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Abstract. Three phenomenological power law models for the permeabil-3

ity of porous media are derived from computational experiments with flow4

through explicit pore spaces. The pore spaces are represented by three di-5

mensional pore networks in sixty-three virtual porous media along with fif-6

teen physical pore networks. The power laws relate permeability to (i) poros-7

ity, (ii) squared mean hydraulic radius of pores, and (iii) their product. Their8

performance is compared to estimates derived via the Kozeny equation, which9

also uses the product of porosity with squared mean hydraulic pore radius10

to estimate permeability. The power laws provide tighter estimates than the11

Kozeny equation even after adjusting for the extra parameter they each re-12

quire. The best fit is with the power law based on the Kozeny predictor, that13

is, the product of porosity with the square of mean hydraulic pore radius.14
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1. Introduction

Flows of fluid through a porous medium are distinguished from flows through open15

bodies by spatially variable resistance arising from variations in the medium’s pore space16

geometry and topology that yields a steady flow. At pore-resolving scales a porous medium17

is a network of explicit, interconnected channels embedded in a solid medium. Critical18

parameters affecting resistance in pore spaces include typical radius of the pores, the19

length of a streamline between two points relative to the distance between the points,20

and the density of pores. Sample volumes ranging from 0.01-1000 cm3 are typical of21

laboratory pore space experiments with most at the lower end of the range. At macroscopic22

scales, porous media are usually represented as volumes with system states, e.g. velocity23

and hydraulic head, and parameters, e.g. permeability and porosity, defined piece-wise24

continuously at every point in the volume. Macroscopic resistance to flow is quantified25

by its approximate inverse, permeability, which is defined via Darcy’s law in terms of the26

ratio of fluid flux to the gradient of pressure within the fluid. Darcy’s law was established27

experimentally [Darcy , 1856] and later derived analytically by upscaling pore-network28

flows through homogenization, or volume averaging [Shvidler , 1964; Whitaker , 1999].29

Alternatives based on ensemble averaging have also been used to estimate permeability30

from pore-scale properties of porous media [Rubinstein, 1986].31

Although permeability is a well-established property of most relatively uniform porous32

media, its actual dependence on specific geometric and topological properties of porous33

networks is not fully understood. Phenomenological transfer functions have been devel-34

oped by soil physicists, hydrologists, chemical and petroleum engineers, and materials35
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scientists to estimate permeability from properties of porous media that are relatively36

easy to observe. A natural starting point is to suppose that a sample volume’s perme-37

ability is proportional to its porosity since the latter indicates pore density and is a good38

measure of the medium’s capacity to hold fluid. Yet this is not entirely satisfactory, since39

two porous media can have the same porosity but one may be entirely impermeable while40

the other offers minimal resistance to flow.41

Perhaps the best known phenomenological transfer functions are the Kozeny equa-42

tion [Kozeny , 1932; Carman, 1956; Bear , 1988] and the Kozeny-Carman equation [Car-43

man, 1939]. Kozeny derived his equation,44

k = c0nR
2, (1)45

by reasoning about flow through an idealized pore network: he equated the velocity given46

by Poiseuille’s law for flow through a bundle of capillary tubes to the specific discharge47

obtained from Darcy’s law and thus solved for permeability. He concluded that perme-48

ability, k, is proportional to the product of porosity, n, with the square of mean hydraulic49

radius, R, a measure of typical pore size. Hence, the Kozeny predictor, nR2, combines a50

factor, n, depending on the capacity of a medium to hold fluid with another, R, depending51

on the ability of the medium to transmit it. The dimensionless constant, c0, is known as52

the Kozeny coefficient. Carman [1939] extended (1) by including a factor of tortuosity, τ ,53

an index of the complexity of streamlines in the medium, and derived the Kozeny-Carman54

equation55

k = c′0nR
2/τ 2. (2)56
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Since permeability is a characteristic of a porous medium, (1) and (2) need to be properly57

scaled by fluid viscosity and density to relate a medium’s permeability to its saturated58

hydraulic conductivity with respect to a particular fluid.59

We follow Smolarkiewicz and Winter [2010], [SW10] for brevity, and determine per-60

meability computationally by simulating the basic elements of Darcy’s original experi-61

ment [Darcy , 1856] in three-dimensional networks of pores, allowing pore-scale processes62

to be observed in detail. Hyman et al. [2012], hereafter [HSW12], employed the techniques63

of [SW10] to study the influence of porosity on the degree of heterogeneity in steady state64

flows within stochastically generated three dimensional pore networks. [HSW12] reports65

technical aspects of modeling flow in explicit pore spaces and provides a Lagrangian per-66

spective of the pore space via particle tracking. That paper focuses on heterogeneity of67

microscopic flow field and its relationship to porosity, while this paper focuses on the68

continuum scale properties of permeability. They quantify the degree of heterogeneity in69

the flow and identify coherent heterogeneities in the flow field by tracking fluid particles70

and recording various attributes including tortuosity, trajectory length, and first passage71

time in media with porosities between 0.2 and 0.7.72

Here, the techniques of [SW10] are used to estimate overall permeability for each of73

seventy-eight small, O(1 cm3 ), sample volumes of porous media. Sixty-three realizations74

are drawn from ensembles of virtual pore spaces with porosities ranging from 0.19 to75

0.84, while the others are a volcanic tuff [Wildenschild et al., 2004], a column of glass76

beads [Culligan et al., 2004], and thirteen unique sandpacks, sandstones, and carbonate77

from Mostaghimi et al. [2013]. Virtual pore spaces are isotropic and statistically station-78

ary in space with permeabilities corresponding to a well-sorted gravel or sand [SW10];79
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[HSW12] demonstrated that the virtual media are large enough to constitute representa-80

tive elementary volumes. Their material properties appear consistent with those of the81

glass beads and tuff. Owing to the high resolution of the seventy-eight pore space samples,82

porosity and hydraulic radius can be directly evaluated.83

The computed permeability, porosity, and hydraulic radii of the virtual media are used84

to empirically estimate the Kozeny coefficient, c0. The estimate ĉ0 = 0.19 is in excellent85

agreement with Carman’s original value, c0 = 0.2, indicating the representativeness of the86

virtual pore spaces. Additionally, over a restricted range of porosities, 0.2 < n < 0.7, the87

analytically derived Kozeny and Kozeny-Carman laws are both reproduced reasonably88

well. The Kozeny equation (1) fits results from media with porosities in 0.2 < n < 0.789

fairly well and the Kozeny coefficient is within an interval later noted by noted by Carman90

