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Summary of Project Objectives

This special project aimed to develop a coupled disease modelling system for malaria in
Africa and test the capability of the system to predict malaria transmission anomalies
up to four months ahead. The specific aims were to complete the coupling of the
VECTRI malaria model to the monthly EPS system and the seasonal system SYS4 in a
seamless system. This prediction system would then be validated for the focus areas of
Eastern Africa, Malawi, and possibly West Africa (Ghana and Senegal) where health
data resources allowed. The potential predictability gain available by introducing
further developments of the VECTRI was to be quantified. The aim by the project end
was to have a working prototype seasonal prediction system for malaria

Summary of Problems Encountered

Permission restrictions to near real-time forecasting data proved to be problematic.
While all the validation was performed using the hindcast period, the aim was to set up
the system in such a way that it could be converted to a pilot operational suite with ease.
As this meant setting up the SMS suite to use operational forecasts, the consequence

Experience with the Special Project Framework

Concerning the SPF, I can only repeat my summary of the last report, namely that the
facilities at ECMWF are second to none, and where teething problems occur setting up
scripts and code on the ECMWF system, the staff at ECMWF were always extremely
helpful.

Summary of the results

Modelling system

The basic modelling system was described in Tompkins and Di Giuseppe (2015b) and
the following system overview is adapted from that publication.

The Malaria early warning system (MEWS) consists of two modelling components: a
weather forecasting system and a dynamical malaria model (Fig. 1). The first 32 days
of the weather forecast uses temperature and precipitation provided by the EPS (Vitart
et al., 2008). From day 33, the forecasts of the lower resolution and longer-range system
4 seasonal forecasting system (Molteni et al., 2011) are used for the remainder of the
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four month forecast. Individual forecasts starting from slightly different initial
conditions in order to sample forecast uncertainty.

Temperature from both systems is adjusted using correction of the mean bias as a
function of location, calendar month and forecast lead-time with respect to the analysis
data and subsequently statistically downscaled to the 27km resolution using a fixed
lapse rate correction to account for the topography (Giorgi et al., 2003). This resolution
is adequately fine to allow aggregation for comparison to district level health data if
required. The precipitation is also downscaled to this resolution using first order
conservative remapping (described in Jones, 1999). One weakness of this first
generation system is that the precipitation forecasts are not presently bias corrected,
implying that the mean simulated malaria transmission will be subject systematic
biases that can be caused by misplaced monsoon locations (e.g. see analysis of the
earlier SYS3 in Tompkins and Feudale, 2010) or mis-timed rain onsets (Diro et al., 2012,
examined SYS3 performance in the horn of Africa). The resulting daily precipitation
and temperature forecasts are then used to drive the VECTRI dynamical malaria model
(Tompkins and Ermert, 2013), to produce an ensemble of forecasts of a range of
epidemiological and entomological measures.

The malaria model is initialized from realistic initial conditions. The malaria
forecasting system requires an assessment of the important entomological and
epidemiological variables such as vector adult and larvae density, the circumsporozoite
protein rate (CSPR), and parasite ratio, in addition to the surface hydrological state
giving the availability of breeding sites, to initialize the malaria modelling component
correctly. Without this step the malaria model would suffer from so-called ’spin up’ in
the first weeks of the forecast, as the model adjusts from idealized initial conditions, and
valuable information concerning the climate conditions prior to the forecast start would
be lost. The malaria analysis does not incorporate health or entomological observations.
This is due to the fact that direct observations of entomological variables are not
generally available as they are collected in isolated research projects, and are in any case
not available in near-real time required for an operational framework.

We designed the analysis system using temperature and precipitation from the
operational ERA-Interim reanalysis system of ECMWF (Dee et al., 2011) to drive the
malaria model and provide malaria analyses of the relevant variables for each day from
1981 to the present. Precipitation is taken from a short range 24 hour forecast starting
from each 00Z analysis cycle. The resulting analyses are used to provide initial
conditions for each malaria forecast. Thus if a forecast starts mid-way in a wetter than
usual season, for example, the initial conditions will reflect this in terms of greater
vector and larvae densities and more breeding sites available. The skill of the malaria
forecasts is consequently not only impacted by the skill of the climate forecasts, but also
in part derives from the knowledge of the climate anomalies that occurred prior to the
forecast start that is contained in the malaria analysis system. To our best knowledge,
this is the first such dynamical forecasting system that attempts to fully initialize the
malaria model component from an analysis system.

