909	0.0897	-0.0612	-0.0879	0.0079
DampedPersistence	0.1952	-0.0762	-0.1463	-0.1613	-0.0472

Results Detail

Click on a team's name to see the full stats about that particular team.

Weeks 3&4 Temperature

Weeks 5&6 Temperature

Weeks 3&4 Precipitation

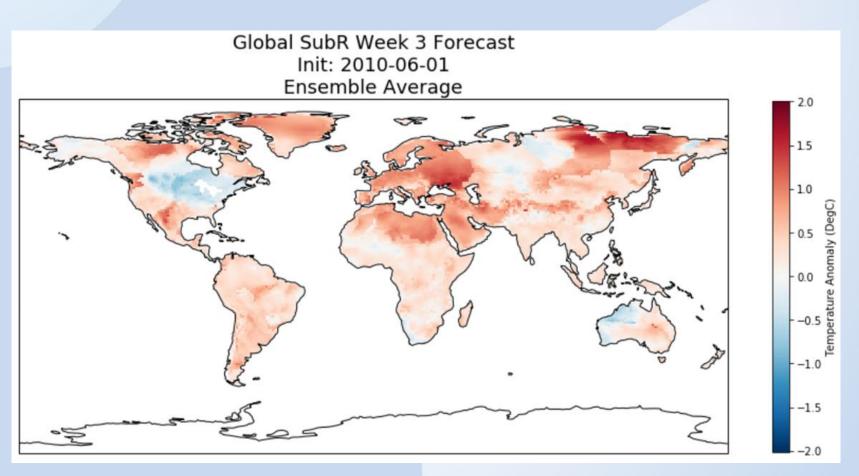
Team	Newest Score	Average Score ▼
bgzimmerman	-0.0994	0.2855
prxwx	-0.1821	0.2265
StillLearning	0.029	0.217
DampedPersistence	-0.0794	0.1952
CFSv2	-0.3997	0.1589
asanteko2000	-0.1117	0.0909
lupoa13	-0.2187	0.0895
Salient	0.05	-0.1365

	-	
Team	Newest Score	Average Score ▼
bgzimmerman	-0.4472	0.2357
CFSv2	0.5267	0.2192
StillLearning	0.1436	0.2044
prxwx	0.3105	0.2026
lupoa13	-0.5854	0.1675
asanteko2000	-0.1046	0.0897
DampedPersistence	0.1084	-0.0762
Salient	-0.8229	-0.09

•				
Team	Newest Score	Average Score ▼		
Salient	0.7758	0.2144		
prxwx	0.0921	0.1711		
lupoa13	-0.1367	0.1246		
CFSv2	0.1837	0.0713		
StillLearning	0.7987	0.0227		
bgzimmerman	0.1087	-0.0221		
asanteko2000	-0.7981	-0.0612		
DampedPersistence	-0.7996	-0.1463		

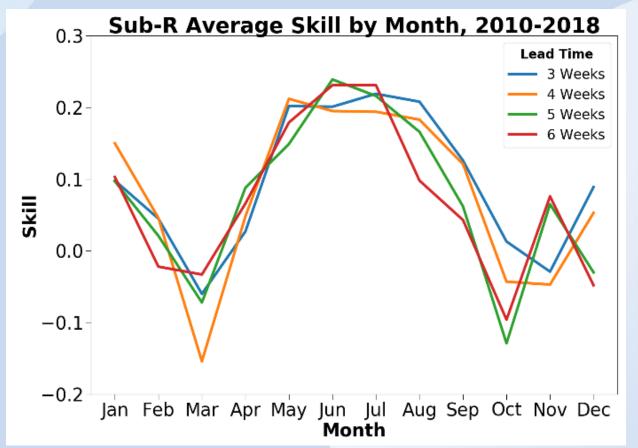
Weeks 5&6 Precipitation

	Team	Newest Score	Average Score ▼
	Salient	0.5897	0.2162
(prxwx	0.0995	0.1208
	StillLearning	0.5816	0.0941
	lupoa13	0.0916	0.0931
	bgzimmerman	0.303	0.0773
	CFSv2	0.0692	0.0227
	asanteko2000	-0.5561	-0.0879
	DampedPersistence	-0.4375	-0.1613

