Initialization of seasonal forecasts assimilating sea level and temperature observations

Research Department

December 2000
Abstract

In this paper, we describe the combined assimilation of satellite observed sea level anomalies and in-situ temperature data into a global ocean model that is used to initialise a coupled ocean-atmosphere forecast system. The altimeter data are first used to create synthetic temperature observations, which are then combined with the directly-observed temperature profiles in an Optimum Interpolation scheme. In addition to temperature, salinity is corrected based on a preservation of the model's local temperature-salinity relationship. Coupled forecasts with a lead time of up to 6 months are initialised from the ocean analyses and the impact of the data assimilation on both the ocean analyses and the coupled forecasts is investigated. Several measures of skill suggest that Niño-3 sea surface temperature anomaly forecasts can be improved by initializing the coupled forecast model with the ocean analysis in which temperature and altimeter data are assimilated in combination. The results further suggest that a good simulation of the salinity field is required to make optimum use of the altimeter data.

1 Introduction

The El Niño Southern Oscillation phenomenon can now be simulated reasonably well with coupled ocean atmosphere models and attempts to predict the behaviour of the coupled system over time scales of several months are now made regularly at a number of institutes. As the atmosphere on synoptic scales behaves in a chaotic manner beyond timescales of a few days, it is mainly the ocean that carries the potential for predictive skill (Palmer and Anderson, 1994). In particular, equatorial waves such as the eastward propagating Kelvin waves and the westward off-equatorial Rossby waves are thought to carry the memory on which forecasts are based and are important components of the so-called delayed-action oscillator (Schopf and Suarez, 1988). Although the delayed-action idea is appealing for understanding how predictability might arise, it has proved to be of little practical use in terms of making predictions. Fully dynamical coupled ocean-atmosphere models offer the most comprehensive approach to ENSO forecasting.

Such models require an accurate description of the ocean state as initial conditions for such a forecast. Observations of the ocean are too sparse to allow the derivation of an accurate analysis based on observations alone, however. Rather an estimate of the ocean state is obtained by combining the observations with the results from the dynamical ocean model through data assimilation. This is usually done by using a sequential approach: the model is run for a certain time, the observations are gathered and an analysis is performed by combining the model first guess with the new observations. After that, the model is run for the next interval. The ocean models that are used to yield initial conditions for the coupled forecast system are not perfect, however, and neither are the forcing fields of momentum, heat, and freshwater that are used to integrate the model forward in time. Data assimilation is used to correct for these errors.
The ocean analyses have used observations mainly of sea surface temperature (SST), sub-surface temperatures (T_{sub}), and, more recently, sea level anomalies (Ji et al. 2000, Carton et al. 1996, Carton et al. 2000, Segschneider et al. 2000a). SST is observed sufficiently densely from satellite and ships to allow an analysis without a model (Reynolds and Smith 1995) and this SST field can then be strongly nudged into the ocean model. Sub-surface temperatures are less frequently observed and are generally assimilated via optimum interpolation (OI) or 3DVAR (Derber and Rosati 1989, Smith et al. 1991, and Daley 1991, for a more general description of OI). The application of more sophisticated assimilation schemes than a sequential OI, namely the Ensemble Kalman Filter (EKF) and 4D-Var, in quasi-operational global models is an ongoing research issue, but so far only test-studies using subsurface temperature observations have been performed (Weaver and Viallard, 1999). The use of altimetry in EKF and 4D-Var assimilation schemes is at an even earlier stage and will most likely take another couple of years to be developed to a level suitable for near real time use.

To make use of both the direct observations of T_{sub} and the better coverage provided by altimeter observations, the combined assimilation of T_{sub} and sea level anomalies (SLA) is required. Sea level anomalies are currently assimilated either by projecting the surface signal to the subsurface by use of statistical relationships between sea level anomalies and subsurface temperature e.g. Mellor and Ezer (1991), Carton et al. (1996), Fischer et al. (1997), Vossepoel et al. (1999), Ji et al. (2000) or by vertical shifts of the model's local temperature and salinity profiles in order to match the observed sea level based on the work of Cooper and Haines (1996). Segschneider et al. (2000a) describe the assimilation of altimeter data only, using the Cooper and Haines scheme in the HOPE ocean model and demonstrate the improvement of ENSO forecasts at ECMWF. The level of improvement relative to a control with no data assimilation was comparable to that achieved by assimilation of subsurface temperature observations only.

In this paper we describe a first attempt at ECMWF to combine the two data sources within the framework of OI. Carton et al. (1996), Carton et al. (2000) and Ji et al.(2000) have also used altimeter data in conjunction with other in situ observations such as from TAO and XBT data. Our study differs from theirs in the strategy for using the altimeter data. In particular we update not only temperature, but also the salinity field based on the local T-S relationship as described in Troccoli and Haines (1999) and Troccoli et al. (2000). Salinity variations in the equatorial West Pacific contribute to the sea level variations by as much as 9 cm (Ji et al., 2000; Segschneider et al., 2000a) and therefore a good representation of salinity is needed for the combined assimilation of temperature and sea level observations. In addition, we assess the impact of altimeter data through an extensive set of ENSO forecasts based on the ocean analyses.

The paper is organized as follows: In section 2 we describe the model and the assimilation schemes. In order to gauge the impact of different methods of assimilating data, a variety of assimilation procedures will be used. We will first describe assimilating altimetry in the absence of other data (2.2). Assimilation of in situ temperature data will be described in section 2.3. Combined in situ and altimeter assimilation is described in section 2.4. A method to correct salinity based on the updated thermal field is described in section 2.5. In section 3 we discuss the results from the various ocean analyses, and in
section 4 the results from the coupled forecasts. Conclusions are given in section 5.