The choice of using reanalysis for this task was made with operational requirements
in mind. Firstly, it combines the available sparse, in situ measurements with the
continuously changing remotely sensed information into a self-consistent assessment of
the atmospheric state, thus maximizing continuity over time while ensuring continual
spatial coverage and near real-time operational delivery. For temperature, in situ
measurements are sparse in many regions in Africa, or not available on the global
telecommunications system (GTS) in real-time. In any case, despite documented biases
in the distribution of rainfall intensity and the rainfall mean, the reanalysis derived
rainfall is nevertheless capable of representing the intraseasonal variability over Africa,
with Thiemig et al. (2012) demonstrating its competitiveness with some satellite-based
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Figure 1. Schematic of the forecast system set up, with boxes representing models,
triangles for processes, and diamonds used for products. The operational numerical
weather prediction reanalysis of temperature and rainfall is used to drive the malaria
model to provide a malaria analysis of epidemiological and entomological indicators
(PR=parasite ratio, CSPR=Circumsporozoite Protein Rate), which are used as initial
conditions for the forecast. The malaria forecast uses climate information from the high
resolution monthly ensemble prediction system (EPS) climate forecasts in the first
month (m1, consisting of days 1-32), which is seamlessly combined with the seasonal
forecast system for m2-4. Both precipitation (P) and temperature(T) are rescaled, and
temperature calibrated before application to the malaria model, which then provides
forecasts of PR and entomological inoculation rate (EIR).

products. Dutra et al. (2013) found that ERA Interim rainfall could be successfully
used in drought monitoring.

Evaluation

To illustrate the potential value of the system in a real epidemic scenario, we examined
the past performance over the east African highlands. The outpatient data of highland
regions of south-west Uganda and western Kenya have received considerable attention in
the literature. In fact, in their comprehensive review of articles examining the
relationship between climate and malaria, Mabaso and Ndlovu (2012) found that this
region was the most studied. Table 1 gives a qualitative and brief summary of the key
malaria transmission anomalies in highlands of either Western Kenya and/or Uganda
between 1995 and 2010. The summary of the data is that a significant epidemic
occurred in early 1998 across the region in the highlands that has been extensively
described and linked the the major El Niño event of 1997/1998 (Lindblade et al., 1999;
Githeko and Ndegwa, 2001; Alonso et al., 2011). The other articles cited described
evidence of more minor anomalies in transmission during 1994-5, 2002, 2005, 2006 and
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2009/2010, with the term ’minor’ employed in a broad sense to variously imply
short-lived, less intense or geographically restricted outbreaks.

To make an initial qualitative comparison to the forecasting system, the average
normalized value of the ensemble mean predicted ln(EIR) is analyzed for all points at
heights exceeding 1500m (the results were insensitive to this altitude threshold) in a
region spanning 28-36E and 2S to 2N, with each month considered separately to remove
the annual cycle of malaria transmission. A running mean is also applied of 5 months1.
The forecast timeseries is then classified into three alert levels, where an amber alert
signifies an upper tercile event, while a red alert level signifies a value exceeding the
90th percentile. We emphasize that these tercile thresholds are chosen as they are
commonly employed in meteorological forecasting circumstances, but may have little
relevance to the decision-making process of, for example, a national malaria control
program. A full cost-loss analysis of suitable interventions is required to determine
suitable thresholds for action, and thus the alert levels should be strictly viewed as
indicative and illustrative.

The resulting timeseries (Fig. 2) is encouraging as it clearly shows that the major
outbreak starting February 1998 is predicted four months ahead and is by far the most
significant event predict predicted during the period 1995 to 2012, in qualitative
agreement with the observations. In addition, all forecast lead times indicate lesser
events occurring in 1995, 2002, 2005, 2006 and 2009/2010. However, on closer
examination, it is clear that the timing of the predicted events is often inaccurate.
While the main 1998 event is predicted to reach the highest alert level in
February/March 1998, the event appears to last too long, with the alert level remaining
throughout 1998. Likewise, the event is 2005 appears well predicted 4 months in
advance, but is weaker and too early in the shorter lead time forecasts. High levels of
transmission in 2006 appear to continue into 2007, which does not appear to be
confirmed in the literature. Moreover, in general there is a tendency for epidemic alerts
to occur earlier in time in the shorter range forecasts (for example, 2002, 2005,
2006/2007 and 2010). This could be related to a drift in the bias characteristics of the
forecast precipitation which is presently not bias corrected in the system. In summary,
while the system shows promise at predicting during which years epidemic conditions
are likely to occur, there remains much to be done to improve the representation of
sub-seasonal fluctuations in transmission, while again emphasizing the highly qualitative
nature of this initial comparison which amalgamates all highland areas in Uganda and
Western Kenya into a simple single index.

