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Summary of project objectives  
(10 lines max) 

The goal of the project consists in analysing the impact of improved sea-ice and soil moisture initial 

conditions, as well as of the implementation of a simplified stochastic physics scheme, on the 

forecast quality of seasonal predictions performed with the EC-Earth forecast system. EC-Earth will 

be used as a test-bed to transfer improvements to the ECMWF operational seasonal forecast system 

coming from a full climate model. The project considers a comprehensive set of ensemble 

interannual hindcasts with different initialization strategies. By developing the sub-seasonal and 

seasonal forecast capability of EC-Earth, this project expects to continue implementing the seamless 

approach, whose basic premise is that there are fundamental physical processes in common to both 

seasonal and decadal forecast, as well as climate-change projections. 
 

Summary of problems encountered 
(If you encountered any problems of a more technical nature, please describe them here. ) 

None. 

 

Experience with the Special Project framework  
(Please let us know about your experience with administrative aspects like the application 

procedure, progress reporting etc.) 
 

Everything fine. 

 

Summary of results  
(This section should comprise up to 10 pages and can be replaced by a short summary plus an 

existing scientific report on the project.) 
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Seasonal-to-interannual (s2i) predictions deal with a time horizon ranging from a season to several 

years. On these time scales, the storage of heat by the ocean and moisture by the land, together with 

the presence or absence of snow and sea ice become important factors in determining the 

atmospheric variability. Based on knowledge of the initial conditions, important aspects of climate 

are predictable up to a year ahead (Kirtman and Pirani, 2009). This predictability is primarily, 

though not solely, associated with the El Niño Southern Oscillation (ENSO). Besides, the natural 

variability of temperature and other climate variables at the s2i time scale should be considered as 

superimposed on externally forced low-frequency variability due to external forcings: human-

induced changes in greenhouse gas and aerosol (GHGA) concentrations, land-use changes as well 

as natural variations in solar activity and volcanic eruptions. 

Seasonal-to-interannual (s2i) predictions deal with a time horizon ranging from a season to several 

years. On these time scales, the storage of heat by the ocean and moisture by the land, together with 

the presence or absence of snow and sea ice become important factors in determining the 

atmospheric variability. Based on knowledge of the initial conditions, important aspects of climate 

are predictable up to a year ahead (Kirtman and Pirani, 2009). This predictability is primarily, 

though not solely, associated with the El Niño Southern Oscillation (ENSO). Besides, the natural 

variability of temperature and other climate variables at the s2i time scale should be considered as 

superimposed on externally forced low-frequency variability due to external forcings: human-

induced changes in greenhouse gas and aerosol (GHGA) concentrations, land-use changes as well 

as natural variations in solar activity and volcanic eruptions. 

The ocean anomalies associated with ENSO events and other ocean phenomena, soil moisture and 

snow and sea-ice cover anomalies are taken into account when initializing dynamical s2i 

predictions. Unfortunately, less information is available about the state of the ocean, sea-ice, snow 

and land than about the atmosphere (Saha et al., 2010), and often the forecasts are penalized by a 

lack of understanding of the interactions among the subsystems (Pegion and Kirtman, 2008). Initial-

condition and GHGA concentration uncertainties are not the only sources of forecast error. Model 

inadequacy, a result of the lack of knowledge about relevant processes and the limitations in 

available computational resources (Palmer et al., 2005), also limits the ability to make predictions 

on time scales longer than two weeks. 

The goal of this project is threefold: to assess the impact of sea-ice and soil initialisation on s2i 

predictions, as well as to test stochastic physics techniques to account for model inadequacies at the 

seasonal time scale, using the EC-Earth Earth system model (ESM; Hazeleger et al., 2012). The 

following paragraphs present results about the sensitivity of s2i forecast quality to the sea-ice and 

soil initialisation datasets and methods and to the stochastic physics schemes tested in the last 3 

years. 