2 The assimilation system

2.1 The ocean model

The oceanic component of the coupled ocean-atmosphere forecast system at ECMWF is a modified version of the Hamburg Ocean Primitive Equation model (HOPE). The model has been developed at the Max-Planck-Institute of Meteorology and is described in detail by Wolff et al. (1997). The model uses an Arakawa E-grid with a zonal resolution of 2.8125° at all latitudes. To allow a better representation of tropical waves, the meridional resolution is refined to 1/2° within 10° of the equator. Polewards of 10° the meridional grid spacing increases linearly to 2.8125° at 30° latitude and remains at that resolution polewards thereof. The uppermost 12 layers are centered at 10, 30, 51, 75, 100, 125, 150, 175, 206, 250, 313, and 425 m. The model time step is 2 hours. Sea level is computed as a prognostic variable.

2.2 The altimeter assimilation procedure

For the assimilation of altimeter data we use the method developed by Cooper and Haines (1996, henceforth CH) to project the sea level observations onto the model's subsurface temperature and salinity fields. CH has the advantage that, as compared to statistically-derived relationships between sea level displacement and subsurface temperature only (as used in Fischer et al., 1997; Carton et al., 1996; Ji et al., 1998, 2000, Masina et al., 2000), temperature and salinity increments are based on the model's T and S profiles at the time and location at which the observation is assimilated. Vertical shifts of the T-S profiles are used to update the model's temperature and salinity fields. The magnitude of the shifts is such that the depth-averaged change of weight of the water column after assimilation compensates for the difference between simulated and observed sea level. The scheme is able to capture advective changes in water-mass properties, which statistically derived projection-schemes are not, as they are based on time-averaged variability at a fixed location. More recently efforts are being made to include seasonal variations in the correlation coefficients between temperature and sea level anomalies (e.g. Masina et al., 2000).

CH is designed to correct displacements of the density structure which are caused by model errors or errors in the forcing fields such as wind. Potential draw-backs of the scheme are that it is not able to correct for steric sea level changes nor for errors in the fresh-water input nor for errors in the model's water-mass characteristics. However, some of these changes may be better identified from other data sources such as in situ temperatures. The implementation of the assimilation procedure for altimeter data into the HOPE ocean model is described in detail in Segschneider et al. (2000a) but a brief description is given here. Every 10 days, maps of sea level anomalies relative to the 1993 to 1995 period are produced by Centre Localisation Space, located in Toulouse, France. From early 1998,
maps are available weekly. The latter maps are derived from the TOPEX/Poseidon and ERS-1/2 satellites, and have a spatial resolution of 0.25° x 0.25° (LeTraon et al., 1995, 1998). At ECMWF the maps are smoothed because the ocean model has too coarse a resolution to resolve the eddies contained in the data. The maps are then interpolated to the model grid, where a mean sea level is added to the anomalies. The mapped data are assimilated every 10 days using CH, and the derived temperature and salinity increments are spread over the following 10 days to allow a smooth adjustment of the density field.

The above method requires the initial interpretation of SLA in terms of T_{sub}. The CH method that we use requires a mean sea level, which is not yet provided with satellite observed sea level. We have taken this mean sea level, for the years 1993-1995, from a former subsurface T assimilation experiment with the ocean model (denoted OI-3 in Segschneider et al., 2000a). Having to use a model-derived mean sea level in the assimilation process is a weakness in present attempts to assimilate altimeter data, preventing its full potential from being realised. This deficiency should be overcome once a sufficiently accurate geoid is available to provide absolute sea level observation from space. Such an accurate geoid should be available from gravimetric satellite missions within the next few years. The successful launch of the CHAMP (Catastrophes and Hazard Monitoring and Prediction) mission in July 2000 represents a useful start to this process which will continue with the GRACE (Gravity Recovery and Climate Experiment, launch 2002) and GOCE (Gravity and Ocean Circulation Experiment, launch 2004) missions. In the meanwhile we accept the limitation of not having a measured mean sea level. This problem exists in all present attempts to use altimeter data, although it can be disguised if only temporal information is used.

2.3 Assimilation of subsurface temperature observations

Subsurface temperature observations are presently assimilated into the ocean analysis via an optimum interpolation scheme (Smith et al., 1991). For the experiments in this paper, manually quality controlled observations including XBT, CTD and TAO data are used. Every 10 days, observations are collected over a centered 10-day period. The observed profiles are interpolated onto model levels. The optimal interpolation scheme is then solved independently for each model level. Individual observations and the modelled background are given the same weight. The background and observation error spatial structures are modelled using gaussian functions. Background error decorrelation scales are nonisotropic and vary with latitude. At the equator the zonal scale is 1500 km and the meridional scale is 200 km. As latitude increases the zonal scale decreases and the meridional scale increases to 400 km in both directions at 20°. The observation error decorrelation scale is homogeneous and isotropic, with a space-scale of 200 km and time-scale of 3 days. Because the TAO moorings provide daily data at the same location, relatively strong weight is given to TAO observations compared to XBT observations. The latter are mainly along ship tracks and therefore more than 2 or 3 XBT observations are seldom found within the background error decorrelation radius over a 10 day window. Once the analysis has been computed, the derived temperature increments are applied over the next 10 days to minimize adjustment problems. In this original temperature OI scheme, there is no
correction to salinity which can give rise to unreasonable salinity profiles as discussed by Troccoli et al. (2000).