Predictability of malaria

The skill of the forecast is examined for both the climate and malaria forecasts using
the operational forecast system output for 2012. We analyze the forecasts of 2012, and
the 18 years of hindcasts, giving an evaluation period of 1994 to 2012. Although ideally
one would evaluate an ensemble system using probabilistic skill scores, the small
ensemble size of the hindcast (5 members) prevents this and thus the analysis is made
for the skill of the ensemble mean anomaly correlation (Murphy and Epstein, 1989).
Temperature and calibrated precipitation are validated against the ERA-Interim
reanalyses. We identify the locations where skill in predicting malaria transmission is
statistically significant one to four months in advance (referred to hereafter as ’potential
malaria prediction skill’) for each calendar month (Fig. 3). In addition to malaria, we
show the skill in predicting anomalies of rainfall and temperature to identify which of
these variables generate any identified malaria prediction skill.

1This simple smoothing using a centered filter window could not be applied in real-time forecasting
scenario as the future months are not available.
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Table 1. Summary of selected literature that discuss epidemic conditions in the highlands of
Uganda, west Kenya or Tanzania

Year Reference Summary
1994 Alonso et al. (2011) Higher than usual transmission indicated in Kenyan

highlands
1998 Lindblade et al.

(1999)
Epidemic starts in February in Ugandan highlands,
authors associate outbreak with rainfall anomalies.

1998 Githeko and
Ndegwa (2001)

Epidemic in Kenya from February 1998, but high
incidence also reported in June/July 1997.

1998 Jones et al. (2007) Epidemic in Tanzania highlands from February-June
1998, and high incidence also reported in summer of
1997.

2002 Hay et al. (2003) Epidemic identified in Nandi and Kericho in
June/July, with conditions returning to normal in
August. Normal transmission occurred in Kisii and
Gucha districts.

2005 Cox et al. (2007) Examines DHIS data from 2002 to 2006 for Kabale
and identifies outbreaks in 2005 (timing not described)
and 2006 (centered on June) but questions the au-
thenticity of the latter outbreak using confirmed data
from a sentinel site.

2010 Ototo et al. (2011) Report vector densities over period 09/2009 to
04/2010, reporting peak vector densities in Jan/Feb
2010. No long term dataset available to determine if
conditions were anomalous.

2010 Yeka et al. (2012) Describes general transmission in Uganda. Smear
positivity rates for children under 5 show relative
peak in Kanungu district (Kihihi) for Oct-Dec 2009
and May-July 2010 (their Fig. 4). No anomalies in
selected high transmission zones.

Examining first the shorter range predictions one month in advance (Fig. 3 left
column), encouragingly, there is model skill in malaria predictions in the target
prediction zones throughout the calendar year. In some regions the predictability
derives from correctly forecasting variations in temperature, but in southern Africa in a
band stretching from Botswana through to Malawi and also across eastern Africa there
are wide areas in which malaria predictive skill derives from both rainfall and
temperature; for these the analysis does not show which variable contributes most to
the skillful malaria prediction. In these regions rainfall predictability tends to be higher
owing to stronger teleconnections with the El Niño phenomenon (Ropelewski and
Halpert, 1987). Outside of these regions, skill in precipitation prediction appears limited
in the areas of interest for malaria forecasting, in broad agreement with studies using
the predecessor of the seasonal forecast (system 3) (Tompkins and Feudale, 2010;
Vellinga et al., 2012). This is confirmed in the analysis of the first month rainfall skill
compared to satellite retrievals conducted in the appendix.

In some locations the malaria forecasts are not significantly skillful, marked by a
limited number of black points where predictions of all variables fail, or by blue, purple
or red points which indicate skill in climate but not malaria prediction. In the
northern-most Sahel belt spanning Senegal, Mali and Niger in July and August, wide
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Figure 2. Timeseries of ensemble mean normalized forecasts of the natural logarithm
of the EIR averaged for altitudes exceeding 1500m in the highlands of Uganda and
Kenya with the annual cycle subtracted. Advance warnings (forecast lead time) of 1 to
4 months are shown. For example, the 4 month advance warning for June 2000
corresponds to a forecast that would be initialized at the beginning of March and issued
shortly after, the issuing delay due to the time necessary to run the forecast system and
post-process the results. A running mean is applied of 5 months to smooth the alert
levels. For illustrative purposes the timeseries are nominally classified according to their
mean percentile categories, with amber signifying an upper tercile event and red a 90th
percentile occurrence. The colored boxes below the plot indicate the indicative warning
level that might be communicated to a decision maker at these 4 different advance
warning lead times.

