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towards reliable meteotsunami early warning systems 

 

Extended abstract 
 

1) State-of-the-art 

 

Meteotsunamis or meteorological tsunamis (Fig. 1) – atmospherically-induced destructive ocean 
waves in a tsunami frequency band – started to be exhaustively studied in the last decades, although 
they are known to affect the coastlines for centuries, being recognized by local names and legends 
(Monserrat et al., 2006; Vilibić and Šepić, 2009; Pattiaratchi and Wijeratne, 2015; Rabinovich, 2020). 
They might appear at coastlines of all continents, while being manifested as waves of several metres 
and associate with strong currents, in particularly researched at Ciutadella Inlet (Harbour), Menorca 
Island, Spain (Tintoré et al., 1988; Gomis et al., 1993); Vela Luka Bay, Korčula Island, Croatia (Orlić, 
1980; Šepić et al., 2015); Mazara del Vallo, Sicily, Italy (Candela et al., 1999); Nagasaki Bay, Japan 
(Hibiya and Kajiura 1982); Longkou Harbour, China (Wang et al. 1987), Great Lakes (Bechle et al., 
2016; Linares et al., 2019); Western Australian shelf (Pattiaratchi an Wijeratne, 2014), and other. 

 

 
Figure 1: Illustration of the meteotsunami generation processes (after Šepić et al., 2015). 

 

Still, the physical explanation of their nature was developed lately (Fig. 1), due to their multi-
resonant nature dependent on the very mesoscale source in the atmosphere and quite large sensitivity 
to bathymetry changes in the ocean (Belušić et al., 2007; Vilibić, 2008; Williams et al., 2020). The 
Proudman resonance (Proudman, 1929) is a key but not the only resonant process that transfers the 
energy of intense, rapid and persistent atmospheric disturbances to long ocean waves, while the 
intensity of the coastal hazards – as for seismic tsunamis – is larger for harbours and bays with strong 
amplification factors (Rabinovich, 2009; 2020). As for the atmosphere, wave-ducting mechanism 
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(Lindzen and Tung, 1976) has been found to proposed for the Mediterranean meteotsunamis 
(Monserrat et al., 2006), while they might be the results of many processes, like squall lines, derechos, 
frontal zones, hurricanes and other (Churchill et al., 1995; Šepić and Rabinovich, 2014; Shi et al., 
2019). 

There was a great number of attempts to fairly reproduce by numerical models both generation 
and propagation of meteotsunami waves in the ocean and the source in the atmosphere (Belušić et al., 
2007; Vilibić et al., 2008; Orlić et al., 2010; Horvath and Vilibić, 2014; Šepić et al., 2016; Ličer et 
al., 2017; Romero et al., 2019; Denamiel et al., 2019a). Still, there are several bottlenecks which 
prevent their reproduction in a reliable way (Vilibić et al., 2016), as the reproduction of generation 
and propagation of meteotsunamis is at the edge of what present state-of-the-art numerical models 
can reproduce. In particular, it requires (1) to carefully check the numerical stability of the 
atmospheric model which should be set-up to handle internal gravity waves (i.e. high spatial 
resolution and reduced time step), (2) to use accurate orography, bathymetry and coastline data in 
high-resolution atmospheric and ocean models, and (3) to evaluate the model high-frequency results 
with various statistical tools in order to draw a clear picture of the model skills. For these reasons, the 
use a stochastic approach to estimate the meteotsunami hazard linked to each modelled pressure 
disturbance was found more appropriate (Denamiel et al., 2019b) 

 

2) Meteotsunami early warning system prototype 

 

The meteotsunami early warning prototype is based on the Adriatic Sea and Coast (AdriSC) 
modelling suite (Denamiel et al., 2019a), developed to accurately represent the Adriatic atmospheric 
and oceanic processes. In brief, the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport 
(COAWST) modelling system (Warner et al., 2010) couples (online) (1) the Regional Ocean 
Modeling System (ROMS; Shchepetkin & McWilliams, 2005, 2009), with nested grids of 3 km 
(covering the entire Adriatic and Ionian Seas) and 1 km (covering the Adriatic Sea only), and (2) the 
Weather Research and Forecasting (WRF) model (Skamarock et al., 2005), with nested grids of 15 
km (covering the central Mediterranean basin) and 3 km (identical to the 3‐km ROMS grid). The 
dedicated meteotsunami module couples (offline) the WRF model, which downscales the hourly 3‐
km WRF results of the basic module to a 1.5‐km resolution for a grid covering the entire Adriatic 
Sea, with the 2DDI ADvanced CIRCulation (ADCIRC) model (Luettich et al., 1991) using a mesh 
of up to 10‐m resolution in the areas sensitive to meteotsunami hazard. In this deterministic 
configuration, the ADCIRC model is forced (1) every minute by the WRF 1.5‐km wind and pressure 
fields and (2) every hour by the ROMS 1‐km sea‐level fields (including tides). 