The main difference compared to the assimilation of sea level data is that assimilation of temperature observations is capable of correcting the vertical temperature structure, while sea level assimilation using CH can only correct misplacements of the temperature profile in the vertical. The major drawback is the sparseness of data, especially outside the domain of the TAO array. On the other hand, satellite observations span a near global domain and have better spatial coverage even within the equatorial region, though their temporal resolution is worse than for TAO.

2.4 Combined assimilation of sea level and temperature observations

In the following, we aim to combine the advantages of using altimetry and in-situ temperature observations. In so doing, we first assume that the directly-observed temperature profiles are the more direct and hence more reliable source of information about the subsurface temperature field wherever such observations exist. The information from the altimeter is then mainly used in areas where few direct temperature observations exist, such as in the tropical Atlantic and Indian ocean and outside the TAO array in the Pacific. The sea level observations are also used to update the salinity field over the whole model domain using the information about salinity provided by the CH scheme. Our approach thus differs from the approach of Vossepoel et al. (1999) who also have made attempts to combine the information from sea level and temperature data. Their approach is to use the history of sea level and salinity information to derive subsurface salinity at temperature profile observation points only. While their method may provide a better estimate of salinity for these limited locations, it requires not only in-situ temperature observations but also a past history of salinity observations, which further limits the locations in which their analysis can be performed. Ji et al. (2000) have also combined temperature and sea level assimilation, but projected the entire sea level signal on the temperature field.

An optimum method to combine the altimeter and thermistor data has probably yet to be found, but we feel that our approach is the most suitable for our global ocean analysis. We first analyse temperature and salinity from the altimeter data for every gridpoint using CH as described above. The altimeter derived temperatures are not directly used to update the background field, however. Instead, the altimeter-derived temperatures are used as pseudo or synthetic temperature observations which are combined in the OI with the in-situ temperatures from TAO/XBT and the model background. We thin the pseudo temperature observations before the OI. Every second latitude band is dropped in an initial step. In a second step, we check for each of the remaining gridpoints, whether an in-situ temperature observation is present in the surrounding 2° x 2° box. If so, the respective pseudo observation is dropped (a schematic is given in Fig.1). Because the 'exclusion-box' is smaller than the decorrelation scales used for the OI, in particular close to the equator where the zonal decorrelation scale is 1500 km, there is still influence from the altimeter at in-situ temperature observation points, but the weight given to the altimeter data is
smaller because of the greater distance.

![Combination of altimetry and TAO/XBT](image)

Figure 1: Schematic of the horizontal filtering of the pseudo observations

2.5 Correction of sub-surface salinity

As outlined above and described in detail in Troccoli et al. (2000), the assimilation of only temperature data without correction of the model salinity field can introduce first order errors in the temperature field. These errors can be substantially reduced when salinity is updated together with temperature. Furthermore, the importance of salinity was drawn to our attention by recent studies which showed that subsurface salinity variations impact strongly on sea level variations in the Western Equatorial Pacific (e.g. Ji et al., 2000) and in the Western Equatorial Atlantic (Segschneider et al. 2000b). Because salinity observations are sparse, in particular those available in near real time, it is not possible to analyse S based on direct measurements. However, an indirect approach that locally uses the T-S relationship of the background field to find the salinity that matches the newly analysed temperature at each level has been developed by Troccoli and Haines (1999, henceforth TH99).

The improvements from using TH99 on the temperature fields when only temperature was assimilated have already been described in Troccoli et al. (2000). The ocean analysis was improved in particular in regions of pronounced salinity maxima at intermediate depth, such as in the western equatorial Pacific and Atlantic oceans. However, most of the improvements of the temperature fields were achieved at depths of more than 200m, and it is thus not immediately clear what the impact on seasonal forecasts might be. Here we apply TH99 in the presence of temperature and altimeter data and we will examine not only the ocean analyses, but also the impact on coupled forecasts. Adverse changes in T or S below the pycnocline may not directly affect the SST and propagation of upper ocean
heat content anomalies and hence the forecasts. They influence the sea level, however, and through that, prevent the optimum use of altimeter data. Hence we will show that application of the T-S scheme is considered necessary.

3 Ocean analyses

3.1 Set-up of experiments

In the following, we will briefly describe the set-up of the four ocean analyses that are used in the paper to gauge the impact of the different assimilation approaches. All four experiments are run for the five years 1993 to 1997, i.e., for the same period as the ocean analyses in Segschneider et al. (2000a). The ocean model is forced by daily averages of momentum, precipitation minus evaporation, and heat flux derived from the ECMWF reanalysis (now known as ERA-15) for 1993, and from the operational numerical weather prediction system for 1994 to 1997. The model SST is relaxed to weekly-averaged analyses of SST (Reynolds and Smith, 1995) with a time-scale of three days, and the sea surface salinity is relaxed to climatological data from Levitus and Boyer (1994) with a time scale of one month. Subsurface temperature and salinity are both relaxed to climatological data with a time scale of one year. The OI is applied down to model level 15 (approximately 1000m).

In the first experiment, called T-OI, only subsurface temperatures are assimilated (experiment OI-1 in Segschneider et al. 2000a). In a second experiment, called ALT, only altimeter data are assimilated (experiment ALT-5 in Segschneider et al. 2000a). In the third experiment, called T+A, both altimeter and temperature observations are assimilated as described in section 2.4. In experiments ALT and T+A, the salinity increment from the sea level assimilation is used to up-date salinity on all model grid points. In the fourth experiment, called TA+TS, temperature and sea level are assimilated as in T+A, but salinity is corrected using the TH99 scheme described in section 2.5.