[1956]. The Kozeny-Carman equation (2) also predicts permeability adequately within this91

limited range and the computed coefficient, c′0, is near that suggested by Carman.92

Yet the Kozeny equation is not entirely satisfactory as a predictor of permeability for93

the entire data set. Plotting the permeability data against the Kozeny predictor, nR2,94

reveals an obvious nonlinearity at large and small values of nR2 that is not captured by95

the linear (in the predictor) Kozeny model. Hence, scale-invariant power law alternatives96

depending upon porosity, n, the square of hydraulic radius, R, and the Kozeny predictor,97

nR2, that is their product, are derived and compared to the Kozeny equation. Focus is98

placed on the Kozeny equation and related power laws rather than the Kozeny-Carman99

equation because the tortuosity of the data is highly correlated with porosity and mean100

hydraulic radius.101
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The power law alternatives provide better fits to the physical and virtual data, although102

at the expense of adding an extra parameter, than does the Kozeny equation over the103

entire range of data. We attribute this to the ability of simple power laws to capture the104

nonlinear effects of pore space interconnectivity on permeability at extremes of porosity105

and mean hydraulic radius. This seems born out by a power law based on the Kozeny106

predictor, nR2, which yields a sum of squared errors for the virtual data that is significantly107

smaller than the errors of power laws based on porosity or mean hydraulic radius alone.108

Goodness of fit and model performance for these data are evaluated using a standard109

statistical technique, the Analysis of Variance, to gauge the relative advantage conferred110

by the additional parameter. The overall fit of the models to both real and synthetic data111

is evaluated and compared using chi-squared tests.112

Section 2 reviews previous studies to determine permeability computationally and places113

the present work within context of the previous studies. Section 3 describes simulations of114

pore networks and flow; computational methods for generating virtual porous media along115

with a characterization of the physical data (Section 3.1), numerical techniques for resolv-116

ing flow in the explicit pore networks (Section 3.2), and estimation of transfer function117

variables including porosity, hydraulic radius, tortuosity, and permeability (Section 3.3-118

3.4). A preliminary study to determine a proper grid resolution for the study is performed119

prior to derivations of the power law alternatives to the Kozeny equation (Section 3.5).120

Next the empirical pedotransfer functions are derived and evaluated (Section 4.1), and121

their ranges of applicability are discussed (Section 4.2). We finish with a summary of the122

experiment and offer a few remarks about the generality of the results in Section 5.123
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2. Background

Pedotransfer functions are mathematical or computational models used to estimate124

hydraulic soil properties, e.g. saturated hydraulic conductivity, on the basis of pedological125

data [Wösten et al., 2001; Schaap et al., 2001], and are commonly derived empirically using126

soil samples in continuum scale laboratory experiments where k, n, R, and τ are measured127

in bulk. Computational experiments with flow at the pore-scale allow these quantities to128

be observed in detail and generalized pedotransfer functions to be empirically derived at129

scales similar to those Kozeny and Carman considered but in more complicated networks.130

The Kozeny (1) and and Kozeny-Carman (2) equations are generalized pedotransfer131

functions for predicting permeability, a macroscopic soil property, derived analytically via132

considerations of microscopic pore scale dynamics (they are general in the sense that the133

predictors are not specific to a particular type of soil); Lebron et al. [1999] and Rawls134

et al. [2005] provide comparisons between (1), (2) and other pedotransfer functions.135

2.1. Permeability Based on Pore-scale Simulations

Computational solutions for the flow of a viscous fluid through an explicit pore space go136

back at least to Hasimoto [1959] who solved for flow in a periodic array (cubic) of spheres137

by deriving the fundamental solution to the Stokes equations using Fourier transforms.138

He also obtained an expression for drag by expanding the velocity profile in terms of the139

fundamental solution and its derivatives. Launder and Massey [1978] numerically solved140

the Navier-Stokes equations for flow through a periodic array of long cylinders with known141

geometric configurations. Sangani and Acrivos [1982a, b] and Zick and Homsy [1982]142

computed Stokes drag on slow flows in porous media composed of simple elements like143

spheres. Permeability has been estimated by simulating flow through more realistic pore144
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networks by Lemaitre and Adler [1990], Fourie et al. [2007], [SW10], and Mostaghimi et al.145

[2013] to name a few. Fourie et al. [2007] found good agreement between their numerical146

estimates and measured permeabilities for a small volume of coarse sand (0.81 mm on a147

side). Matyka et al. [2008] and [HSW12] found evidence for the existence of representative148

elementary volumes in simulated flows through realistic random pore networks. Meakin149

and Tartakovsky [2009] provide a current discussion of other methods for modeling flow150

in porous networks.151

The behavior of the Kozeny equation has been investigated through computational152

experiments with flow in random or fractal pore networks. Scaling arguments indicate153

good agreement between the Kozeny coefficient, c0, and data obtained from computational154

experiments with flow through networks based on Sierpinski carpets [Adler and Jacquin,155

1987]. On the other hand, Adler et al. [1990] found that the Kozeny coefficient is about156

half the standard value of 1/5 given by Carman [1939] when based on simulations of157

flow through random media with statistics like Fontainbleau sandstone. Lemaitre and158

Adler [1990] discovered that agreement between observed and theoretical values of the159

Kozeny coefficient varied according to the porosity of networks they simulated: the Kozeny160

equation did not hold for random media at relatively high or low porosities (in the latter161

case, close to the percolation threshold they used to generate random media), nor did it162

hold for media generated from regular fractals when the largest pores were held constant as163

resolution was increased. The simulations performed in this paper also indicate nonlinear164

behavior of permeability at high and low porosities, and also at extremes of mean hydraulic165

radii.166
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2.2. Physical Evidence for Kozeny Equation