The deterministic model results are then examined for existence of meteotsunamigenic 
disturbances (Fig. 2). Every day, at least 30 hr before any meteotsunami event, the high-pass filtered 
pressure is extracted from the AdriSC forecast and used to automatically detect meteotsunamis by 
checking the spatial coverage of the values above 20 Pa per 4‐min interval of the maximal pressure 
temporal rate. If this coverage is below 5%, then no meteotsunami is forecasted —“silent” warning 
mode, otherwise a potential meteotsunami M is foreseen to occur (red box)—“event” warning mode, 
and an email is sent to the AdriSC team. At least 24 hr before the potential meteotsunami M occurs, 
the first forecast of hazard assessment is derived from the stochastic surrogate model used with ranges 
of pressure wave parameters manually extracted from the modelled filtered pressure. Finally, when 
the real‐time observations become available, the hazard assessment may be updated with new 
parameters extracted from the measurements. 

Within the prototype, the extreme sea level hazard assessment relies on the newly developed 
meteotsunami stochastic surrogate model. This model is based on generalized polynomial chaos 
expansion (gPCE) methods (Soize and Ghanem, 2004; Xiu and Karniadakis, 2002), which, compared 
to sampling approaches (e.g., Monte Carlo simulations), are highly efficient for propagating the 
uncertainties of model inputs to outputs (e.g., Knio and Le Maître, 2006, Najm et al., 2009). The 
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stochastic surrogate model, based on polynomials expansions that decompose into deterministic 
coefficients and random orthogonal bases, is used to propagate the uncertainties from the 
meteorological input (i.e., the IGWs responsible for the meteotsunami generation) to the maximum 
sea levels at different locations along the Croatian coastline. As the input parameters to the stochastic 
model are assumed to be uniformly distributed, (1) the delayed Gauss Patterson sparse grid method 
(Smolyak, 1963) is applied to automatically select all the combined values of the six stochastic 
parameters of the synthetic pressure forcing and thus to define the number of simulations. 

More details on the prototype, the AdriSC modelling suite, stochastic surrogate model and gPCE 
method are provided by Denamiel et al. (2018, 2019a, 2019b, 2020). 

 

 

 

Figure 2: Illustration of the meteotsunami early warning prototype (after Denamiel et al., 2019b). 

 

 

3) Proposed Work 

 

The proposed work consists of two basic modules, which are: 

 

(i) Improving the stochastic surrogate model 

 

The stochastic surrogate model, as described by Denamiel et al. (2019b, 2020), has been tested 
by using a pseudo-spectral approximation (PSA) method, for which convergence in solution has been 
achieved with unsatisfactory precision. The PSA method required 10 689 of short AdriSC ADCIRC 
meteotsunami simulations, when varying six parameters of a meteotsunamigenic disturbance (air 
pressure amplitude, speed, direction, period, width, start point) and for using Gauss–Patterson level 
5 and delayed Gauss–Patterson level 6 rules. In this module, we will test the methodology on higher 
level of the PSA method (delayed Gauss–Patterson levels 7, 8, 9, 10) and to see if any improvement 
in reproduction of meteotsunami stochastic forecast is reached. 
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Computing resources needed: 

It has been found that the AdriSC ADCIRC deterministic simulations are executed in parallel on 
260 CPUs in about 3 minute (elapse time). Thus the amount of credits needed to simulation is: 260 
CPUs * 3 min * 60 s * P * 53 729 simulations = ~ 12 000 000 SBUs. Concerning the storage needed, 
we estimate that about 20 000 GB will be needed. 

 

(ii) Testing the meteotsunami early warning system prototype 

 

The prototype of the meteotsunami warning system will be tested with the improved PCA 
methodology, for which it should run in the operational mode. The base of the prototype, the AdriSC 
modelling suite, has been already installed on the ECMWF supercomputers. 

 

Computing resources needed: 

As the AdriSC operational modelling suite runs in parallel on 260 CPUs, and takes about 24h of 
computation (elapse time) to produce the forecast needed for determining the parameters for the 
stochastic surrogate model, the amount of credits needed to run the simulation is: 260 CPUs * 300 
days * 86 400 s * P ~ 33 000 000 SBUs. Concerning the storage needed, we estimate that about 45 
000 GB will be needed. 
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