Experiments T-OI and ALT have already been described in Segschneider et al. (2000a) and are mainly used as a reference in this paper. In particular, we will use Niño-3 and Niño-4 averages of the depth of the 20°C isotherm (D-20) in experiment T-OI as references for the observed subsurface temperature. These are directly assimilated in T-OI and the TAO network provides relatively good coverage with observations. Experiment ALT is used as reference for sea level. From earlier comparisons we know that the sea level of experiment ALT is close to the observed sea level in the tropics (Segschneider et al. 2000a).

3.2 Results from the ocean analyses

In this section, results from the ocean analyses will be described. Our main emphasis is on upper ocean heat content as represented by D-20 and the sea level. We shall show results for the tropical Pacific, Atlantic, and Indian oceans. In the following figures the sea level from experiment ALT and D-20 of experiment T-OI, respectively, will be drawn as solid
black lines, as they will be taken as references for the combined assimilation experiments as outlined above. We will start with the tropical Pacific.

In the Niño-3 region (Fig.2a) the sea levels in all experiments agree to within 2-3 cm. The deviations of D-20 between experiments are generally smaller than 5m, though on occasion they can reach 10m, as in experiment ALT in 1995 for example (Fig. 2b). The generally good agreement between the different experiments indicates firstly that the assimilation of sea level is able to constrain the thermocline well, and secondly that the assimilation of subsurface temperature data constrains the sea level well. By combining the two observation types, the departures of D-20 of experiment ALT from the reference can be further reduced in experiments T+A and TA+TS as seen in Fig. 2b. The most pronounced feature in Fig. 2 is the strong rise in sea level and the deepening of the thermocline in 1997. Comparing Figure 2 a and b, one can see that while the deepening of the thermocline is associated with a general rise of sea level the two figures are not precisely mirror images of each other. This implies that it is not always adequate to use sea level as a proxy for thermocline depth as is sometimes done in altimeter assimilation. The good representation of D-20 in experiment ALT, where only altimeter data are assimilated, underlines the ability of the model to reproduce the time-varying temperature structure and the usefulness of the CH scheme which actually takes the vertical structure of the model temperature field into account.

Figure 2: Sea level (a) and D-20 (b) averaged over the Niño-3 region from experiments T-OI, ALT, T+A, and TA+TS.

In the Niño-4 region (Fig. 3) the agreement for the D-20 time series is again excellent, and what little deviation there is in the altimeter-only assimilation experiment (ALT) is further reduced by the additional assimilation of temperature observations in experiments T+A and TA+TS, as one would expect. For the sea level in Niño-4 where salinity variations contribute more to sea level changes than in Niño-3, the agreement between the experiments
is slightly worse than for the Niño-3 region. Beginning during the second half of 1995 and through until mid 1997 the sea level is too high in experiment T-OI compared with the reference experiment ALT, with differences in the range of 5 cm. This period has been discussed at some length by Ji et al. (2000) who noted the importance of salinity. One would expect that the additional correction of salinity in experiment TA+TS should improve the sea level, but in fact the sea level is more similar to that of T-OI than to ALT over the relevant period, whereas experiment T+A agrees quite well with experiment ALT. Kessler (1999) argues that subsurface salinity in the western Pacific changed due to the horizontal advection of saltier water from the east. The TH99 scheme, that searches for the matching salinity in the vertical, can not correct the salinity error of the model, and as a consequence the sea level is similar to that of experiment T-OI. An improved version of TH99 that also searches in the horizontal is under development, but has not yet been tested in a tropical application.

![Graph showing sea level and D-20 variations over Niño-4 region](image)

Figure 3: Sea level (a) and D-20 (b) averaged over the Niño-4 region from experiments T-OI, ALT, T+A, and TA+TS.

In the Atlantic, standard regions are less commonly used than in the Pacific, but we adopted the three regions defined by Zebiak (1993). These are: ATL1 from the equator to 10° N, and from 20 - 45° W, ATL2 between +/-3° N/S and 0 - 10° E, and ATL3 which spans the region between +/-3° N/S, 0 - 20° W. In the Atlantic, it is less likely than in the tropical Pacific that the temperature and D-20 from experiment T-OI can serve as a robust measure of truth, since in-situ temperatures are less frequently observed and hence constrain the analysis less well. It has even been shown that the OI-analysis using temperature only had severe errors in the western tropical Atlantic, which showed up after the introduction of the PIRATA moorings (Segschneider et al., 2000b). We therefore use results from a former control experiment in which no data have been assimilated (experiment CNT in Segschneider et al. 2000a). We do not show the time series of CNT in the figures to keep
them more readable, but will describe results instead. Experiment CNT is used to evaluate
the impact of the temperature assimilation on sea level in the Atlantic and Indian oceans.
If the sea level from the assimilation experiment T-OI shows larger departures from the
reference experiment ALT than the control run, we can suspect the temperature fields of
T-OI are in error, although the evidence is not fully conclusive.