 

Impact of sea-ice initialisation 

The tuning of EC-Earth3 by the EC-Earth consortium lasted longer than initially planned. To be 

able to satisfy our commitment in this proposal we chose to perform our sea-ice and land-surface 

initialisation experiments with EC-Earth2.3 instead. Ensembles of 5-member, 1-year long climate 

predictions have been initialized on 1st November, 1st May and 1st August every year from 1979 to 

2011 with EC-Earth 2.3. The atmospheric initial conditions were taken from the ERA-interim 

reanalysis (Dee et al., 2011), the ocean initial conditions from the ORAS4 reanalysis (Mogensen et 

al., 2011; Balmaseda et al., 2012) and the sea ice initial conditions from a sea ice reconstruction 

(Guemas et al., 2014) produced by forcing the ocean and sea ice components of EC-Earth 2.3 with 

ERA-interim and nudging the ocean thermodynamic state towards ORAS4. This set of climate 

predictions will be referred to as Init in the following. 

Three sensitivity experiments, referred to as Clim in the following, have been performed by 

initialising the sea-ice component from climatologies of the 1st November, 1st May and 1st August 

respectively and computed over the 1981-2010 period from the same sea-ice reconstruction 

mentioned above. Given the strong seasonality of Arctic sea ice, the results are described separately 

for each start date but for reasons of space only for the hindcasts initialised in May and November. 
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Figure 1: Correlation (left) and root mean square error (RMSE, right) of the ensemble mean 

predictions initialised in November for the total Arctic sea-ice area as a function of the forecast 

time computed after applying a bias correction via the per-pair method (Garcia-Serrano and 

Doblas-Reyes, 2012) and after a smoothing with a 3-month running mean. The reference dataset is 

the National Snow and Ice Data Center (Cavalieri et al., 1996). The confidence intervals shown by 

thin lines are computed using a Student t distribution for the correlation and a chi2 distribution for 

the RMSE. The autocorrelation of the data is accounted for following Von Storch and Zwiers 

(2001). 

 

 

 
Figure 2: Anomaly correlation coefficient (ACC) of the ensemble mean predictions initialised in 

November for winter (December-January) bias-corrected near-surface air temperature north of 

65ºN (top left), in the 40ºN-65ºN band (top right) and in the 20ºN-40ºN band (bottom left). The ratio 

between the RMSE of the Init and Clim experiments is shown in the bottom right panel. The 

reference data comes from the merged dataset containing the GHCN/CAMS land surface 

temperature (Fan and van den Dool, 2008) and the ERSST v3b sea surface temperature (Smith et 

al., 2008) inside the 60ºS-60ºN latitude band and the GISSTEMP with 1200 km decorrelation scale 

(Hansen et al., 2010)  in the polar regions. The confidence intervals for the ACC are computed 

using a Student t distribution. 
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Forecasts initialised in November 

The Init experiment shows a higher skill in total Arctic sea ice area than Clim in winter and summer 

but not in spring (Figure 1). Initializing from a sea ice reconstruction allows for an increase in mean 

anomaly correlation coefficient (MACC) of Arctic winter (December-January) near surface air 

temperature from 0.12 to 0.23 North of 65ºN, from 0.11 to 0.20 in the 40ºN-65ºN latitude band and 

from 0.24 to 0.28 in the 20ºN to 40ºN latitude band (Figure 2) compared to initializing from a sea-

ice climatology. The root mean square error (RMSE) in winter near-surface temperature is 

significantly reduced in the Central Arctic, over the Barents, Kara, Laptev, Beaufort, Bering Seas 

and the Gulf of Alaska but also over continental regions such as Alaska and Northern Asia (Figure 

2). No improvement is found in the Tropics nor in the Southern Hemisphere. 

 

 
Figure 3: As in panel bottom right of Figure 2 but for seasonal forecasts initialised in 1

st
 May and for 

summer (June-August) near-surface temperature.  Latitude bands are 90S-65S (top left) and 65S-40S 

(top right). Areas are the North Pole (bottom left) and South Pole (bottom right). 