The Kozeny and Kozeny-Carman equations have been validated and verified in experi-167

ments with flow through physical media composed of arrays of glass beads, other shapes168

like rods, and natural porous media [Carman, 1956; Bear , 1988]. Soil scientists have169

shown that (1) and (2) provide estimates of permeability that are superior to some other170

soil transfer functions [Chapuis and Aubertin, 2003; Dvorkin, 2009]. The estimate given171

by Carman [1939] of c0 = 1/5 for the Kozeny coefficient seems adequate for media in172

a middle range of porosity (0.2 < n < 0.7) [Xu and Yu, 2008]. In some circumstances173

high correlation between tortuousity and porosity makes the simpler Kozeny equation a174

cost-effective alternative to the Kozeny-Carman equation [Koponen et al., 1996].175

The Kozeny and Kozeny-Carman equations have been found, however, to yield poor176

estimates of permeability at the extremes of porous medium types: either when total fluid177

discharge through a porous medium is negligible or at the other extreme where the effect178

of the medium on the overall flow is local and small [Kyan et al., 1970; Xu and Yu, 2008].179

These results are consistent with the pore-scale computational experiments of Lemaitre180

and Adler [1990] mentioned above and the experiments reported here. Heijs and Lowe181

[1995] found that the Kozeny-Carman equation predicted the permeability of a particular182

random array of spheres well (porosity n = 0.6), but failed to do so in a soil sample that183

had porosity near one. Sullivan [1942], Kyan et al. [1970], Davies and Dollimore [1980]184

and Xu and Yu [2008] all note that the Kozeny coefficient varies nonlinearly with porosity185

and most significantly at its extreme values.186
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2.3. Alternatives to Kozeny Equation

Efforts have been made to compensate for these weaknesses by modifying the Kozeny187

and Kozeny-Carman equations. The Kozeny-Carman equation has been expanded to188

include effective porosity [Koponen et al., 1997], percolation threshold and geometric189

properties of the pore network [Nabovati et al., 2009], and fractal geometry [Xu and Yu,190

2008]. However Schaap and Lebron [2001] found that modifications do not always improve191

on estimates given by (1) and (2). Revil and Cathles [1999] derive a power-law relation,192

k ∝ d2n3m, (3)193

between permeability of a clay-free sand, k, and grain diameter, d, and porosity, n, based194

on an electrical cementation exponent, m, that reflects the connectivity of the pore space.195

Their method depends on the Archie relationship [Archie, 1942],196

n = Fm, (4)197

that expresses porosity as a power of an electrical formation factor, F , whose reciprocal198

quantifies the effective interconnected porosity of a porous medium. Values of m vary199

between 1 and 4 according to Sen et al. [1981]. Revil and Cathles [1999] derive power200

laws for permeability of a pure shale and sand-shale mixtures in a similar way with the201

specific value of m depending on the porous material. Jacquin [1964] quoted in [Adler202

et al., 1990] found evidence for203

k ∝ n4.15 (5)204

for samples of Fontainbleau sandstone. Lemaitre and Adler [1990] indicate that perme-205

ability behaves like a power of porosity near the percolation limit (the value of porosity206

below which there are no continuous pore channels through one of their realizations) of207
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the random porous media they construct. Other variants of the Kozeny equation that208

depend solely on porosity have been proposed by Nielsen et al. [1984] and Ahuja et al.209

[1989].210

In sum, estimates of permeability based on the Kozeny and Kozeny-Carman equations211

are reasonably accurate when applied to an intermediate range of porosities. This is true212

for simulations based on pore-scale flows and physical experiments at laboratory scales.213

For low porosity porous media like the Fontainbleau sandstone, shales, or sand-shale mix-214

tures, however, estimates of permeability based on the Kozeny equation are frequently215

inaccurate, probably because linear dependence on porosity and the square of mean hy-216

draulic radius (R2) does not completely capture the detailed effects of interconnectivity217

within a pore network. When interconnectivity is accounted for by means of a formation218

factor, permeability is fairly well captured by a power law based on porosity. The effect219

that (squared) mean hydraulic radius has on permeability is not as well-established in the220

literature as the effect of porosity. Revil and Cathles [1999] include it as a linear factor in221

the porosity-based power law that they propose.222

3. Simulation of Pore Network Flow and Permeability

First we provide the methods used to generate the virtual porous media and describe223

the physical data samples. Next, the procedure used to numerically integrate the Navier-224

Stokes equations within the explicit pore spaces is sketched, (see [SW10] for a complete225

description). Last, we detail the methods for observing and estimating variables of the226

pedotransfer functions.227

3.1. Porous Media
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The seventy-eight three dimensional porous media used as data sets for this study228

are comprised of a volcanic tuff, a column of glass beads, thirteen unique sandpacks,229

sandstones, and carbonates provided in Table 2 of Mostaghimi et al. [2013], and sixty-230

three realizations drawn from ensembles of virtual porous media with specified expected231

geometry and topology.232

3.1.1. Virtual Porous Media233

Each virtual porous medium is a three-dimensional pore space with sides of length234

Lx = Ly = 1.27 cm, height Lz = 2.55 cm, and volume V = 4.11cm3 with individual pore235

areas typically 1-10 µm2 at a horizontal cross section. Level-set percolation [Alexander236

and Molchanov , 1994; Alexander , 1995] is used to generate realizations of porous media237

from underlying random topographies.238

To generate each virtual pore space realization, independent identically distributed ran-239

dom values are sampled uniformly on the interval [0, 1] and one value, fi, is assigned to240

each node, i, on a three-dimensional grid. Correlated random topographies are gener-241

ated from fi using three different methods. In the first method, fi is convolved with242

a symmetric Gaussian kernel to generate an isotropic correlated random topography by243

transforming fi into frequency space, multiplying it by a Gaussian function, and then244

transforming it back into real space. The correlation length of this random topography is245

determined by the standard deviation of the Gaussian function which is fixed at σ = 0.01;246

see [HSW12] for details of this method. In the second method, a uniform kernel is ap-247

plied by uniformly weighting every point in a cube centered on x with sides of length248

l = 4. In the third method the random field fi is low-pass filtered using m consecutive249

applications of the tensor product f flt = f fltx ⊗ f flty ⊗ f fltz; see [SW10] for details of250
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this method. Here, the symmetric weighting operator sweeps over fi four times, m = 4.251

