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Project Title: Deep Vertical Propagation of Internal Gravity Waves  

Extended abstract 
 

During the recent years, ground-based and airborne Rayleigh lidar measurements of temperature 

perturbations in the middle atmosphere show gravity wave activity covering a large spectrum of frequencies 

and vertical and horizontal wavelengths. An understanding of the different wave modes in the middle 

atmosphere is still lacking. Especially, the link of the observed gravity wave activity to possible sources in 

the troposphere as well as in the stratosphere is difficult to establish as 3D data of wind and temperature in 

high spatial and temporal resolution are missing. Therefore, the integrated forecast system (IFS) of the 

ECMWF will serve to fill this gap by providing these data globally. One example of the feasibility to 

simulate stratospheric gravity waves is documented in Dörnbrack et al. (2017). Idealized numerical 

simulations will complement the combined analysis of data and IFS output. Thus, the project is based on 

three ingredients. 

(1) Middle Atmospheric Temperature Observations 

During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 2014 as well as during two 

extensive campaigns in Scandinavia in 2013 and 2015/16, ground-based as well as airborne lidar 

measurements were conducted  (Fritts et al., 2016, Kaifler et al. 2016, Ehard et al., 2017, Portele et al., 2017, 

Bramberger et al., 2017, Wagner et al., 2017, Witschas et al., 2017).  

 

 

Figure 1: Example of middle atmosphere lidar observations of mountain waves excited by strong flow over the 
Southern Alps of New Zealand (from Bramberger et al., 2017). 

Figure 1 shows a selected example from the paper by Bramberger et al. (2017) documenting the close 

agreement of the observed phase lines and the results of the IFS for one particular event. It also shows the 

large temporal variability of the gravity wave activity during the 12 hour observational period. However, the 

striking agreement does not reflect in the amplitudes which are simulated much to low compared to the 
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observations. Besides the understanding of particular cases (quantification of gravity wave parameters such 

as wavelengths, periods, phase speeds, group velocities, frequency and wavenumber spectra, potential and 

kinetic energy densities, and momentum fluxes) with the help of IFS data, there is a need to understand the 

scales, the intermittency, and the seasonal variability of middle atmospheric gravity waves as the associated 

breaking and momentum deposition drives the meridional residual circulation.  

Therefore, our institute will be deploying two autonomous lidar systems at the southern tip of South America 

to study the deep vertical propagation of a global “gravity wave hot spot” and to understand its overall 

importance. The observational results will be further compared with mountain wave activities observed in 

New Zealand and Northern Scandinavia and with data from the IFS. Furthermore, the combination of 

observations at different geographical locations together with process modelling (EULAG, point 3) will 

allow for a better understanding of the importance of “hot spots”. 

(2) Integrated Forecast System 

Middle atmospheric lidar temperature observations conducted during December 2015 above Finland were 

compared to two sets of simulations by the IFS. One of the simulations is the operational cycle 41r1 with a 

horizontal resolution of 16 km and the other is the e-Suite 69 (later cycle 41r2) with a 9 km horizontal 

resolution. A remarkable agreement between both ECMWF IFS simulations and the lidar temperature 

observations is found below 45 km altitude. Above 45 km altitude, within the sponge layer of the ECMWF 

IFS, both simulations depict lower temperatures than the observations, with the high-resolved ECMWF IFS 

version showing the largest cold bias. Test runs of the ECMWF IFS were analysed and compared to the lidar 

observations to investigate the effect of the high-resolution horizontal grid. This work is documented in the 

paper by Ehard et al. (2017). In collaboration with the numerical aspect section (contacts: Nils Wedi and 

Sylvie Malardel), the collaboration (exchange of data and information as well as IFS test runs) will be 

continued focussing on the height region above the stratopause. 

(3) EULAG 

The geophysical flow solver EULAG is used to simulate the flow over the mountain ranges where ground-

based and airborne middle atmosphere lidar measurements are available. As a first case, we consider the 

flow above Auckland Island (Eckermann et al. 2016). For this purpose, the anelastic version of EULAG was 

run and initial profiles were constructed from ECMWF IFS operational analyses and one hourly forecasts 

extended to an altitude of 100 km.  
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Figure 2: Vertical velocity (m s-1, color coded) and potential temperature (K, black lines) for the flow over Auckland 
Islands (located at -40 to -30 km distance). . 

 

Figure 2 exemplifies a preliminary result proving the ability of EULAG to simulate the deep atmospheric 

response of the flow across a small obstacle as the Auckland Islands. In the project, extensive numerical 

experimentation will be conducted to study the middle atmospheric gravity waves for a series of different 

geographical locations and atmospheric conditions.  

The special project is embedded in two national research projects in Germany.  (1)  "Investigation of the life 

cycle of gravity waves "  in the research initiative "Role of the Middle Atmosphere in Climate" funded by the 

German Ministry of Research and Education. (2) “Processes and climatology of gravity waves” in the 

research unit “Multiscale Dynamics of Gravity Waves” funded by the German Science Foundation. 

The computer hours will mainly be spent for numerical simulations with the geophysical flow solver 

EULAG. First tests with a version covering the altitude range from the surface to 180 km reveal about 2000 

SBUs for a 2D simulation of the 2D flow over an isolated mountain ridge. As different parameters of the 

numerical scheme and the atmospheric background conditions have to be varied, I expect about 200 000 

SBU per year for the necessary runs. Furthermore, planned 3D simulation will increase the computational 

effort. A rough estimate gives about 300 000 SBU which sum up to the applied 500 000 SBUs. 
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