 

Forecasts initialised in May 

The RMSE in summer (June-to-August) for near-surface air temperature is significantly reduced 

only over north-eastern Asia (Figure 3, bottom left) in Init relative to Clim. However, whereas no 

significant impact of sea-ice initialization was obtained in the Southern Hemisphere for forecasts 

from 1st November, a significant reduction in the RMSE in summer near surface temperature over 

Antarctica is obtained in the forecasts from 1st May (Figure 3, bottom right). The MACC increases 

from 0 to 0.20 South of 65ºS and from 0.17 to 0.18 in the 65ºS-40ºS latitude band (Figure 3, top 

row) in Init compared to Clim.  

These experiments tend to illustrate the added-value for near-surface temperature skill of initializing 

the sea-ice component of seasonal forecast systems even from a sea-ice reconstruction instead of 

using sea-ice climatologies at least for the first few forecast months. The data of the sea-ice 

reconstruction has been shared with the seasonal forecast group at ECMWF. 

 

Impact of land-surface initialisation 

The impact of a realistic land-surface initialization on sub-seasonal and seasonal forecasts was also 

assessed with EC-Earth2.3, by comparing two sets of 10-member four-month long hindcasts over 

the 1981-2010 period starting the predictions on the 1st of May, June, July and August. For 

simplicity, only results for the May start dates are discussed here. In the first set, the Clim 
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experiment, the land surface is initialised with climatological conditions taken from ERAInt-Land 

(Balsamo et al., 2013), while in the second set, the Init experiment, the soil moisture is initialized 

with the simultaneous ERAInt-Land values. The ocean, sea-ice and atmospheric components are 

initialized with ORAS4, a sea-ice reconstruction and ERA-Interim (Dee et al., 2011), respectively. 

However, the sea-ice initial conditions of these experiments are different from the ones used in the 

previous section as the IC3 sea-ice reconstruction was not available until the land-surface 

experiments were already started. Seasonal forecast quality is assessed using ERA-Interim as a 

reference for temperature and precipitation (Huffman et al., 2009). 

 
Figure 4: (a) Correlation of the ensemble mean t2m averaged in JJA (one-month lead time) in the 

Clim experiment. The dots mark the areas where the correlation is significant at the 95% 

confidence level. (b) Same as a, but for precipitation. (c) Difference of correlation of the ensemble 

mean between the Init and Clim experiments for the t2m in JJA. The dots mark the areas where the 

difference of correlation is 95% significant at the 95% confidence level. d) Same as c but for 

precipitation. 

 

The use of a realistic initialization of soil variables (snow, soil moisture and soil temperature) such 

as the one used in the INIT experiment compared to the one used in CLIM has generally a positive 

impact on the skill of seasonal mean t2m (Figure 4). Nevertheless, only few of the positive changes 

are statistically significant at the 95% confidence level (black dots), which is the likely result of the 

small differences and the reduced sample size of the experiment, an aspect that is limited by the 

observational data available to reliably initialize the hindcasts. The impact of land-surface 

initialization on the precipitation skill is patchy, although with a tendency to show positive 

differences in correlation. There is no area with a significant decrease of correlation, whereas a few 

areas show an important increase of skill (Figure 4d). These improvements visible on figure 4 are 

robust if the trend is considered (not shown). 

In order to understand how the land initialization can improve the skill of the seasonal forecast 

system, we investigated more in detail the prediction of the two huge heat waves, which stroke 

Europe in the past decades: in summer 2003 over western Europe and the 2010 Russian heat wave. 

Figure 5 shows that the soil initialization is crucial for the prediction of the 2010 heat wave. This 

result shows that the dry soil condition over Russia at the end of the spring plays a strong role on 

the occurrence of the heat wave. Conversely, the forecast system is able to predict the 2003 heat 

wave even without the correct soil initialization. This last feature shows that the atmospheric 

circulation was predictable by the model even without the correct soil-moisture initial condition. It 
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hence suggests that the anticyclonic circulation over Europe was driven by the large scale 

conversely to what has been suggested by previous studies (Garcia-Herrera et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a) and (d) Anomalies of detrended 2m-temperature in JJA 2003 and 2010, respectively. 