areas display skill in temperature only (red colors) while in some points rainfall is also
correctly predicted (purple colors) but no potential malaria prediction skill ensues. In
this northern-most zone of the Sahel, rainfall variability and the northern extent of the
monsoon limit malaria transmission (Thomson et al., 2004). Thus where rainfall
predictions are inaccurate, a frequent short-coming in atmospheric models (Roehrig
et al., 2013), malaria predictions will also fail. Where both rainfall and temperature are
skillfully predicted, the failure to translate this into accurate malaria prediction could
relate to the nonlinear relationship between transmission and rainfall, where intense
rain events flush early stage larvae breeding sites (Paaijmans et al., 2007) and monsoon
breaks lead to puddle desiccation (Gianotti et al., 2009). This nonlinearity is fully
sampled by the high day-to-day variability of rainfall in the tropics, thus significant skill
in predicting seasonal rainfall anomalies may not be sufficient if sub-seasonal rainfall
variability is poorly represented.
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Figure 3. Composite plot of temperature (red), precipitation (blue) and malaria
(ln(EIR), green) forecast anomaly correlation coefficients that are statistically skillful at
the 95% confidence level for issuing warnings for 1 through 4 months in advance (lead
time) for each calendar month of the year. White points mark cells with skill in all
three variables, black points mark cells without any skill. See legend for color definitions
of intersecting categories. (CONTINUED)

Analyzing the potential malaria prediction skill for longer lead times of two to four
months (Fig. 3, columns 2 to 4), it is seen that the climate prediction system exhibits a
sharp drop in skill at predicting rainfall and temperature two months in advance
compared to one month. Despite this, there are wide areas for which the pilot MEWS
still has significant skill for malaria prediction in months 2 and 3, and in smaller regions
even four months ahead. This is due to the inherent lags between the rainfall anomalies
and the resulting malaria transmission season, such that the skill in predicting malaria
transmission in the second and third month derives from the climate information
contained in the forecast initial conditions and the first month forecast of climate. This
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Figure 3. cont.

highlights the crucial role that the malaria analysis system has in correctly initializing
the malaria modelling system. In areas where rainfall and temperatures are predictable
beyond one month, such as in Eastern Africa, the malaria prediction advanced warning
is extended beyond the 3 month range. The analysis thus indicates that by driving the
malaria model with dynamical climate forecasts, useful information regarding the future
transmission season in epidemic and seasonally variable endemic regions can potentially
be delivered at least one, and in limited regions, two to three months earlier than would
otherwise be the case using climate observations, which themselves provide more
advance warning than the direct monitoring of symptomatic malaria cases (Thomson
et al., 2006).

We have also extensively examined the prediction skill of malaria in the highlands of
Uganda. Preliminary results are reported in Tompkins et al. (2016a) (Refer to case
study 5.J on page 130, link in reference list). A preliminary version of the system was
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tested in Rwanda, (Fig. 4) and was found to have skill at a lead time of 4 months in the
west and south of the country, but unfortunately not in the eastern regions, which are
some of the districts with the highest prevalence. Further examination of the forecast
skill of a newer version of the system applied to Uganda can not yet be reported in
detail here as the aim is to submit the work to Nature which precludes pre-publication
of information online. These will be made available after the result of the review process
is known.

Figure 4. Districts in Rwanda in which the ECMWF-ICTP forecast system has
significant skill at a lead time of 4 months

Finally, the uncertainty of the malaria forecasting system is not accounted for in the
forecasting system presented here. The ensemble members only account for differences
due to the driving climate and climatic initial conditions. In the third year of the
project, preliminary tests were conducted at incorporating a perturbed-parameter
ensemble for the malaria model (An example for a location in Uganda is given in Fig. 5,
taken from Tompkins et al. (2016b)) which showed the considerable potential
uncertainty due to the malaria model parameter settings, particularly in highland
settings close to the onset temperature threshold. This work has lead to the
development of a new genetic calibration algorithm for ensemble integrations in the
follow on project.

Conclusions

The EPS and SYS4 systems have been successfully coupled to the VECTRI malaria
model as planned during the period of the project. The system has been extensively
validated in Rwanda, Uganda, Tanzania and Malawi and skill proven at predicting
outbreaks, particularly in highland areas. The project has lead to a large number of
publications detailed below. The aim is now to attempt to interface the system with
public health policy in Uganda and work towards a pre-operational pilot
implementation during 2017-2018.
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Figure 5. 60 member ensemble integrations for Mbarara in Uganda

APPENDIX: IFS developments for the Radiation scheme

Although not directly related to the health topic, while investigating the factors
affecting the two metre temperature over Africa, the radiation code was examined in
detail and a number of issues were identified as reported in the SPITP4DC third annual
report. As stated in that report, the aim was to resolve these issues and pass a
documented branch to ECMWF with these IFS code contributions. This Appendix
contains a copy of the branch report to retain a record of these IFS developments that
occurred within SPITP4DC. The issues identified are mostly related to the way cloud
overlap is parameterized in the model.

