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ABSTRACT

We compare anelastic and compressible solutions for two moist deep-convection benchmarks, a
two-dimensional thermal rising in a saturated moist-neutral deep atmosphere and a three-dimensional
supercell formation. In the anelastic model, the pressure applied in the moist thermodynamics comes
from either the environmental hydrostatically-balanced pressure profile in the standard anelastic
model or is combined with nonhydrostatic perturbations from the elliptic pressure solver in the gen-
eralized anelastic model. The compressible model applies either an explicit acoustic-mode resolving
scheme requiring short time steps or a novel implicit scheme allowing time steps as large as those
used in the anelastic model. The consistency of the unified numerical framework facilitates direct
comparisons of results obtained with anelastic and compressible models.

The anelastic and compressible rising thermal solutions agree not only with each other, but
also with the previously-published compressible benchmark solution based on the comprehensive
representation of moist dynamics and thermodynamics. In contrast to earlier works focusing on the
formulation of moist thermodynamics, we emphasize the compatibility of the initial conditions and
document their impact on the benchmark solutions. Anelastic and compressible supercell solutions
agree well for various versions of anelastic and compressible models even for cloud updrafts reaching
15% of the speed of sound. The nonhydrostatic pressure perturbations turn out to have a negligible
impact on the moist dynamics. Numerical and physical details of the simulations, such as the
advection scheme, spatial and temporal resolution, or parameters of the subgrid-scale turbulence,
have a more significant effect on the solutions than the particular equation system applied.

1. Introduction

Modeling atmospheric dynamics requires numerical
methods for solving a system of partial differential equa-
tions originating from the Navier-Stokes fluid flow equa-
tions. The most complete approach involves the compress-
ible system that is cumbersome because of the presence of
fast acoustic modes. These modes are energetically of low
relevance for weather and climate, but they impose strin-
gent stability constraints on numerical solvers. Because
of that, simplified systems of soundproof equations have
been developed in the past (e.g., incompressible Boussi-
nesq, anelastic or pseudo-incompressible) and proved use-
ful in simulations of small-scale and mesoscale low-Mach-
number atmospheric flows. Atmospheric regional climate
models and general circulation models targeting weather
and climate processes at larger scales (synoptic and global)
are typically based on even more simplified system of equa-
tions involving hydrostatic balance in the vertical direc-
tion (i.e., neglecting fluid accelerations when compared to
gravity). Such models have to rely on heavily approxi-
mated subgrid-scale parameterizations to represent effects
of small-scale processes (turbulence, clouds, precipitation,

etc.) on the resolved larger-scale flow. Increasing computa-
tional power and need to better incorporate effects of small-
scale processes in weather and climate simulation (clouds
and precipitation in particular) provides a strong motiva-
tion for the development of models suitable for the entire
range of spatial scales, from the microscale to global.

Kurowski et al. (2013, hereinafter KGS13) discussed ex-
tension of the soundproof methodologies applied in cloud-
scale modeling into larger-scale simulation. It was argued
applying a simple scale analysis and documented in nu-
merical simulations that small-scale pressure perturbations
(either predicted in the compressible system or diagnosed
in the anelastic system) have virtually no effect on the
moist thermodynamics. However, computational examples
used in KGS13 concerned relatively shallow flows (ther-
mals rising from rest and moist flow over mesoscale to-
pography) and a similar comparison for deep tropospheric
flows featuring larger vertical velocities would be desirable.
Notwithstanding the scale analysis of Lipps and Hemler
(1982), one may wonder if the anelastic framework is suit-
able for modeling severe convection. The two major is-
sues concern presence of relatively large pressure perturba-
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tions that may have a non-negligible impact on the moist
thermodynamics (e.g., saturation adjustment), and an im-
portant role of vorticity dynamics in the supercell forma-
tion which differ in the anelastic and compressible systems.
Moreover, in deep convection, the temperature range en-
countered by a volume of fluid rising from near the surface
to the tropopause is close to 100 K and thus one needs to
ensure that the representation of model moist thermody-
namics is sufficiently accurate. This issue was emphasized
in the idealized test case developed in Bryan and Fritsch
(2002).

Keeping in mind our goal to progress towards global
modeling, one needs to realize limitations of the fully com-
pressible framework used in KGS13. Grabowski and Smo-
larkiewicz (2002, section 5) reported global moist flow sim-
ulations (topographically-forced planetary wave and moist
Held and Suarez (1994) climate benchmark) applying the
anelastic framework with model time steps of the order of
103 s. Since the vertical gridlength in those simulations was
several hundred meters, applying the explicit compressible
model would require model time steps of the order of 1 s
to maintain numerical stability with respect to vertically-
propagating acoustic modes. Smolarkiewicz et al. (2014)
reported a development of a novel implicit (with respect
to acoustic, buoyant and rotational modes) compressible
framework that allows application of significantly larger
time steps, similar to those used in the anelastic system.
An extension of the dry framework of Smolarkiewicz et al.
(2014) to include moist processes is documented in the Ap-
pendix A and used in simulations of deep convection.