Values of σ = 0.01, l = 4, and m = 4 are chosen so the correlation lengths of realizations252

are approximately the same, ∼ 0.05 cm. Since the convolution kernels have unit L2 norm253

the convolutions do not change the expected value or range of the topographies. More-254

over, the central limit theorem implies that all three methods yield topographies whose255

elements are approximately Gaussian.256

A pore space realization is derived by applying a level threshold, γ ∈ [0, 1], to each257

node value in the topography. If the value at the node is greater than γ, then the node258

is placed in the solid matrix, otherwise it is in the void space. For physical intuition, γ259

can be thought of as a control parameter which determines the expected porosity of a260

pore space realization (Fig. 1), the exact linear relationship between the two is given in261

Section II. A of [HSW12]. As γ increases, porosity and hydraulic radius also increase, while262

tortuosity decreases (Table 1). The result of applying this level set percolation method is263

a statistically stationary pore volume in the sense that the finite-dimensional probability264

distributions of pore space membership are invariant with respect to translation in space.265

The level threshold determines the flow volume, the geometric properties of porosity and266

mean hydraulic radius, and topological properties such as the number of connected pore267

channels and number of connected solid components. Another topological effect of the268

level threshold is revealed by the existence of a percolation limit for topographies generated269

by a given kernel, a threshold below which no amount of pressure will drive significant270

flows through a pore space realization. At high values of the threshold parameter the flow271

regime resembles slow flow around disconnected bodies with Reynolds numbers ranging272

between 1 and 2.273
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3.1.2. Physical Porous Media274

The tuff data comes from a 0.34cm3 sample volume with porosity 0.37 [Wildenschild275

et al., 2004], and the glass beads are from a sample volume of 0.032cm3 with porosity276

0.31 [Culligan et al., 2004]. Horizontal cross sections of these physical media are shown277

in Fig. 2. Mostaghimi et al. [2013] obtain binarized three dimensional rock images of six278

sandpacks, five sandstones, and two carbonantes using micro CT imaging, and determine279

the permeability of the thirteen samples by numerically solving the Stokes equations in280

the void space to attain steady state flow and pressure fields and then inverting Darcy’s281

law. The samples’ porosity, specific surface, and permeability are provided in Table 2282

of Mostaghimi et al. [2013].283

3.2. Computational Fluid Dynamics

Flow in the virtual media is simulated by numerically solving the incompressible Navier-284

Stokes equations on a Cartesian domain with dimensions Lx = Ly = 1.27 cm and Lz =285

2.55 cm, and volume V = 4.11cm3. The grids have 128 nodes in the horizontal directions286

and 256 in the vertical direction. Computational limitations require that sub-volumes287

of the beads and tuff be extracted from the center of the entire sample. Each medium,288

whether virtual or physical, is periodic in the vertical direction with no flow allowed289

across lateral boundaries. The real media are reflected across a horizontal plane to create290

periodic boundaries in the vertical; Siena et al. [2012] demonstrated that this reflection291

does not affect results.292

The multi-scale computational fluid dynamics modeling system EULAG [Prusa et al.,293

2008] is used to solve the governing Navier-Stokes equations for water flow, as in [SW10]294

and [HSW12], and the three components of velocity and pressure gradient are computed295
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at every point within each porous medium. The EULAG system accommodates a broad296

class of flows and underlying fluid equations in a variety of domains on scales ranging from297

wind tunnel and laboratory [Wedi and Smolarkiewicz , 2006; Smolarkiewicz et al., 2007;298

Waite and Smolarkiewicz , 2008] through terrestrial environments and climate [Grabowski299

and Smolarkiewicz , 2002; Abiodun et al., 2008a, b; Ortiz and Smolarkiewicz , 2009], to300

stellar [Ghizaru et al., 2010].301

3.2.1. Immersed Boundary Method302

The crux of our computational approach for simulating flows in porous media is an303

immersed-boundary method [Peskin, 1972; Mittal and Iaccarino, 2005] that inserts ficti-304

tious body forces into the equations of motion to mimic the presence of solid structures305

and internal boundaries. The resulting dynamics are such that velocity is negligible and306

pressure irrelevant within the solid matrix where the body forces are high. The particular307

technique employed is a variant of feedback forcing [Goldstein et al., 1993], with implicit308

time discretization admitting rapid attenuation of the flow to stagnation within the solid309

matrix in O(δt) time comparable to the time step δt = 5 × 10−5 seconds of the fluid310

model. The flow simulations are run for 5 × 10−2 seconds with steady state conditions311

reached in 2 − 3 × 10−2 seconds. The complete description of this methodology for re-312

solving flow in explicit pore networks along with comparisons to other available methods313

are in [SW10], [HSW12], and Siena et al. [2012]. Nonetheless, the concept behind this314

method is provided for the reader’s convenience.315
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Since we focus on gravity-driven flows of a homogeneous incompressible fluid (e.g. wa-316

ter) through a porous medium, the Navier-Stokes equations are,317

∇ · v = 0, (6)318

∂v

∂t
+ v · ∇v = −∇π′ + g′ + µ4v − αv.319

The primes refer to perturbations with respect to static ambient atmospheric conditions320

characterized by a constant density, ρ0, and pressure, p0 = p0(z), so π′ = (p− p0)/ρ and321

g′ = (0, 0,−gρ′/ρ) where ρ = const� ρ0 denotes the density of fluid and g is gravitational322

acceleration, g = 9.81 m/s2. The kinematic viscosity of water, µ, is 10−6 ms−2.323

The last term on the right hand side of the momentum equation is the fictitious re-324

pelling body force of the immersed-boundary method, with a non-negative time scale325

α−1(x) = 0.5δt and the corresponding inverse time scale α(x) = 0 within the solid and326

fluid, respectively. Intuitively, setting α(x) = 0 within the fluid admits Navier-Stokes327

flows away from the solid boundaries, while requiring α(x)→∞ within the solid assures328

v→ 0 there.329

Unlike other immersed boundary methods, the pore space boundaries are aligned with330

grid nodes and the resulting media are simulated only with first-order accuracy in space.331