The dots indicate the area where the anomaly is in the upper quintile (estimated over 1981-2010). 

b)-c) and e)-f) Odds in CLIM (b, e) and INIT (c, f) for T2m. The odds are the ratio between the 

probability for the anomalies to be in the upper quintile, the interquintile range or the lower 

quintile and with the climatological probability of these three categories (20%, 60% and 20%, 

respectively). Each point is attributed to the category corresponding to the highest odds ratio. If the 

point is attributed to the interquintile range or if there is no category assigned (the categories with 

two highest odds ratio have an equal value) the point is drawn in white. If the point is attributed to 

the lower/upper quintile category, the corresponding odds ratio is plotted with the left/right color 

scale. 

 

Impact of a stochastic parameterisation scheme 

Two types of stochastic parameterisations have been considered in this project: stochastic physics 

and stochastic dynamics. The stochastically perturbed parameterisation tendency scheme (SPPT; 

Palmer et al., 2009) was implemented in EC-Earth3 because it was part of IFS Cy36r4 that was 

used for the most recent version of EC-Earth. This also meant that this part of the project had to be 

carried out last. This multiplicative stochastic parameterisation scheme applies in-run univariate 

Gaussian perturbations to the wind, humidity and temperature tendencies. The perturbation pattern 

varies smoothly in time and space, and the same pattern is applied to the tendency of each variable. 

Several patterns defined with different space and time decorrelation scales can be combined 

linearly. The importance of each scale in the total perturbation is defined by choosing the standard 

deviation σ. The stochastic dynamics (SDYN) method (Batté and Déqué, 2012) is an additive 

stochastic perturbation technique, first implemented in the ARPEGE-Climat atmospheric 

component of the CNRM-CM climate model. We implemented a technique similar to Batté and 

Déqué (2012) in IFS Cy36r4. Prognostic variables T, u, v, and q are perturbed by adding random 

draws of initial tendency error corrections of IFS, estimated using atmospheric relaxation. To our 

knowledge, this is the first time that two completely independent stochastic approaches are tested 

simultaneously in IFS and we expect these results to be relevant to ECMWF’s activities for the 

introduction of stochastic parameterisations. 
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Impact of SPPT perturbations 

Different sets of space and time scales and weights have been tested with EC-Earth3 using the 

T255L91-NEMO 3.3 ORCA1L46-LIM2 configuration. The experiments are described in Table 1. 

For each experiment, ten ensemble members were run for four months starting from the first of May 

and November over the 1993-2009 hindcast period, using the ERA-Interim and GLORYS v2.1 

reanalyses to initialise the atmospheric and ocean/sea-ice components. 

  

Exp 
Scale

s 

Time 

scale 

Spatial 

scale 
σ 

Time 

scale 

Spatial 

scale 
σ 

Time 

scale 

Spatial 

scale 
σ 

REF 0 - - - - - - - - - 

SPPT3 3 
6 

hours 

500 

km 
0.5 3 days 

1000 

km 
0.25 

30 

days 

2000 

km 
0.125 

SPPT2L 2 
10 

days 

1000 

km 
0.173 30 days 

2000 

km 
0.288 - - - 

Table 1: Space and time scales tested for SPPT in EC-Earth3. 

 

Forecast quality is evaluated in terms of systematic error, spread-skill ratio, correlation of the 

ensemble mean and probabilistic skill using the Brier Score, focusing on seasonal averages for the 

forecast months 2 to 4. We use ERAInt as reference data for SST and sea-level pressure, and GPCP 

v2.2 for precipitation. 
(a) REF          (b) SPPT3              (c) SPPT2L 

     

 
Figure 6: Spread-skill ratio for DJF SST over the 1993-2010 period for REF and both SPPT 

experiments (from left to right). Spread is computed as the standard deviation around the ensemble 

mean, whereas skill is the RMSE of the hindcast with respect to ERAInt data. 

 

Figure 6 shows the impact of SPPT on the spread-skill ratio for SST hindcasts in DJF using the 

hindcast with November start dates. The REF ensemble is highly under-dispersive over most of the 

regions. The introduction of SPPT perturbations increases the spread-skill ratio over most of the 

tropical oceans, due to a significant increase in ensemble spread without affecting the model RMSE. 