The next section provides a brief overview of the uni-
fied fluid flow modeling system (soundproof/compressible)
used in the deep convection simulations and based on the
EULAG model numerical framework (Prusa et al. 2008;
Smolarkiewicz et al. 2014). We apply two benchmark deep
convection simulation cases, namely Bryan and Fritsch
(2002) and Weisman and Klemp (1982). The former con-
siders two-dimensional deep convection in a fully saturated
neutrally-stratified environment, and the latter concerns
three-dimensional supercell formation in a sheared envi-
ronment. Model setups and results for the two cases are
presented in sections 3 and 4, respectively. Section 5 pro-
vides summary and conclusions. In addition, Appendix A
summarizes the model numerical framework, whereas Ap-
pendix B discusses idealized simulations that illustrate se-
lected points of the main discussion.

2. The model and model simulations

The research tool employed in this study is the anelas-
tic/compressible EULAG model. The early version of
the model was based on the anelastic approximation and
proved useful in numerous studies concerning a wide range
of low-Mach number flows (e.g., Prusa et al. 2008). The ex-

plicit small-to-mesoscale compressible version of the model
originated in Smolarkiewicz and Szmelter (2009) has been
recently generalized to moist thermodynamics (Kurowski
et al. 2013) and extended to an all-scale semi-implicit com-
pressible version facilitating the use of large (e.g., anelastic)
time steps (cf. Smolarkiewicz et al. 2014). A unique feature
of the EULAG model is a consistent numerical framework
that allows unification of the numerical solver and thus a
clear exposition of differences stemming from contrasting
mathematical formulations of the governing equations.

The EULAG’s moist thermodynamics is based on a
set of prognostic equations for water vapor, cloud con-
densate and precipitation mixing ratios (e.g., Grabowski
1998; Grabowski and Smolarkiewicz 2002). In simula-
tions described in section 4, these have been modified to
fit warm-rain parameterization applied in Weisman and
Klemp (1982). In the anelastic model, the pressure ap-
plied in the moist thermodynamics comes from either the
environmental hydrostatically-balanced pressure profile in
the standard anelastic model or is combined with nonhy-
drostatic perturbations from the elliptic pressure solver as
described in KGS13 in the generalized anelastic model. In
the compressible model, a prognostic equation for the dry
air density is solved and the thermodynamic pressure is
subsequently derived from the moist equation of state; see
Appendix A for a summary of the unified dynamical core
that accounts for moist processes.

Several model configurations are used for the two test
simulation setups considered in this paper. These are: the
standard anelastic model (ANES), the generalized anelastic
model with pressure perturbations included in moist ther-
modynamics (ANEG; see KGS13), the standard anelas-
tic model using compressible time step (ANESc), the im-
plicit compressible model (COMP), the implicit compress-
ible model using the anelastic pressure profile in moist
thermodynamics (COMPa) and the explicit compressible
model (COMPe). All these are summarized in Tab. 1.

3. Thermal rising in a cloudy moist-neutral envi-
ronment

We consider the problem of a moist thermal rising
in a cloudy moist-neutral deep atmosphere introduced by
Bryan and Fritsch (2002, hereinafter BF02). Besides com-
paring anelastic and compressible solutions, the test pro-
vides an opportunity to contrast results obtained with
highly accurate representation of moist physics from BF02
(i.e., exact thermodynamic energy and saturated water va-
por pressure formulations, comprehensive representation
of moisture effects in the governing equations, etc.) with
the solutions obtained with simplified thermodynamic en-
ergy equation and representation of moist physics as imple-
mented in EULAG (Grabowski and Smolarkiewicz (1996),
see eqs. 1, 3 and 4 therein; Grabowski and Smolarkiewicz
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(2002)).