However, the macroscopic uncertainty of microscopic pore structure greatly exceeds nu-332

merical inaccuracies in the detailed representation of internal boundaries. Therefore, the333

first order approximation of a porous medium is adequate, at least for determining sta-334

tistical bulk properties of the media and flow.335

3.3. Variables for Transfer Functions
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Porosity,336

n = VP/V , (7)337

is the ratio of void volume, Vp, over bulk volume, V , and measures the relative capacity338

of a porous medium to hold water. Mean hydraulic radius,339

R = VP/Ai, (8)340

is the ratio the void volume over the total interstitial area between the pore space and341

the solid matrix, Ai, and indicates the average level of connectivity in the network.342

The tortuosity,343

τ(a, b) = lS/l, (9)344

of a fluid particle trajectory connecting two points a and b is the ratio of the trajectory345

length, lS, over the Euclidean distance between its end points, l = ||a − b||, hence 1 ≤346

τ(a, b) < ∞. A number of alternate definitions are in use including τ 2, τ−1, and τ−2347

[Bear , 1988]. The average tortuosity,348

τ̄ =
1

N

N∑
i=1

τ(ai, bi), (10)349

is taken over a sample of i = 1, ..., N tortuosities, τ(ai, bi), each of which is derived350

from a particle trajectory that percolates through the entire medium. To determine the351

trajectory of a fluid particle, we follow [HSW12], and use every node in the void space352

at the top horizontal cross section as an initial position for a particle. To minimize the353

underestimation of tortuosity, only particles that percolate through the entire domain354

are included in the calculation of average tortuosity. The trajectory length, lS, for every355

particle that percolates through the entire domain is used to compute tortuosity (9) and356

D R A F T March 21, 2013, 9:34am D R A F T



HYMAN, SMOLARKIEWICZ, WINTER: PEDOTRANSFER FUNCTIONS FOR PERMEABILITY X - 19

the average tortuosity for a pore space realization (10), cf., Section III. B of [HSW12] for357

a complete discussion.358

[HSW12] and Matyka et al. [2008] both demonstrated that average tortuosity (10) is359

underestimated if the extent of the observation domain through which particles are tracked360

is not sufficiently large. Furthermore, as the extent of the observation domain increases the361

dependence on the extent of the domain decays exponentially, fluctuations in the computed362

values diminish, and a representative elementary volume with respect to tortuosity is363

observed for random virtual media.364

Linear correlations among porosity, hydraulic radius, and tortuosity are significant365

across the entire data set (Table 2). The porosities of the glass beads and tuff are com-366

parable to porosities for virtual media generated using the lowest value of the threshold367

parameter. Tortuosities and hydraulic radii of the beads and tuff are also comparable to368

those observed in the least permeable realizations of virtual media. The permeabilities369

and hydraulic radii of the data provided in Mostaghimi et al. [2013] are two to four orders370

of magnitude smaller than the stochastically generated pore networks used to derive the371

power laws, but have porosities comparable to the lower end of the synthetic media.372

3.4. Permeability Estimates

Experimental estimates of permeability are obtained by applying Darcy’s Law to the373

results of computational experiments with saturated pore spaces at steady state. By374

observing the pressure drop, ∆p, and discharge of water, Q, from a column of sand of375

length L and cross-sectional area A, Darcy, [Darcy , 1856], established that discharge per376

unit area, Q/A, is proportional to the average pressure gradient, ∆p/L, once steady-state377
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is reached,378

Q

A
= − k

µρ

∆p

L
. (11)379

The constant combines fluid density, ρ, and kinematic viscosity, µ, with permeability,380

k, a material characteristic of a porous medium; the ratio K = k/(µρ) is the saturated381

hydraulic conductivity of water according to Darcy.382

Here, the permeability of each column of porous material bounded by solid walls on the383

lateral sides is estimated using the steady state velocity field, v = (u, v, w), and associated384

pressure field, p, of a fluid moving predominantly in the vertical direction. The total flux385

at a cross section of height z is estimated by386

Q(z) =

∫
A

w(x, y, z)χ(x, y, z)dxdy, (12)387

where χ is the characteristic (indicator) function within the porous material, χ(x, y, z) = 1388

in the void space and χ(x, y, z) = 0 in the solid matrix. The total pressure is converted to389

hydraulic head, h = (p− po)/(ρg) + z − zo, where po is a reference pressure at the datum390

zo and g is gravitational acceleration, and then the average hydraulic head at each cross391

section is estimated as392

H(z) =
1

n(z)A

∫
A

h(x, y, z)χ(x, y, z)dxdy, (13)393

where n(z) is the porosity of the cross section at the level z. Expressing (11) in terms of394

(12) and (13) and rearranging terms, the permeability at each cross section is estimated395

k(z) = −µ
g

∫
A
w(x, y, z)χ(x, y, z)dxdy

∆{[n(z)]−1
∫
A
h(x, y, z)χ(x, y, z)dxdy}/L

. (14)396

Because the dominant direction of flow is perpendicular to the cross sections, the average397

equivalent permeability for the entire sample is the harmonic average of the cross section398
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permeabilities399

ke = Lz

∫
Lz

1

k(ζ)
dζ

−1 . (15)400

In practice, the support volume of this procedure is the horizontal cross section of each401

column with a vertical extent of three vertical grid levels. This volume is used to compute402

a second order accurate centered difference approximation of the hydraulic gradient in the403

vertical direction and the total flux (12) at each horizontal cross section.404

3.5. Grid Resolution

In order to select a practical resolution for large numbers of flow simulations, a prelim-405

inary investigation is performed to determine how variations in grid resolution influence406

the observed Darcy flux, q = Q/A (11), and estimated permeability, ke (15). Because the407

generation procedure of virtual media depends on the grid, a physical sample with fixed408

resolution is used to assess the grid resolution effects. Using a sub-volume of the column409

of glass beads, whose physical characteristics are discussed in Section 3.1.2, the grid is410

refined and coarsened to four different levels. Linear interpolation is used to map the data411

set between varying grid resolutions. Table 3 displays grid dimensions, discretization step412

size, δx, mean Darcy flux,413

q̄ ≡ 1

Lz

∫
Lz

q(ζ)dζ, (16)414

average relative deviation from mean Darcy flux, Dev q, estimated permeability, ke, aver-415

age relative deviation from estimated permeability, Dev ke, average tortuosity (10), and416

the variance of tortuosities for all four resolutions. Dev q and Dev ke are defined as417