The assumption of how clouds overlap in the vertical is still today one of the key
factors determining differences between atmospheric model radiation schemes (Zhang
et al., 2013). The long-standing de facto assumption implemented in models has been
the so-called MAX-RAN scheme. This applies diverse assumptions depending on
whether clouds are present in continuous layers, or whether clouds are separated by
clear sky layers (referred to hereafter as non-continuous clouds). Contiguous clouds were
assumed to be maximally overlapped, while clouds separated by a clear sky layer are
instead assumed to be randomly overlapped Morcrette and Fouquart (1986)

A number of modelling and observational studies showed that, while a reasonable
representation of observed cloud statistics, the MAX-RAN assumption tended to
underestimate total cloud cover, since clouds continuously present in through many
layers tended to decorrelate as the layer separation increased, due to the effects of
horizontal wind shear for example. Hogan and Illingworth (2000) (hereafter HI00) thus
suggested a simple modification to the MAX-RAN scheme whereby the overlap of
clouds was given by a parameter α, which describes the overlap in terms of a linear mix
between the RAN and MAX assumptions.

HI00 suggested that at small layer separations in contiguous clouds α should be close
to unity for maximum overlap, but that it would decrease towards zero as the layer
separation increased and the cloud in the layers became decorrelated. By fitting an
exponential curve to observations of α as a function of layer separation distance, HI00
derived the decorrelation length scale L for contiguous clouds to be around 2 km for the
ground-based observations taken over southern England. The data also supported the
assumption of random overlap for layers separated by a clear sky gap in the vertical.
The resulting scheme was coined the EXP-RAN scheme by Tompkins and Di Giuseppe
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(2007) as continuous clouds exponentially decorrelate, and non-continuous clouds are
randomly overlapped.

Although the actual value for L determined from observations varies substantially as
a function of cloud dynamics, horizontal wind shear (Mace and Benson-Troth, 2002;
Hogan and Illingworth, 2003; Naud et al., 2008; Mace et al., 2009; Oreopoulos and
Norris, 2011; Di Giuseppe and Tompkins, 2015), location (Shonk et al., 2010; Oreopoulos
and Norris, 2011) and even the analysis method itself (Tompkins and Di Giuseppe,
2015a), the underlying validity of the EXP-RAN approach has been widely confirmed.
There does, however, exist an alternative simpler approach, which was advocated by
Barker et al. (2008) and implemented in the scheme of Bergman and Rasch (2002). This
approach simplifies the EXP-RAN scheme by simply assuming a fixed decorrelation
length scale for all cloud situations, both continuous and non-continuous. This approach
has the advantage of simplicity but is less supported by observations.

In common with a number of models, the ECMWF radiation schemes for short-wave
and long-wave radiation transfer now externalize the overlap assumption by the
implementation of what is known the the Monte Carlo Independent Column
Approximation (McICA) approach (Pincus et al., 2003; Räisänen et al., 2005; Morcrette
et al., 2008). In this method, the vertical profile of cloud fraction in each column is
randomly sampled to generate a number of potential sub-columns, in which each layer is
either cloud-free or overcast (Pincus et al., 2003; Räisänen et al., 2005; Morcrette et al.,
2008). Each g-point calculation of the radiation scheme is performed using one of these
randomly-sampled columns. Averaged over many sub-columns, the cloud fraction profile
of the ECMWF grid column will be obtained, within the expected tolerance according
to the sample size. The overlap assumption is therefore moved outside of the radiation
scheme to the so-called cloud generator, improving simplicity and efficiency of the
radiation calculation.

The implementation of the overlap assumption has a number of issues, however. The
overlap assumption used is not clearly stated, and the online IFS documentation is
actually incorrect, and has been so for the past 8 years, indicating the radiation
scheme’s authors at ECMWF were also unaware of which overlap scheme was actually
encoded in the Räisänen et al. (2004) algorithm employed in the IFS. Moreover there
are a number of other issues concerning performance and accuracy of the code. The aim
of this report is to briefly outline these and then introduce a branch that addresses the
main shortcomings.

Issues with the IFS

The key issues concerning the IFS are:

1. Contrary to popular belief (and the IFS online documentation!) the overlap
assumption employed by the radiation scheme is not the EXP-RAN scheme of
Hogan and Illingworth (2000), but rather a simpler scheme that assume EXP
overlap for all clouds, irrespective of whether or not they are separately by clear
sky gaps

2. The random numbers are not truly random as they are seeded every timestep
(bad idea) and the choice of seed is poor.

3. Due to the way the random number vectors are initialized, the overlap scheme has
all the loops in an inverted order, leading to severe performance issues in a routine
that is computationally intensive (i.e. many column calculations per radiation
grid-point).
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4. The (optional) MAX-RAN overlap assumption is coded using an inferior
algorithm which is inconsistent with algorithm used for the EXP-RAN overlap
and is also highly vertical resolution sensitive.