The sea level in the western equatorial Atlantic (ATL1 region, Fig. 4a) shows consider-
erably less interannual variability than in the Pacific. The time series are dominated by
the seasonal cycle and agree within 1 cm between experiments ALT, T+A, and TA+TS.
The seasonal cycle of the temperature-only assimilation experiment T-OI is slightly phase-
shifted with respect to experiment ALT, i.e. the sea level in T-OI is highest in Novem-
ber/December rather than in September to October as in ALT. The same feature is present
in the control which suggests errors in the forcing fields or model formulation, which are
not corrected by the sparse temperature observations in the Atlantic in T-OI. The sea level of
experiments T-OI and the control run differ by up to 3 cm from the altimeter-derived sea
level. The sparsity of thermal data means that the depth of the 20º isotherm of experiment
T-OI might also be in error (Fig.4b). The sea level of T-OI and the control experiment are
quite similar, but D-20 is almost 10 m deeper in the control experiment than in T-OI. The
analyses incorporating altimeter data differ from experiment T-OI by only a few meters
for most of the time, but for example in spring 1995 D-20 in experiment T+A is almost 5
m shallower.

In the eastern equatorial Atlantic (ATL2 region, Fig. 4c) interannual variations in sea
level are slightly more prominent than in the west (ATL1), but the dominant signal is the
semiannual cycle with peaks in sea level around March and October. Again, the sea level of
experiments ALT, T+A, and TA+TS agree quite closely, whereas experiment T-OI and
the control run show deviations of more than 5 cm from the altimeter-derived sea level.
The strongest deviations occur in spring, in particular during spring 1996. The phase
of the sea level in the ATL2 region agrees well between all experiments. As for ATL1,
experiment T-OI has the shallowest D-20, and the control experiment the deepest, with
the experiments involving the assimilation of altimeter data having D-20 at intermediate
depths.

In the central equatorial Atlantic (ATL3 region, Fig. 4e) both the seasonal cycle and
interannual variability are weak. The minimum of sea level in the middle of each year is
strongest in 1994 and weakest in 1996, but the difference is only 5 cm. The sea level from the
experiments that assimilate altimeter data agree closely, whereas experiment T-OI deviates
by more than 5 cm in particular in the spring of most years. The T-OI run shows the same
behaviour as the control, thus indicating that the seasonal cycle can not be corrected in
T-OI, presumably due to the lack of temperature data. The variations in D-20 show larger
differences than in the other regions. The three altimeter experiments are reasonably
consistent but differ by up to 20m from D-20 in the T-OI experiment. The pattern of
variability in D-20 in T-OI is less well correlated with that in the altimeter experiments
than is the case in the ATL1 and ATL2 regions. Since we know that assimilation of in situ
temperature only can damage the thermal structure in this region (Troccoll et al. 2000,
Segschneider et al. 2000b), there is scope for the altimeter-based analyses to provide a
better estimate of the oceanic state.
Figure 4: Sea level (a) and D-20 (b) averaged over the Atlantic-1 region, (c) and (d) for the Atlantic-2 region, and (e) and (f) for the Atlantic-3 region from experiments T-OI, ALT, T+A, and TA+TS.
In the equatorial Indian Ocean we introduce an index region, IND-1 defined as the area between 10° N/S, and 50° - 70° E. Fig 5a for this region shows that interannual variations of sea level are slightly larger than in the Atlantic. The variations are on the order of 10 cm for the sea level minimum in December, with lower than average values in 1996 and higher than average sea level in 1994. The agreement between the experiments is within a few centimeters with T-OI slightly too high. Variations of D-20 (Fig. 5b) are more dominated by a strong semianual cycle. The differences between experiments can be 10 m. To put that into context the interannual variations are on the order of 15 m (between 11/94 and 11/96).

Figure 5: Sea level (a) and D-20 (b) averaged over the IND-1 region from experiments T-OI, ALT, T+A, and TA+TS.

3.3 Salinity

The role of salinity in the framework of temperature assimilation at ECMWF is discussed by Troccoli et al. (2000). A brief discussion on the role of salinity when altimeter data are assimilated is given in Segschneider et al. (2000a, 2000b). Here we will briefly discuss salinity for the experiments in which both sea level and subsurface temperatures are assimilated. We show average salinity integrated over the upper 300m (S300), where most of the salinity variations occur, for the Niño-3 and Niño-4 regions in Fig. 6. Differences in the integrated salinity result in differences of sea level and therefore impact on the altimeter data assimilation. The treatment of salinity during the assimilation is as follows: in T-OI salinity is not updated at all, in experiment ALT and T+A salinity is updated using vertical shifts of the model background profiles based on sea level only, and in experiment TA+TS the TH99 scheme is used to correct salinity based on the analysed temperature.
Figure 6: Time series of Salinity averaged over the upper 300m for (a) the Niño-3 region and (b) the Niño-4 region from experiments T-OI, ALT, T+A, and TA+TS.

When temperature observations are assimilated together with sea level, the vertical structure of the temperature fields can be altered, and the salinity fields of experiment T+A (using salinity from CH) and TA+TS (using salinity from TH99) can be different.

Differences in S300 between the experiments are present but it is not straightforward to decide which of the 4 experiments performs best, as there is little salinity data for verification. In the Niño-3 region (Fig.6a) the integrated salinity of experiment T-OI is lowest, and quite similar in experiments T+A, and TA+TS. Experiment ALT has slightly higher salinity. In the Niño-4 region T-OI shows less variability than the three other experiments. The differences between the averaged salinity for all experiments are less than 0.1psu for both areas. This seems small but assuming an average temperature of 19°C and salinity of 35psu, this translates into a sea level difference of slightly more than 2cm (based on Table A3.1 in Gill, 1979).