Dev q ≡ |q̄ − q(z)|/|q̄| and Dev ke ≡ |ke − k(z)|/|ke|, (17)418
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respectively, where the over-bar on the right hand side denotes vertical average as in (16).419

Since the flow system is at steady-state, conservation of mass dictates that Dev q should420

be zero. On the other hand, Dev ke is not similarly constrained and finer resolutions should421

yield better estimates of variations in permeability. The mean Darcy flux and estimated422

permeability are about the same for all grid resolutions; whereas the values of Dev q are423

relatively low, showing that conservation of mass is approximately satisfied, and improves424

with grid resolution, approaching first order asymptotic convergence as pointed out in the425

last paragraph of Section 3.2. The decreasing differences in average tortuosity and the426

convergence of the variance of tortuosity at finer grid resolution also indicate that the427

local flow field is better resolved with the finer mesh.428

We supplement our convergence study for the integral characteristics of the Darcy flows429

with a local convergence study for three randomly selected and substantially separated430

locations in the vertical. Table 4 displays grid discretization size and the L2 difference431

between the probability distribution functions (pdf) generated by each component in the432

velocity vector, (u, v, w), and the pdfs generated by velocity components at the finest433

resolution. For each of the velocity components at all three levels the relative error from434

the finest mesh resolution solution exhibits the aforementioned first order convergence.435

Moreover, the error between finest and second finest resolution is small. Therefore, we436

select the second most refined grid, δx = 1.e−4m, for computational affordability.437

4. Generalized Pedotransfer Functions

The data consist of triples (ki, ni, Ri) for each of the i = 1, . . . , 63 virtual pore spaces.438

Models, whose parameters are fitted through least squares, produce an estimate, k̂i =439

k̂(ηi), of permeability with η referring to n, R2, or nR2. To evaluate the performance of440
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the models the independent real media data are withheld from the fitting and used to441

evaluate the goodness-of-fit through plots and overall chi-squared tests.442

4.1. Empirical Pedotransfer Functions

When the data are fitted to the Kozeny equation (1), the Kozeny coefficient is c0 = 0.19,443

which is essentially the same as Carman’s original value of 1/5 [Carman, 1939] and falls444

within the range [1/6, 1/2] that he gave later [Carman, 1956]. However, the relationship445

between permeability and the Kozney predictor is nonlinear over the ranges of sample data446

(Fig. 3). The Kozeny equation captures the basic rising trend of permeability with the447

Kozeny predictor, nR2, but the requirement that the model goes through the origin, which448

is a necessary condition for a physically consistent law, constrains the performance of the449

Kozeny equation. The best fit linear model to these data, which is not shown, has a linear450

correlation of 0.9, but it does not go through the origin. The nominal 95% confidence451

intervals for the Kozeny equation are so wide that they easily include the independent452

real data. Confidence intervals are nominal in the sense that classic statistical formulae453

are used to calculate them, but the data do not meet independence and distributional454

criteria for statistical hypothesis testing. Nonetheless, the confidence intervals are useful455

for comparisons. For these purposes, a useful confidence interval is narrow, yet includes456

nearly all the data.457

A better fit to the data can be attained using nonlinear models based on porosity n,458

hydraulic radius R2, and their product nR2. Three power law models to predict perme-459

ability, k̂(η) = a(η)b, are derived and compared to the linear Kozeny equation. The free460

parameters a and b are fitted using the nonlinear fit module in MATHEMATICA [Wol-461

fram, 1999]. Due to the high correlation of tortuosity τ with n and R2, τ is not used as462
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a predictor variable in the power laws. All three power laws capture the nonlinear trend463

of the data and their confidence intervals are fairly tight including the independent real464

data (Fig. 4-6).465

The sum of squared departures of the simulated data, k̂, from the model estimates,466

s2d =
Ns∑
i=1

(k̂i − ki)2, (18)467

is the total variability in the data that is not accounted for by the models where Ns is468

the number of samples (Ns = 63 for this data set). The sum of squared departures of the469

Kozeny equation is an order of magnitude greater than those of the power laws (Table 5).470

The additional parameter is one reason the power laws perform better than the Kozeny471

equation. A statistical method, the Analysis of Variance [Mood et al., 1963], takes this into472

account by weighting the sum of squared departures with P , the number of parameters473

in the model, and comparing it to the model sum of squares,474

s2M =
Ns∑
i=1

(k̂i − 〈k〉)2, (19)475

weighted by Ns − P , the degrees of freedom remaining in the sample after accounting for476

the parameters. The model sum of squares reflects the ability of the model to capture the477

structure of the data as departures from the sample mean, 〈k〉. The ratio,478

F =
s2M/P

s2d/(Ns − P )
, (20)479

can be used to compare models: the larger is F , the better is the fit of the model. The480

F ratios of the predictor power law is about four times greater than that of the Kozeny481

equation despite the additional parameter (Table 6). The F ratios for the power laws482

based solely on n or R2 are triple and double that of the Kozeny equation.483
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4.2. Range of Applicability

Porous media may fall into three classes. The first class consists of ordinary porous484

media with porosities in the approximate range 0.2 < n < 0.7. In these cases, porosity485

is primary in the sense that it arises from voids in the material of the medium. In the486

second class there are barely permeable media with low porosities, n < 0.2. Often such487

media are composed of nearly solid rock with secondary channels arising from external488

mechanical or thermal stresses [Davis , 1988]. In these cases flow often corresponds to flow489

through a collection of discrete, sparsely connected pipes. Finally, the third class consists490

of highly permeable media where flow is similar to slow flows with obstructions that are491

relatively widely spaced, for instance fluidized beds. The porous media investigated here492

fall into either the first or third class.493

When restricted to media of the first class, porosities 0.2 < n < 0.7, a version of the494

Kozeny equation495

k = 0.35nR2, (21)496

provides reasonable estimates of permeability in agreement with the conclusions of Xu497

and Yu [2008]. In this range, the model (21) also provides a close fit to the real data498

(Fig. 7). Moreover, the computed Kozeny coefficient, c0 = 0.35, is within the range499

1/6 < c0 < 1/2 given by Carman [1956]. Within this normal range of porosity, the500