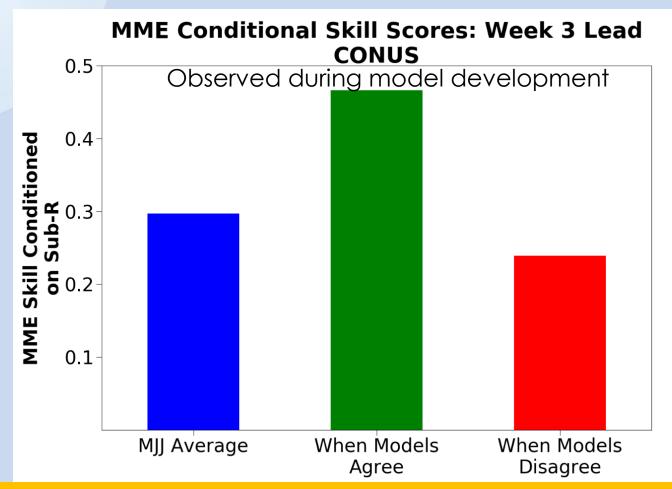

Who is "bgzimmerman?"

Sub-R Statistical Model Methodology

- Cluster the predictand (i.e. T2M) to reduce dimensionality and capture regional variability on the weekly timescale.
- Optimize out-of-sample accuracy by searching through a variety of antecedent global variables (SST, SLP, H500, T2M) from one week to two months prior.
- Condition on climate indices such as ENSO to enhance predictability.


Expanded to Global Forecasting

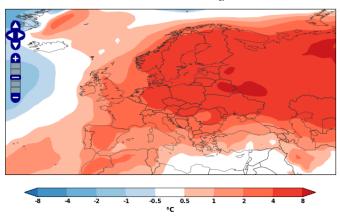
Sub-R Performance


9-year Hindcast – Out of Sample Results for Temperature

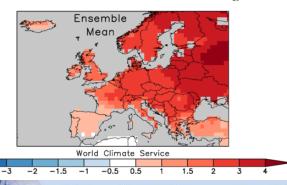
Anomaly Correlations between forecasts and observations

During Model Development

Agreement measured using land-only anomaly correlation of forecasted anomaly from both statistical & dynamical models

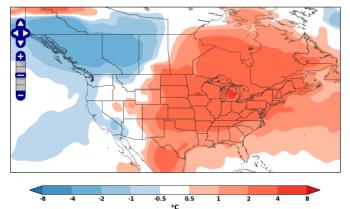


Forecast Agreement

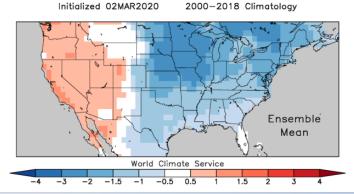

Anomaly Correlation

Agree

ECMWF T2m Ensemble Mean Anomaly (°C)
Week 3 Forecast Valid 13 Feb 2020 - 19 Feb 2020
Initialized 30Jan2020 2000-2018 Climatology