4 Coupled Forecasts

The following section will mainly follow the outline given in Segschneider et al. (2000a). Our principal aim is to provide optimum initial conditions for coupled ENSO forecasts. By comparing four sets of forecasts started from the experiments T-OI, ALT, T+A, and TA+TS the impact of the different assimilation methods on predicted SSTA (SST anomaly) is investigated. Two new sets of coupled forecasts were performed in addition to those discussed in Segschneider et al. (2000a), each set consisting of 100 forecasts over six months.
In all cases the same version of the atmospheric model was used (Cy15r8). One set of forecasts was initialised from the ocean analysis in which temperature and altimeter data were assimilated (coupled experiment named C-T+A), and a second set from the ocean analysis in which the T-S correction scheme was additionally applied (coupled experiment named C-TA+TS). Forecasts initialised from the assimilation of subsurface temperatures only (C-OI) and the assimilation of altimeter data only (C-ALT) are used as a reference. These two experiments are the same as discussed in Segschneider et al. (2000a). The improvements of C-OI and C-ALT with respect to the control forecasts which were started from an ocean analysis without subsurface data assimilation have already been demonstrated (Segschneider et al., 2000a) and therefore the control forecasts are not shown here. In the following, we will investigate whether the combined assimilation of subsurface temperatures and sea level, and the additional correction of the salinity field using the TH99 scheme, can further improve the forecasts.

For each experiment, five-member ensembles were started on the first of January, April, July, and October of the years 1993 to 1997. The ensembles were created by perturbing the SST of the initialising ocean analyses over predefined areas in the tropical Pacific. Although a fully dynamical coupled model is used to perform the forecasts, only the predicted SST in the Pacific will be discussed. This is mainly because we expect the largest impact from the data assimilation on the forecasts in this area, where the signal to noise ratio of interannual SST variations is relatively high. We will not address the prediction of atmospheric parameters such as precipitation which would require larger ensemble sizes.

Because we use a fully coupled model without flux correction, our model SST drifts. A linear estimate of this drift is computed a posteriori and subtracted from the predicted SST as discussed in Stockdale (1997). The drift is computed separately for the forecasts that are started in January, April, July, and October. Here we will discuss the differences of the drift between the various coupled experiments for the EQ-2 region (Fig.7). The drift is smallest for experiment C-ALT for all start-months, and largest for experiment C-OI. The difference in the drift between C-OI and C-ALT after six months varies from 0.5° C for July-starts up to 0.9° C for October-starts. The initialization from the combined temperature and sea level ocean experiments results in intermediate drifts for experiment C-T+A and C-TA+TS. The impact of the TH99 scheme on the model drift is negligible, as the drift is very similar in experiments C-T+A and C-TA+TS. It is not a priori clear why the assimilation of the altimeter data alone in experiment C-ALT results in the smallest drift. Although it is desirable to have as little drift as possible, it is not necessarily the case that a smaller drift in C-ALT results in better forecasts than for the other experiments as will be shown below.

The traditional measures of forecast skill, rms-error and anomaly correlation coefficient (ACC), are shown in Fig.8 for experiments C-OI, C-T+A, and C-TA+TS as average over the EQ-2 (a,b), Niño-3 (c,d), and Niño-4 (e,f) regions. In Segschneider et al. (2000a) it was found that experiment C-OI (plus signs) performed best in terms of rms-error and ACC compared to the control forecasts and the altimeter initialized forecasts. Any improvement of the skill from the combined assimilation of temperature and sea level in C-T+A, and the additional application of the TH99 scheme in C-TA+TS, should therefore be measured against C-OI.
Figure 7: Ensemble average of the coupled model drift averaged over the EQ-2 region (130°W to 170°W, 5°S to 5°N) for experiments C-OI, C-ALT, C-T+A, C-TA+TS for forecasts started in (a) January, (b) April, (c) July, and (d) October.

For the rms-error in the EQ-2 region (Fig. 8a) such an improvement is not evident: all coupled experiments give very similar results. The deviations between them are less than 0.05°C even for a lead time of six months and are much smaller than the individual standard deviations which are on the order of ±0.25°C (shown by the vertical bars). The ACCs of all coupled experiments are on the order of 0.8 for six months lead, and are clearly better than for the persistence forecast (thin dashed line). The ACCs are very similar for all experiments (Fig. 8b). In the Niño-3 region the differences between the experiments are slightly larger for both rms-error (0.1°C, Fig. 8c) and ACC (Fig. 8d). Experiment C-TA+TS gives higher correlations than C-OI and C-T+A by almost 0.1 for lead times of 4-6 months. The rms-error is also smallest in C-TA+TS, but improvements are less clear than for the ACC. In the Niño-4 region where SST-variations are smaller than in the eastern equatorial Pacific, deviations between the experiments are again small for both rms-error (Fig. 8e) and ACC (Fig. 8f). According to a Wilcoxon-Mann-Whitney test, however, none of the differences is significant at a level of confidence of more than 70%.