a. Setup of simulations

BF02 test considers two-dimensional (x − z) moist
problem limited to reversible adiabatic bulk condensa-
tion/evaporation. The domain size is 20×10 km2 (x × z)
with a uniform grid spacing of 100 m. The atmosphere is
neutrally stratified for moist reversible processes, that is,
the equivalent potential temperature θe is uniform across
the domain. The initial total water mixing ratio has a
constant and relatively large value of 20 g kg−1 within
the entire domain. With the assumed surface pressure
of 1000 hPa, uniform θe dictates that the cloud water of
the moist neutrally-stratified environment increases from
around 7.7 g kg−1 at the bottom boundary to around
19.8 g kg−1 at the model top. Such conditions ensure that
the environment remains cloudy when displaced downward
by the thermal rise. The atmosphere is initially at rest.
The saturated spherical warm thermal (a bubble) is placed
2 km above the ground. The potential temperature pertur-
bation has a 2-K maximum in the center of the bubble and
gradually decreases to zero along the 2-km radius. The
water vapor mixing ratio is adjusted to maintain water
saturation inside the bubble. The solutions are compared
after a 1000 s of the thermal rise. The integration time
step for the anelastic model is 4 s. The same time step is
also used for the implicit compressible model, whereas the
explicit compressible (hereafter acoustic) model employs a
0.25 s time step (see Tab. 1 for a description of the simu-
lations). Further details of the model setup are exactly as
in BF02.

Specifics of the uniform equivalent potential tempera-
ture θe condition (i.e., the vertical distribution of the po-
tential temperature θ, water vapor qv and cloud water qc

mixing ratios that are all used as predicted variables in the
EULAG model) depend on particular formulations of the
model thermodynamic energy and saturated water vapor
mixing ratio. A set of relations between initial/boundary
conditions and the governing equations that are necessary
and sufficient for their consistency is typically referred to
as compatibility conditions for partial differential equations
(e.g., Temam 2006). In the specific test considered here,
these conditions imply that the θ, qv and qc profiles corre-
sponding to the uniform θe have to be derived based on the
specific model formulation, and that applying profiles ob-
tained with a different (i.e., incompatible) formulation may
lead to incorrect solutions. To illustrate this very point,
we present anelastic and compressible solutions applying
θ, qv and qc profiles either derived applying the EULAG’s
formulation of the moist thermodynamics or as given in
BF02, that is, obtained with their comprehensive repre-
sentation of the moist thermodynamics. Since the condi-
tions at the surface are prescribed, one can compare the
temperature and pressure values at the domain top (i.e.,

at 10 km) obtained with the two formulations. The dif-
ferences are about 4 K and 2 hPa, and thus one might
expect some differences between simulations applying the
two sets of environmental profiles as illustrated by model
results discussed below.

b. Preamble: dry anelastic and compressible solutions

In addition to moist simulations, BF02 also presented
solutions of a dry thermal rising in a neutrally-stratified
environment, an analog of their moist case. This allows to
compare dry anelastic and compressible solutions to those
shown in BF02.

In general, both anelastic and compressible EULAG so-
lutions proved to be in excellent agreement. The differ-
ences between their extreme values at the final time for
the vertical velocity (w) and potential temperature pertur-
bation (θ′) were around 1%. The results were also close
to the reference solution of BF02 (Fig. 1 therein). The
extreme values for w and θ′ fields differed from BF02 by
about 4% and 10%, respectively. The latter difference is
most likely due to different advection schemes employed
in the two models. The EULAG’s non-oscillatory MP-
DATA algorithm (e.g., Smolarkiewicz and Margolin 1998;
Smolarkiewicz 2006) provides monotone solutions and —
in the anelastic system — it is impossible for the mini-
mum/maximum θ′ to undershoot/overshoot its initial val-
ues of 0/2 K. The compressible EULAG solution, like the
anelastic one, contained neither negative nor larger-than-
initial values of θ′, implying that the compressibility of the
air did not contribute to the temperature change in both
approaches (by design in the anelastic model and because
of the low-Mach-number flow regime in the compressible
model). Results obtained with the oscillatory MPDATA
were closer to those in BF02, with the difference in θ′ ex-
trema reduced from 10% to about 4%. Moreover, the min-
imum value of θ′ was also negative and not far from the
negative value shown in Fig. 1 of BF02. One thus can argue
that slightly different θ′ patterns in our dry solutions and
in solutions shown in BF02 come from numerical aspects
rather than from the effects of air compressibility.

c. Moist solutions

Fields of θ′e and w at the BF02’s final time (1000 s)
for simulations applying environmental θ, qv and qc pro-
files derived applying EULAG’s formulation of the moist
thermodynamics are shown in Fig. 1 and Fig. 2, respec-
tively. The figures compare solutions obtained with the
standard anelastic model (ANES), the generalized anelastic
model (ANEG), the implicit compressible model (COMP),
and the implicit compressible model using anelastic pro-
files in moist thermodynamics (COMPa), all applying the
same 4-s time step. In addition, the solutions from the
explicit (acoustic) compressible model COMPe and the