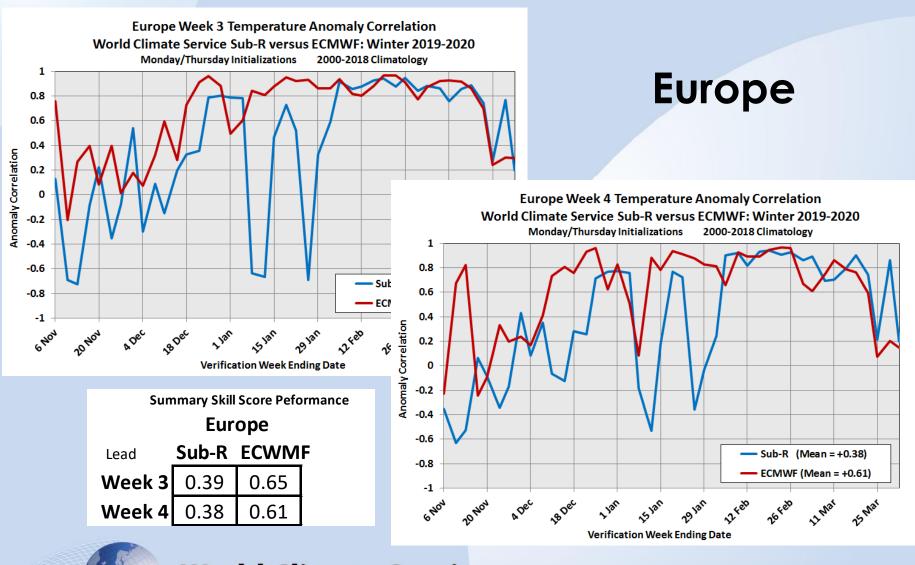


Sub-R Predicted Temperature Anomaly (°C)
Week 3: 7 Days Ending 19FEB2020
Initialized 30JAN2020 2000-2018 Climatology

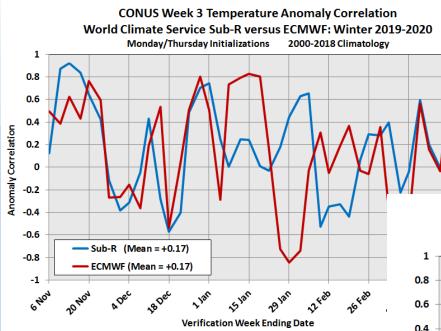


Disagree

ECMWF T2m Ensemble Mean Anomaly (°C)
Week 3 Forecast Valid 16 Mar 2020 - 22 Mar 2020
Initialized 02Mar2020 2000-2018 Climatology



Sub-R Predicted Temperature Anomaly (°C)
Week 3: 7 Days Ending 22MAR2020

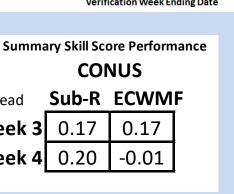


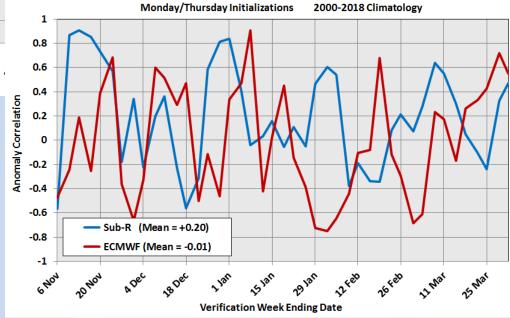
Winter 2020 Forecasts

Winter 2020 Forecasts

CONUS

0.17


-0.01


0.17

0.20

United States

CONUS Week 4 Temperature Anomaly Correlation World Climate Service Sub-R versus ECMWF: Winter 2019-2020 Monday/Thursday Initializations 2000-2018 Climatology

Lead

Week 3

Week 4

Winter '19/'20

2m Temperature Anomaly Correlation Forecasts Verifying in Nov 2019 - Mar 2020

CONUS Week 3

	Sub-R	ECMWF
All Forecasts	0.17	0.17
Agree	0.24	0.26
Disagree	0.10	0.08

Europe Week 3

	Sub-R	ECMWF
All Forecasts	0.39	0.65
Agree	0.73	0.77
Disagree	0.02	0.51

East Asia Week 3

	Sub-R	ECMWF
All Forecasts	0.30	0.55
Agree	0.54	0.64
Disagree	0.05	0.45

2m Temperature Anomaly Correlation Forecasts Verifying in Nov 2019 - Mar 2020

CONUS Week 4

	Sub-R	ECMWF
All Forecasts	0.20	-0.01
Agree	0.22	0.18
Disagree	0.16	-0.21

Europe Week 4

	Sub-R	ECMWF
All Forecasts	0.38	0.61
Agree	0.68	0.70
Disagree	0.09	0.55

East Asia Week 4

	Sub-R	ECMWF
All Forecasts	0.28	0.43
Agree	0.49	0.58
Disagree	0.09	0.29

Summary

- Subseasonal forecasts have a low skill baseline, but skill variations over time are large.
- A major forecasting challenge is trying to identify windows of predictability.
- Winter '19/'20 ECMWF mid-latitude forecast skill was higher when forecasts agreed with an independent statistical model.
- World Climate Service users now have a tool to refine confidence in dynamical model subseasonal forecasts.

Thank You!

https://www.worldclimateservice.com

info@worldclimateservice.com