The next skill measure is what we define as the relative performance of pairs of forecast sets. A set of forecasts is 'better' if it is closer to the observed SSTA by more than a specified threshold value, which here is chosen to be 0.3K. The basic motivation to define this skill-
Figure 8: Ensemble average of the rms-error (left column) and the anomaly correlation coefficients of the ensemble mean (right column) averaged over (a,b) the EQ-2 region (130°W to 170°W, 5°S to 5°N), (c,d) the Niño-3 region (90°W to 150°W, 5°S to 5°N), and (e,f) the Niño-4 region (150°W to 170°E, 5°S to 5°N) for experiments C-OI (plus signs), C-T+A (diamonds), and C-TA+TS (triangles). The thin dashed line shows the persistence forecast. The symbols are offset to allow better readability.

measure is that for some applications of El Niño forecasts it might be more important to know which forecast system is closest to the observations on most occasions rather than how the rms-error for the whole set of forecasts performs. For instance so-called weather derivatives are based on the number of days when the temperature exceeds or falls below a certain value, in which case an insurance company will pay an amount of money which
can be used for instance by a brewery to reduce losses in a colder than average summer when the biergardens are empty. For such a product it is of no importance how wrong or right a forecast is, but only whether the temperature is correctly predicted above or below that threshold.

Figure 9: Relative performance of the coupled experiments for the areas (a) Niño-1/2 (80° W to 90° W), Niño-3 (90° W to 150° W), Niño-4 (150° W to 160° E), and (b) EQ-1 (90° W to 130° W), EQ-2 (130° W to 170° W), and EQ-3 (170° W to 150° E). In all regions the latitudinal extent is 5° S to 5° N except in Niño-1/2 where it is 10° S to the equator. A forecast is considered better if it is more than 0.3K closer to the observed SSTA. Solid bars compare experiment C-T+A to C-TA+TS, and empty bars C-OI to C-TA+TS. Shown is the number of better minus the number of worse forecasts. Bars in the negative range mean that C-TA+TS performed on average better, bars in the positive range that it performed worse.
Such a measure is given in Fig.9 for 6 regions in the equatorial Pacific. It is of interest that, while the Niño regions and the EQ regions cover almost the same equatorial belt, longitudinal shifts of the boxes can sometimes result in significantly different skill estimates. First, experiments C-OI and C-TA+TS are compared (empty bars), that is the impact from the additional assimilation of sea level observations and the correction of salinity compared to the assimilation of temperature data only. On average C-TA+TS performs better than C-OI for lead times of more than 3 months, with exceptions for a lead time of 6 months in EQ-2 and Niño-1/2. On shorter lead times, C-OI performs relatively better compared to the longer lead times (e.g. C-OI is better than C-TA+TS in the EQ-1, EQ-2, and EQ-3 regions for up to 2 months ahead). Second, experiments C-T+A and C-TA+TS are compared (solid bars), that is the impact of the TH99 correction of salinity is estimated. Fig.9 a,b show that for almost all areas and lead times, C-TA+TS performs better than C-T+A. This implies that a good simulation of the salinity field is required to make optimum use of the altimeter data.

In the next approach, we compare 3-month means of predicted and observed SST anomalies averaged over the Niño-3 region (Fig. 10) and Niño-4 (Fig. 11). 3-month means represent seasonal averages. Shown are experiments C-OI (plus signs), C-T+A (diamonds), and C-TA+TS (triangles). Figures 10 a,b and 11 a,b show the individual ensemble members, for (a) 1-3 months lead time and (b) 4-6 months lead time. Figures 10 a,b and 11c,d show the ensemble averages for (c) 1-3 months and (d) 4-6 months lead time. The thin line is the 3-month running mean of the observed SST anomaly relative to the 1950-1979 climatology.

Given that we use a probabilistic forecast system, one method to declare a forecast right or wrong is to check whether the ensemble of predicted values includes the observed SSTA. We will start with the Niño-3 region and 1-3 month lead time (Fig. 10a). Even though in general, the fit between predicted and observed SSTA is fairly close, for most of the time none of the forecast experiments satisfies this objective. One possibility is that the ensemble spread of the forecasts which is generally less than $0.3^\circ C$, is too small for short lead times. We hope that this will be improved in the next generation forecast system by using new mechanisms to generate the ensemble.

For 4-6 month lead time (Fig. 10b) the ensemble spread for Niño-3 SSTA forecasts is generally on the order of $1^\circ C$ and thus considerably larger than for 1-3 month lead, but so is the forecast error. It is therefore not a priori clear whether the range of the predicted SST includes the observed SST more often for longer lead times. We counted the number of forecasts for which the range of the ensemble of predicted SSTA includes the observed SSTA based on Fig. 10a,b. For 1-3 months lead the observed SSTA is covered for 9 forecast dates in experiment C-OI, for 7 dates in C-T+A, and in only 4 cases for C-TA+TS. For 4-6 month lead the distribution is 8 : 9 : 12 (C-OI : C-T+A : C-TA+TS). The conclusion from this comparison is that for Niño-3 SSTA forecasts, C-OI performs best for shorter leads and C-TA+TS for longer leads, which is consistent with the previous test.
Figure 10: 3-months means of predicted SST anomalies averaged over Niño-3 and observed SST anomaly for (a) ensemble members 1-3 months lead, (b) ensemble members 4-6 months lead, (c) ensemble mean 1-3 months lead, and (d) ensemble mean 4-6 months lead. + indicates experiment C-OI (offset -14 days), Δ experiment C-TA+TS, and diamonds experiment C-T+A (offset +14 days). The solid line is the observed SST anomaly.
Figure 11: as Fig.10, but for the Niño-4 region.
Ensemble averages of predicted SSTA for Niño-3 are shown in Fig. 10c,d and for Niño-4 in Fig. 11c,d. The ensemble averages of SSTA in the Niño 3 and Niño-4 regions are used to derive rates of false alarms and hit or missed events. The false alarms, and hit and missed events are defined as in Segschneider et al. (2000a): first, an event is defined as a 3-month average SSTA of more than ±1°C. A false alarm is defined as a predicted event when no event is observed, and when the forecast error of SSTA is larger than 1°C. An event is declared 'missed', if an observed event is underpredicted by more than 1°C, and declared 'hit' if it is predicted within ±0.2°C.