The above issues are described in more detail in this section, while the subsequent
section introduces branches that corrects issues 1, 3 and 4, tidies up some of the code,
converts some previously hard-wired constants to variables that are set in the radiation
namelists for flexibility and introduces an optional implementation of the wind-shear
dependent overlap scheme.

IFS Overlap assumption is EXP and not EXP-RAN

One of the key issues is not a coding bug per-se, but is a issue regarding a general
misunderstanding of which overlap schemed the IFS actually employs. To generate the
sub-columns, the ECMWF IFS implements the overlap algorithms of Räisänen et al.
(2004). In Räisänen et al. (2004), two algorithms are described, the first referred to as
generalized overlap assumption, which is the default option in the IFS. The paper then
also introduces a revised algorithm for the MAX-RAN overlap. When referring to the
generalized overlap, Räisänen et al. (2004) cites two studies: Hogan and Illingworth
(2000) and Bergman and Rasch (2002), but without discussing the specifics of the
overlap assumptions. This is unfortunate, since Hogan and Illingworth (2000) and
Bergman and Rasch (2002) describe two related, but very distinct schemes.

Thus, the reader must interpret the algorithm of Räisänen et al. (2004) to
understand which of the two schemes has been employed. This has lead to some
confusion, and it is notable that most studies that discuss the radiation scheme of the
ECMWF IFS either never mention overlap at all, or merely refer to the assumption as
generalized overlap and cite the implementation description of Morcrette et al. (2008).
For example, Troccoli and Morcrette (2014) uses short wave radiation statistics of the
IFS in a study but avoids discussing the overlap specifics.

Most importantly, the IFS online documentation itself greatly exacerbates this
confusion, since when it discusses the details of the overlap scheme employed, it only
refers to the EXP-RAN scheme of Hogan and Illingworth (2000) and neglects to
mention the EXP scheme of Bergman and Rasch (2002) at all, giving the impression to
the reader that even ECMWF itself believes that the EXP-RAN scheme is used in the
model.

It is straightforward to add a minor modification to the generator algorithm in order
to change the EXP assumption to EXP-RAN by adding a condition to the formula
given in equation 9 of Räisänen et al. (2004). The original formula was given as

xj,k =

{
xj,k−1 for RN2j,k ≤ αj−1,k,

RN3j,k for RN2j,k > αj−1,k.

where RN2 and RN3 represent independent random number streams, and xj,k ∈ [0, 1] is
used to determine whether a cell is cloudy or clear (see their equation 1). The
decorrelation length-scale of clouds determines the parameter α. The reader is referred
to Hogan and Illingworth (2000) and Räisänen et al. (2004) for further details. This can
be modified to model EXP-RAN very easily by simply adding a further condition

xj,k =

{
RN3j,k for RN2j,k > αj−1,k OR Cj,k−1 = 0,

xj,k−1 otherwise .

Note the use of random number stream RN1 Räisänen et al. (2004) to initialize xj,k at
the top of the cloud layer was redundant and confuses the interpretation of the scheme
logic. One can simply set xj,1 = RN2j,1 removing the need to initialize RN1.
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Random numbers

The second issue of the scheme is that the random number generation methodology is
poorly implemented. The random number vectors for each radiation gridpoint are
seeded every timestep. This is usually strongly advised against as it makes the numbers
not truly random. Moreover, the recipe for the seed uses an additive formula, combining
latitude, longitude and time:

seed = NINT (PGLON(IL) + PGLAT (IL) + ITIM + IDAY ) (1)

By adding longitude and latitude indices in this way, it is clear that many gridpoints
share the same seed value on a given timestep, and indeed values are shared with nearby
columns on subsequent timesteps. This results identical random vectors being used for
many columns. From a brief investigation, it was estimated that a 24 hour forecast uses
a mere O(103) independent random number streams. This would be the same even at
the highest resolution, since the latitude and longitude values are simply rounded to the
nearest integer after summing.

The impact of this effect was tested briefly against a branch in which all columns are
seeded with a unique number only once at the integration start, and the impact is
limited. The solution is not adequate for implementation however as it would not be
bit-reproducible. The random number vectors should rather be initialized at the
integration outset by mimicking the method used in the stochastic physics routines.