Kozeny-Carman equation (2) is501

k = 0.45nR2/τ 2. (22)502

Carman [1956] mentions c′0 = 0.40 is plausible for non-circular sections.503

The F ratio (20) for model (21) is F = 1770.55, which is greater than the F ratio504

obtained for the power laws based upon n or R2 and thrice as large as that for the Kozeny505
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equation fitted to the entire data set. However, the F ratio of model (22), F = 551.09, is506

less than half of that of (21).507

The Kozeny equation does not account for variability over the full range of data as well508

as the power laws, having a sum of squared errors that is an order of magnitude greater509

than the power law models (Table 5). This is true even when the model sums of squares510

are adjusted for the number of parameters (Table 6).511

Of the four models considered here, the power law based on the Kozeny predictor,512

k̂ = 1.68 · 10−4(nR2)0.58, (23)513

fits the entire virtual data set best having an F ratio of 1866.17, which is nearly four times514

that of the Kozeny equation over the entire set and roughly double that of (21). Power515

laws based on porosity and hydraulic radius, the components of the Kozeny predictor,516

also give good fits to all the data. The exponent appears to account for nonlinear effects517

at the extremes of pore space interconnectivity consistent with observations of Jacquin518

[1964] quoted in [Adler et al., 1990], Lemaitre and Adler [1990] and Revil and Cathles519

[1999].520

Figures (3-6) indicate that the power-law models and the Kozeny equation fit the inde-521

pendent observed data well. However, the power-law based on porosity alone does not fit522

the low permeability samples obtained from Mostaghimi et al. [2013] as well as the other523

models. Nonetheless, the power laws are clearly superior to the Kozeny equation when524

the goodness of model fits is evaluated by chi-squared tests applied to both observed and525

virtual data (Table 7). Chi-squared tests are based on distances between model estimates526

and data weighted by the estimates [Mood et al., 1963], and are used here qualitatively527

in the same spirit as the Analysis of Variance results reported earlier (Table 6). Small528
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values of the chi-squared statistic indicate good fits, and the chi-squared values for the529

power laws are about five-six times smaller than the corresponding value for the Kozeny530

equation.531

5. Summary and Conclusions

Kozeny derived his equation by equating the velocity given by Poiseuille’s law for flow532

through an idealized pore network to the specific discharge obtained via Darcy’s law; he533

determined that the permeability of a porous medium, k, is linearly proportional to the534

product nR2 of its porosity, n, with the square of its mean hydraulic radius, R. This535

simplified model of a porous medium allowed him to attain an analytical solution to the536

governing equations of flow through porous media. However, topological alterations that537

make a pore network more realistic render analytical solutions nearly intractable. When538

applied over a wide range of porous media, computational experiments reveal a nonlinear539

relationship between permeability and its predictors, contrary to Kozeny’s result. This540

nonlinearity is manifested by the wide range of values of the Kozeny coefficient observed541

at the extreme ends of porosity [Sullivan, 1942; Kyan et al., 1970; Davies and Dollimore,542

1980; Adler et al., 1990; Xu and Yu, 2008]. On one hand, Kozeny’s linear (in the predictor543

nR2) approximation appears satisfactory within a restricted range of porosities, 0.2 < n <544

0.7. On the other hand, the nonlinearity cannot be adequately represented by a linear545

approximation when a wider range of porosity is considered.546

We empirically derive three nonlinear generalized pedotransfer functions for permeabil-547

ity using computational experiments with flow through a set of stochastically generated548

pore networks with porosities ranging from 0.19 to 0.84 and varying degrees of connec-549

tivity. The transfer functions are power laws based on porosity n, mean hydraulic radius550
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squared R2, and their product nR2; the same predictor which Kozeny used. The ex-551

perimental pore networks consist of sixty-three virtual networks whose permeabilities,552

porosities, and mean hydraulic radii are used to estimate the parameters of the transfer553

functions. Porosity and mean hydraulic radius are observed directly from images of the554

pore networks and Darcy’s law is used to compute the permeability from steady-state flow555

fields within the porous media.556

When fitting the Kozeny equation to the full range of data, the computed value of the557

Kozeny coefficient computed is c0 = 0.19, essentially the value originally suggested by558

Carman, c0 = 1/5 [Carman, 1939]. However, the Kozeny equation does not provide good559

estimates of permeability over the full range of data, because of the nonlinear dependence560

of k on the Kozeny predictor, nR2. On the other hand, the Kozeny equation is reasonably561

accurate within a limited range of of porosities (Fig. 7), but not for the originally suggested562

value of the Kozeny coefficient. Nonetheless, the estimated value of c0 = 0.35 is within563

the wider range 1/6 < c0 < 1/2 that Carman gave later [Carman, 1956].564

All of the transfer functions include the fifteen independent real data samples within565

nominal 95% confidence intervals. The power laws fit the data in this study better than566

the Kozeny equation, even when they are penalized through an Analysis of Variance for567

including an additional model parameter (Table 5-6). The leading coefficient of each568

power law is an empirical fitting parameter and has dimensions of L2(1−b), where b is the569

power appearing in Table 5. Only in specialized cases, such as the Kozeny equation are570

the associated coefficients dimensionless. Similar functions to predict permeability having571

coefficients with dimensions are already present in the literature [Katz and Thompson,572

1986; Ahuja et al., 1989; Rodriguez et al., 2004; Costa, 2006].573
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The equation574

k̂ = 1.68 · 10−4(nR2)0.58 (24)575

provides the best fit to the full range of data. Additionally, its confidence intervals are576

tighter, its sum of squared departures is smaller, and its F (20) ratio is higher than any577

of the other models considered.578

Even though Kozeny derived his equation through microscopic considerations, it has579

been applied on macroscopic scales as a generalized pedotransfer function. Commonly,580

pedotransfer functions are derived empirically using various soil samples in continuum581

scale laboratory experiments where the predictors, e.g., porosity and mean hydraulic582

radius, can be measured in bulk.583

The virtual networks that are the basis for these transfer functions are homogeneous584

and isotropic with porosities and mean hydraulic radii spanning a wide range of repre-585

sentative values. Sample permeabilities are comparable to those found in well- sorted586

sands or sands and gravel. Since the networks are large enough to constitute represen-587

tative elementary volumes [HSW12 ], the physical basis and scale of these experiments588

is comparable to that which Kozeny used. Moreover, the derived pedotransfer functions589

are not formally limited to representations of explicit pore spaces or a particular soil type590

because porosity and hydraulic radius can be estimated in bulk using field observations591

or laboratory experiments and are general traits of porous media. As a result, it should592

be possible to test whether the proposed generalized pedotransfer functions apply in the593

field.594
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Figure 1. Porespace cross-sections in the x-y plane (1.27 cm × 1.27 cm). From left to right :

uniform kernel, Gaussian kernel, and iterative method; top, Threshold Parameter 0.45 (Expected

Porosity ≈ 0.35) ; bottom, Threshold Parameter 0.53 (Expected Porosity ≈ 0.60).