The following numbers are total numbers for Niño-3 and Niño-4, and 1-3 and 4-6 month lead. The hit rates distribute as 10 : 9 : 9 (again for C-OI : C-T+A : C-TA+TS), the false alarm rate as 2 : 1 : 0, and the missed events as 3 : 5 : 5. The number of false alarms is reduced in experiment C-TA+TS. The improvements for the two forecasts when false alarms occur (for Niño-3 and June 1995 and Niño-4 for November 1997, both 4-6 month lead) are only small, however.

5 Conclusions

In this paper we have described our first attempts to combine assimilation of altimeter and temperature profile observations in the framework of seasonal forecasting. Four sets of ocean analyses and coupled forecast experiments have been considered. Two of these were already discussed in Segschneider et al. (2000a) viz the assimilation of in situ thermal data only and the assimilation of altimeter data only. Our aim here is to assess the added value from combining altimeter data with our existing in situ temperature data assimilation system. Two new ocean analyses using the combined observations were performed that differed only in the way that salinity was estimated. In one experiment salinity is corrected based on each new temperature analysis and a preservation of the local T-S relationship, in the other based directly on the altimeter data, using vertical shifts of the background profile. These two different combined analyses can be thought of as the addition of altimeter data to two different in situ analysis systems, one of which adjusts salinity based on the temperature analysis and the local T-S relationship, and one of which makes no adjustment. The desirability of correcting salinity when updating temperature has nothing to do with altimeter data per se. Errors in the salinity field, however, can have an impact on the model sea level, and through that prevent an optimum use of the altimeter data.

In the Pacific, the differences between the four ocean analyses are usually quite small as measured by D20 and sea level. For both Niño-3 and Niño-4 the differences in D20 are generally less than 10m, which is considerably less than the scale of interannual variability which can be 70m in Niño-3 and 50m in Niño-4. The differences between OI with and without altimetry are generally less than 5m. The sea level differences in Niño-4 are proportionately larger than the D-20 differences: 5cm between experiments compared to interannual changes of 15cm. These differences may reflect changes arising from the different ways salinity is handled in the various experiments.

In the equatorial Atlantic Ocean the differences of upper ocean heat content between the four ocean analyses are larger than in the equatorial Pacific. In the equatorial Indian
Ocean, differences are of intermediate magnitude. Even if the altimeter provides good data coverage in the Indian and Atlantic ocean, the success of the assimilation of sea level observations relies on the subsurface temperature structure of the model that is used to project the sea level information onto the temperature field. In the equatorial Atlantic and Indian it is more difficult than in the Pacific to obtain even a sparsely observed state of the subsurface temperature field. This should improve in the near future: Observations from the PIRATA array already provide information of the subsurface temperatures in the tropical Atlantic, and observations from ARGO floats should become available in near real time soon.

We turn now to the impact on forecasts. To what extent does the additional assimilation of altimeter data impact the forecasts? To answer this, four extensive sets of coupled model forecasts were intercompared. The results show that the rms-error of the forecasts initialized from the combined assimilation of sea level and temperature data is comparable to that of forecasts that use only temperature data. This is only one measure of skill, however, and if one adopts other methods of assessment there are hints that the forecasts using altimeter and temperature data and the correction of salinity based on the preservation of the T-S relationship have higher correlation in the region Niño-3. Tests using hit and false alarm statistics and relative performance statistics also suggest improvement for this set of forecasts, especially at longer lead times.

The inclusion of altimetry leads to smaller improvement in forecast skill than we had hoped. Two caveats need to be borne in mind, however. It is likely that model error is a major contributor to forecast error. The same coupled model is used for all the experiments. If model error dominates, then improvements in the creation of initial conditions will not be allowed to show a proper impact on the forecasts. A second consideration is that basically the same OI scheme is used throughout for assimilating in situ data. If the decorrelation scales or other parameters or procedures of the OI are badly chosen then again the potential impact of adding altimetry will be reduced. Other experiments at ECMWF suggest that while the TAO array does a very good job of constraining the thermal structure when using the decorrelation scales used in this paper, there is emerging evidence that these scales are too large. If they were reduced then the altimeter might again have more impact than seen in this work.

Finally one might hope that the assimilation of sea level observations would improve the forecasts in the tropical Atlantic and Indian Oceans, where few direct temperature observations exist. However, it is not clear to what extent the forecast skill in these areas depends on the local subsurface temperature structure. For the equatorial Pacific there is evidence for such a connection, but for the Atlantic and Indian Ocean such dependence may be weak in most cases. We have not examined the SST forecasts in this region in detail but it appears that both predictability and skill are limited.

Acknowledgements

This work has been supported by the European Union Environment and Climate project DUACS (ENV4-CT96-0357) and the Centre National d’Etudes Spatiales (CNES). The alti-
ter products have been produced by the CLS Space Oceanography Division as part of the European Union Environment and Climate project AGORA (ENV4-CT9560113) and DUACS (ENV4-CT96-0357). The ocean model was provided by the Max-Planck-Institut für Meteorologie, Hamburg; ocean data assimilation software by the Bureau of Meteorology Research Centre, Melbourne; and coupling software by CERFACS, Toulouse.
REFERENCES