With the larger scale perturbations (SPPT2L), the ensemble is over-dispersive over the tropical 

Atlantic and Indian oceans. 

In most of our analyses we find that introducing SPPT in EC-Earth3 helps reducing some of the 

systematic errors over the tropical Pacific, and lead to an improvement of the model mean state in 

terms of precipitation over the Maritime Continent. These improvements are consistent with a 

reduction of the near-surface wind biases in DJF over the Western Tropical Pacific, corresponding 

to a correction of the excessively easterly trade winds over the region (Figure 7). 

Figure 8 shows an evaluation of the probabilistic skill of the JJA SST forecasts over the Niño 3.4 

region for the hindcasts started in May. The reliability diagrams display the observed relative 

frequency of SST exceeding the second tercile of the climatology against the forecast probabilities 

calculated by counting the number of ensemble members forecasting the occurrence of the event. In 

a well-calibrated ensemble, when the forecast gives a 40% chance of the event occurring, it should 

be observed about 40% of the time. The points should therefore be close to the diagonal line. The 

weighted probabilistic bias is measured by the “Rel” value shown in the top left corner of the 

figures, and should be as small as possible. The diagrams in Figure 8 show that the introduction of 

SPPT perturbations improves the reliability, especially in the case of SPPT2L. Another aspect of 
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probabilistic forecast skill is the forecast resolution. Climatological forecasts are perfectly reliable, 

but give no indication as to the inter-annual variability of the probabilistic event. Resolution 

evaluates the ability of the system to separate different predictions, and is measured by the “Res” 

value which should be as large as possible. The Brier Score combines both aspects of probabilistic 

skill and measures a mean square skill score in probabilistic space with respect to using 

climatology. It should be as small as possible. SPPT perturbations tend to slightly improve the Brier 

score, mainly due to significant improvements in the Rel value. In contrast, over higher latitudes 

SPPT tends to increase model systematic error without significantly changing seasonal forecast 

skill. 

 
(a) REF           (b) SPPT3              (c) SPPT2L 

     

    
Figure 7: (a) Systematic error for the near-surface zonal-wind component in the DJF REF hindcasts 

started in November. (b-c) Reduction in absolute systematic error with respect to the REF 

experiment in the SPPT3 and SPPT2L DJF hindcasts, respectively. Blue regions correspond to the 

regions where the systematic error is reduced, regardless of its sign. 

 
       (a) REF                 (b) SPPT3          (c) SPPT2L 

     
Figure 8: Reliability diagrams for the event JJA SST exceeding the second climatological tercile 

over the Niño3.4 region for the REF, SPPT3 and SPPT2L experiments started in May. The size of 

the dots shows the population of each forecast probability bin over the hindcast period, and vertical 

bars show the range of uncertainty in the reliability diagram based on 1000 bootstrap samples over 

the hindcast period. The insets provide the Brier score and its decomposition in reliability and 

resolution. 

 

Impact of a stochastic dynamics technique 

The SDYN implementation, which has also been carried out on EC-Earth3 to allow an appropriate 

comparison with the SPPT results, follows two main steps: 

• Atmospheric relaxation run: the atmospheric component is relaxed towards ERAInt 

reanalysis data. Corrections towards ERAInt are saved daily and are the basis for the perturbation 

population {δX}. The implementation of the atmospheric relaxation in EC-Earth3 is a new tool 

available to the EC-Earth community, for whom the reference files have been made available in 

ECFS. 

• Hindcasts: a seasonal re-forecast is run perturbing each ensemble every 6 hours with random 

draws of the δX set for the corresponding calendar month (in cross-validation mode). 
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The first step was implemented in the IFS Cy36r4 available in EC-Earth3, where the atmospheric 

relaxation routines were adapted from the atmospheric relaxation branch available in perforce for a 

more recent cycle, Cy38r1 as recommended by Linus Magnusson (ECMWF). The modifications 

were tested with several atmospheric relaxation coefficients for temperature, u and v winds, 

humidity, surface pressure, cloud cover and cloud water fractions. Two nudged IFS runs over the 

1993-2009 time period were completed, relaxing atmospheric fields to ERAInt data with relaxation 

coefficients of 0.1 (strong nudging) and 0.01 (weak nudging, corresponding to a nudging time scale 

of approximately 4 days). An analysis of the perturbation populations estimated with these nudged 

runs showed that the perturbation terms for the strong nudging were mainly made of intra-month 

variability, whereas the weak nudging terms contained a larger proportion of systematic corrections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: (left) Systematic error for DJF 1993-2009 near-surface air temperature in REF with 

respect to ERA-Interim data and (right) relative systematic error for the same period for SDYN with 

respect to REF. 