Performance issues

In addition the previous code had a number of performance and clarity issues. The code
generated three vectors of random numbers, where only two are actually used in the
algorithm implementation, which no only slows the code slightly, but also confuses the
code substantially and makes its understanding much more involved. In addition, some
legacy code lines were effectively redundant and have been removed or cleaned up.

Much more importantly for performance, due to the way the random number vectors
were generated, all the nested do-loops are inverted, which would significantly affect
routine performance by an order of magnitude. In the branch made available, all do
loops are written in storage-order and the routine should now be an order of magnitude
faster.

IFS code reordering

A brief note on MAX-RAN

The generator of Räisänen et al. (2004) also implements and algorithm for the
MAX-RAN overlap scheme, which is also included in the IFS as a non-default option
under a switch. The algorithm implements a local pair-wise implementation of the
MAX-RAN overlap, which is undesirable as it is subject to considerable vertical
resolution sensitivities, as discussed by Tompkins and Di Giuseppe (2015b). This is in
contrast to the EXP-RAN implementation which uses a more robust and correct,
non-local overlap implementation. The result is that continuous cloudy layers also
decorrelate in the MAX-RAN scheme, with the decorrelation length-scale a function of
the model vertical resolution. This choice is somewhat bizarre, as Räisänen et al. (2004)
correctly notes after eqn 9 that MAX overlap is simply a special case of the EXP
overlap, but then implements the different algorithm for MAX-RAN in eqn 14. This is
presumably because he has chosen to implement the EXP rather than the EXP-RAN
scheme, since if the latter had been coded, the MAX-RAN scheme is a trivial special
case.
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Table 2. IFS Switches

Switch Previous New
NDECOLAT (overlap con-
trol)

0=fixed decorrela-
tion length (set by
RDECORR CF and
RDECORR CW),
1=Shonk et al. (2010) lati-
tude scheme, 2=modified
Shonk

3=Wind shear de-
pendence set using
RDECORR CF + dW/dz
RDECORR CF WS

LPPH (plane parallel
clouds)

was hardwired within code
to true for MAX-RAN and
false for EXP

now set by namelist, de-
fault value is FALSE to
maintain default set up.

LPOLICE (ice effective ra-
dius at poles)

was a fixed value in code now a parameter set in a
namelist, default value un-
changed

The opportunity was taken to modify the algorithm to use a consistent approach for
both EXP-RAN and MAX-RAN options. MAX-RAN is now a special case of
EXP-RAN simply, which implies the MAX-RAN scheme now gives the identical answer
to the EXP-RAN scheme as L→∞. For details of the algorithmic change refer to
Tompkins and Di Giuseppe (2015b). This also greatly simplifies the logic of the scheme.

Wind shear dependent overlap

The branches below include code for the new wind shear dependent overlap scheme
outlined in Di Giuseppe and Tompkins (2015). Thus there are a considerable number of
routines that have been modified in order to pass the wind fields through the
interpolation routines to the radiation grid. Details of the implementation are given in
the branch overview below.

Implementation

switches

In the new branch described below, a number of new switches/options have been added,
see table 2.

branch

Branch client cpa CY41R1 wind shear overlap expran is a start point for further testing
and development. In addition to addressing some of the issues above, the branch also
implements the wind-shear dependent overlap of Di Giuseppe and Tompkins (2015)
under a switch (NDECOLAT=3, but the default value is still set to 2 for the modified
Shonk latitude-dependency scheme). In order to implement this, a considerable number
of routines required minor configuration changes to enable the passing of the wind fields
to the radiation routine. An overview of the branch is given in table 3.

IFS integrations

Tests conducted on these branches use a setup consisting of 2 weeks of 24 hour forecasts
performed at T95/L91 resolution. Short, 24 hour, integrations allow one to discern the
impact of the overlap assumption on the radiation budgets without the complication of
cloud-radiative feedback effects on the dynamics and the experiment resolution was
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Table 3. Overview of IFS Branch client cpa CY41R1 wind shear overlap expran

module/ yoecld.F90 RDECORR CF and RDECORR CW deleted (moved
to yoerad.F90)

module/ yoerad.F90 RDECORR CF and RDECORR CW moved here for
consistency, and
RDECORR CF WS and RDECORR CF WS add to
control the wind-shear dependent overlap parameter-
ization of Di Giuseppe and Tompkins (2015)
RPOLICE added : Ice effective radius in microns at
poles (previously hardwired).
LPPH added

namelist/
naerad.nam.h

RDECORR CF,RDECORR CW,
RDECORR CF WS, RDECORR CW WS, LPPH
added.
NOTE: LPPH is now set independently of the choice
of EXP-RAN or MAX-RAN, the default options have
not changed.