Figure 2. Physical porous media: tuff (left) and glass beads (right); corresponding values of

(n, τ, R) are (0.37, 1.23, 9.12·10−5 m) and (0.31, 1.20, 2.89·10−5 m.)
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Figure 3. Kozeny equation k(nR2) = c0nR
2. Points correspond to averaged amounts for

each of the 63 stochastic realizations and fifteen sets of natural data. Circles, blue square, red

triangle, and green diamonds denote synthetic data, glass beads, tuff, and the low permeability

data of Mostaghimi et al. [2013] respectively. Least-squares models are solid lines, and nominal

95% confidence intervals are dashed lines.
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Figure 4. As in Fig. 3 but for power law k(R2) = a(R2)b.
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Figure 5. As in Fig. 3 but for power law k(n) = anb.
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Figure 6. As in Fig. 3 but for power law k(n) = a(nR2)b.
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Figure 7. Kozeny equation fitted to porous media with normal porosities, 0.2 < n < 0.7;

Circles, square, triangle, and diamonds denote synthetic data, glass beads, tuff, and the low

permeability data of Mostaghimi et al. [2013] respectively.
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Table 1. Characteristics of virtual media in Fig. 1.

Uniform Gaussian Iterative

γ = 0.45 (Expected Porosity ≈ 0.35) :

k a 1.10 · 10−9 1.32 · 10−9 9.10 · 10−10

n b 0.43 0.38 0.36
R2 c 5.16 · 10−9 7.63 · 10−9 7.33 · 10−9

nR2 d 2.22 · 10−9 2.94 · 10−9 2.68 · 10−9

τ e 1.25 1.23 1.33

γ = 0.53 (Expected Porosity ≈ 0.60) :

k a 3.00 · 10−9 4.76 · 10−9 5.26 · 10−9

n b 0.60 0.62 0.68
R2 c 1.05 · 10−8 1.97 · 10−8 2.88 · 10−8

nR2 d 6.30 · 10−9 1.22 · 10−8 1.97 · 10−8

τ e 1.16 1.12 1.14

a Permeability [m2]

b Porosity

c Hydraulic radius squared [m2]

d Kozeny predictor [m2]

e Tortuosity

Table 2. Correlations among predictor variables.

n R τ
n 1.00 0.90 -0.95
R 0.90 1.00 -0.84
τ -0.95 -0.84 1.00
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Table 3. Grid Resolution Study

n × m × l a δx b q̄ c Dev q [%] d ke
e Dev ke [%] f τ̄ g σ(τ) h

18× 18× 38 4.e-04 -2.00e-02 1.16 2.04e-09 121.86 1.25 1.54e-02
36× 36× 76 2.e-04 -2.08e-02 0.86 2.12e-09 117.08 1.28 2.11e-02
72× 72× 150 1.e-04 -2.12e-02 0.39 2.16e-09 202.41 1.31 2.21e-02
144× 144× 300 5.e-05 -2.02e-02 0.22 2.06e-09 215.61 1.31 2.22e-02

a Grid dimensions

b Grid discretization [m]

c Mean Darcy flux [m/s]

d Average relative deviation from the mean Darcy flux [%]

e Estimated permeability [m2]

f Average relative deviation from estimated permeability [%]

g Average Tortuosity

h Variance of Tortuosities

Table 4. Local Grid Resolution Study

Level 1 Level 2 Level 3
δx a L2(u) b L2(v) c L2(w) d L2(u) b L2(v) c L2(w) d L2(u) b L2(v) c L2(w) d

4.e-04 1.73e-01 1.44e-01 1.15e-01 1.48e-01 1.14e-01 1.19e-01 1.46e-01 1.22e-01 1.04e-01
2.e-04 7.33e-02 7.01e-02 5.65e-02 6.41e-02 5.25e-02 5.20e-02 7.36e-02 6.93e-02 5.50e-02
1.e-04 3.39e-02 4.10e-02 3.25e-02 3.07e-02 2.75e-02 3.24e-02 3.20e-02 3.14e-02 2.98e-02
a Grid discretization [m]

b L2 difference between pdf of u and pdf of u at finest resolution

c L2 difference between pdf of v and pdf of v at finest resolution

d L2 difference between pdf of w and pdf of w at finest resolution

Table 5. Accuracy of the four fitted models.

Model Form Fit s2d
k(nR2) = c0nR

2 k̂ = 0.19nR2 2.26 · 10−16

k(nR2) = a(nR2)b k̂ = 1.68 · 10−4(nR2)0.58 3.15 · 10−17

k(n) = anb k̂ = 1.72 · 10−8(n)2.83 3.72 · 10−17

k(R2) = aR2b k̂ = 1.37 · 10−3(R2)0.71 5.61 · 10−17
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Table 6. Analysis of Variance

Model P s2M/P Ns − P s2d/(Ns − P ) F
Kozeny eq. 1 1.74 · 10−15 62 3.65 · 10−18 475.77

power law k(nR2) 2 9.65 · 10−16 61 5.16 · 10−19 1866.17
power law k(n) 2 9.62 · 10−16 61 6.11 · 10−19 1574.55

power law k(R2) 2 9.52 · 10−16 61 9.20 · 10−19 1034.89

Table 7. Chi Squared Statistics

Model χ2 Statistics
Kozeny eq. 7.57 · 10−08

power law k(nR2) 1.12 · 10−08

power law k(n) 1.19 · 10−08

power law k(R2) 1.76 · 10−08
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