 

Figure 9 shows the impact of the stochastic dynamics perturbations on the systematic error of near-

surface air temperature for winter hindcasts. The relative systematic error in the SDYN ensemble 

(figure (b)) highlights that temperature bias is noticeably reduced over most of the tropics, as well 

as over Northern Eurasia where a strong warm bias was found in the REF experiment. Some areas 

do exhibit an increase in bias, such as most of Europe and the Mediterranean, the Arctic and the 

northeast Pacific Ocean 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Reliability diagrams for the event near-surface air temperature exceeding the second 

climatological tercile over the Niño3.4 region in DJF for (a) REF and (b) SDYN hindcasts started 

in November over 1993-2009. The size of the dots shows the population of each forecast probability 

bin over the hindcast period, and vertical bars show the range of uncertainty in the reliability 

diagram based on 1,000 bootstrap samples over the hindcast period. 
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Unlike SPPT, the stochastic dynamics method has no impact on ensemble spread (it even appears to 

reduce spread for some variables, although with five ensemble members the confidence intervals are 

very large). Figure 10 shows, as in Figure 8, the reliability diagrams but for near-surface air 

temperature over the Niño3.4 region in winter for the November start dates. As for SPPT, the 

stochastic dynamics technique improves both reliability and resolution in the forecasts and leads to a 

better Brier Score. However, the confidence intervals are very large and improvements cannot be 

considered significant. 

Future work on the subject includes running larger ensembles and longer hindcast periods to possibly 

draw more robust conclusions on the impact of stochastic perturbations in IFS on the EC-Earth3 

seasonal forecast quality. For this purpose, we plan to use the NEMOVAR ocean initial conditions in 

future tests. 

 

Some conclusions 

This special project has demonstrated the relevance for the forecast quality of seasonal-to-interannual 

predictions of producing accurate initial conditions for components of the climate system that 

traditionally do not receive as much attention as the atmosphere and the ocean. While the impact of 

the sea ice and land surface on the forecast quality is much lower than the impact of the other 

components, their relevance at local and regional scales as well as for predicting extreme, high-impact 

events like the summer 2012 sea-ice minimum or European and Russian heat wave of 2003 and 2010 

is now much clearer thanks to these experiments. Special mention should be made of the experiments 

performed to assess the impact of different approaches to introduce stochastic perturbations during the 

forecasts. EC-Earth is the only system currently available where both SPPT and the Météo-France 

stochastic dynamics methods can be compared on an even foot. The results of these experiments, as 

well as of those that are being performed on different HPC platforms with computing time granted by 

other programmes, are directly relevant to similar efforts undertaken by ECMWF. The closeness 

between EC-Earth and the ECMWF seasonal forecast system and the continuous collaboration 

between the IC3 scientists involved and some ECMWF staff will benefit in the medium term the 

development of their operational sub-seasonal and seasonal systems. Further analysis of these 

experiments and the dissemination of the results in peer-reviewed journals already demonstrate and 

will clearly illustrate in the future the impact, not just for ECMWF’s objectives but also for the 

climate-prediction community at large, of the resources granted by ECMWF through its special 

project programme. 
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Future plans  
(Please let us know of any imminent plans regarding a continuation of this research activity, in particular if 

they are linked to another/new Special Project.) 

A new publication is planned to be submitted this year on this project on the role of soil 

initialization in the development of 2003 and 2010 heat wave. 

IC3 has been granted a new special project for the 2015-2016 period to work on the same thematic 

but using the new version of EC-Earth (3.1) at the highest resolution (T511-ORCA025). 