phys dmn/ surdi15.F90 Compatibility changes in legacy code
phys ec/ callparad.F90 Compatibility changes for wind passing
phys ec/ cldpp.F90 Compatibility changes for wind passing
phys ec/ cld-
prg layer.F90

Changes to pass down winds to radiation schemes

phys ec/ raddrv.F90 Changes to pass down winds to radiation schemes
phys ec/ radia-
tion layer.F90

Changes to pass down winds to radiation schemes

phys ec/ radina.F90 Changes to pass down winds to radiation schemes
phys ec/ radintg.F90 Changes to pass down winds to radiation schemes
phys ec/ radlswr.F90 added wind-shear parameterization for alpha overlap

(NDECOLAT=3)
added RPOLICE for case NMINICE=1 to generalize
parameterization
removed local definition of LPPH - now set in module

phys ec/ radpar.F90 Changes to pass down winds to radiation schemes
phys ec/ sucld.F90 Set default values for new parameters
phys radi/
mcica cld gen.F90

removed LPPH from interface to cloud generator as
it is now in module YOERAD

phys radi/
mcica cld generator.F90

Changed EXP overlap assumption to EXP-RAN
Corrected optional MAX-RAN overlap to be correct
and consistent with EXP-RAN approach rather than
using the pair-wise overlap as previously
Reversed JL,JK loops to make code much more effi-
cient and tidied up code.
NOTE: random number generator not changed, but
needs attention. seeding should only be done first
timestep and the seed is poorly chosen so that there
are a lot of grid-columns using the same values.
LPPH read from module YOERAD

phys radi/ suecrad.F90 default values set for RPOLICE=20
RDECORR CF=2.0 RDECORR CW = 1.0
RDECORR CF WS = 0.35 RDECORR CW WS =
0.35 LPPH=.FALSE.
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Figure 6. Difference between the time averaged zonal mean shortwave (upper) and
longwave (lower) radiative fluxes between using the EXP-RAN scheme of Hogan and
Illingworth (2000) instead of the (present default) EXP scheme of Bergman and Rasch
(2002)

designed to be computationally economical to be run using a member state unit
allocation. A full list of experiment identifiers is available on request.

As an example Fig. 6 shows the mean impact of the implementing the EXP-RAN
scheme versus the EXP overlap scheme, in this case using a constant L = 3km but there
are also experiments using the alternative options. For the short wave calculation it is
seen that the impact is on the order of 2 W m−2. This is comparable to the impact of
switching the overlap parametrization from fixed 3km decorrelation length-scale to the
latitude-dependent scheme of Shonk et al. (2010) or the wind-shear scheme of Di
Giuseppe and Tompkins (2015) (see Fig. 7 which is reproduced from Di Giuseppe and
Tompkins (2015).

Summary of Appendix

In summary, a branch has been presented that has the following attributes:

1. The overlap assumption has been changed from a simple EXP scheme to the
EXP-RAN scheme of Hogan and Illingworth (2000), which more accurately
describes the observed statistics of cloud overlap in observations.
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Figure 7. Zonal average differences of top of atmosphere (TOA) (a) shortwave (SW)
and (b) longwave (LW) fluxes between the Shonk, CY41R1, wind shear
parameterizations with respect to the fixed decorrelation lengthscale of 3 km (Fix),
defined in the legend. Positive values indicate an increase in the downward direction.
Figure reproduced from Di Giuseppe and Tompkins (2015)

2. The loop order has been changed in the cloud sub-column generator code and
superfluous random number vectors have been removed. Together these changes
should decrease the CPU time of this routine by approximately an order of
magnitude, which is important as this is a heavy part of the code generating
O(102) sub-columns for each radiative gridpoint.

3. The (optional) MAX-RAN overlap assumption is now coded to be self-consistent
with the EXP-RAN assumption and is no longer sensitive to the vertical
resolution selected.

4. An additional decorrelation length-scale parameterization scheme has been added
which parametrizes the decorrelation as a function of wind-shear according to Di
Giuseppe and Tompkins (2015). Set NDECOLAT=3 to select this scheme (default
value is NDECOLAT=2). This implementation involves a slight computational
overhead even if the scheme is not selected due to the fact that the winds need to
be passed down to the level of the radiation calculations, which is done whether or
not the scheme is selected.

5. The plane parallel assumption is no longer selected according to the choice of
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EXP or MAX-RAN, but is now an independent parameter. The default setting is
LPPH=FALSE to maintain consistency with the present operational
configuration.

6. LPPH, RPOLICE and the new overlap parameters for the wind shear
parametrization RDECORR CF WS and RDECORR CW WS and now definable
in the radiation namelist.
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