3



anelastic model ANESc both applying 0.25 s time step are
shown. The anelastic ANES and ANEG and compress-
ible COMP and COMPa solutions are almost identical and
compare well with Fig. 3 from BF02 in terms of the pat-
tern and vertical reach of the thermal. The consistency
of ANES and ANEG (and COMP and COMPa) results
clearly indicates that the nonhydrostatic pressure pertur-
bations (∼101 − 102 Pa) are of negligible importance for
the latent heating and buoyancy production. This is in
agreement with theoretical considerations and numerical
simulations discussed in KGS13. The explicit compressible
model COMPe provides a solution displaying small-scale
features on θ′e and w isolines. Results from the ANESc
simulation provide an explanation of the main differences
between implicit and acoustic compressible moist solutions.
Using a smaller time step, the ANESc solution resembles
COMPe solution and differs from ANES, ANEG, COMP
and COMPa in the same way as COMPe does. Apparently,
reducing time step of the model — and thus increasing the
total number of time steps — leads to more frequent modi-
fication of the temperature field (due to more frequent sat-
uration adjustment) and a larger cumulative difference be-
tween moist solutions. Similar tendency was also observed
in KGS13. It should be stressed that such behavior was
not observed in dry simulations from section 3.b because
dry simulations are less sensitive to the choice of model
time step, due to the absence of complications involved in
the advection-condensation problem; see a discussion and
computational examples in Grabowski and Smolarkiewicz
(1990). In particular, lack of monotonicity for the moist
problem even if the monotone advection scheme is used
may contribute to the development of small-scale features
in the numerical solution.

Quantitative comparison of model results is shown in
Tab. 2. Because the final shape of the thermal is slightly
different between various simulations, the height of the
thermal’s center (i.e., the height of the center of mass of the
θ′e field; Zmean) and the vertical reach of the thermal top
(defined as the θ′e leading edge height using a 0.1 K thresh-
old; Ztop) are chosen as measures of thermal’s evolution, in
addition to the extremes and standard deviations of θ′e, w
and p′ and mean values of θ′e. The spread of w minima and
maxima among various simulations reaches 5%, similarly to
the spread of θ′e maxima from ANES, ANEG, COMP and
COMPa. The solutions using the compressible time step
(i.e. COMPe, and ANESc) have about 20% larger θ′e max-
ima. The differences in the solutions seem to be mainly
related to the time step, rather than to the formulation
of the governing equations (soundproof vs. compressible).
Since the initial θ′e minimum is zero, the negative values
at the end of simulation have the largest model-to-model
variability ranging from −0.16 K for COMP and COMPa
to −0.57 K for ANESc and COMPe. In other words, mod-
els that use small time step (ANESc and COMPe) have

three to four times as small minimum θ′e as those using
large time steps (ANES, ANEG, COMP, COMPa), with
the latter four solutions being the closest to the compress-
ible BF02 solution. The mean values of θ′e differ less than
2% between various EULAG models and are in good agree-
ment with that for BF02. The standard deviation of θ′e is
about 6% larger for ANES, ANEG, COMP and COMPa
than for BF02, and about 9% larger for the models us-
ing the compressible time step. The spread of standard
deviation of w between the models does not exceed 6%.
The extreme values of the pressure perturbation agree well
between BF02 and all EULAG solutions with only 5% dif-
ference between the former solution and the compressible
models COMP and COMPa. The anelastic models yield
slightly more negative values for the minima. For the mod-
els using the small time step those differences are slightly
larger.

The vertical propagation of the bubble (Zmean and
Ztop) is almost the same for all models in Tab. 2 regardless
of the model mathematical formulation or numerical de-
tails. This is consistent with the formulation of buoyancy
term that is identical in all models, including BF02 (see
their Eq. 38). The spread between six different EULAG
results is at most 1.5% for Zmean (84 m) and Ztop (122 m),
with the anelastic solutions achieving slightly lower verti-
cal reach. However, the average difference after traveling
the distance of about 4.5 km is smaller than a single 100-
m gridlength. Overall, it is difficult to find a reliable and
systematic difference between anelastic and compressible
solutions. Also, modifications in the physics such as in-
cluding or neglecting pressure perturbations are of a minor
importance to the solution (cf. KGS13). Modifications
of the model numerics can easily dominate the impact of
physical and/or mathematical details of the model formu-
lation. Interestingly, the remarkable agreement between
the ANES and COMP solutions is maintained even af-
ter 1230 s, when the thermal reaches the domain top and
spreads along the upper boundary developing small-scale
instabilities (not shown).

Figure 3 presents ANES and COMP model results ap-
plying environmental θ, qv and qc profiles prescribed as
in BF02, that is, assuming BF02’s model formulation to
express the constant θe profile through θ, qv and qc pro-
files. The ANES and COMP solutions are almost identical,
but they differ significantly from those shown in Figs. 1
and 2 herein and in Fig. 3 in BF02 because the model
setup violates the compatibility conditions. In fact, the
solutions resemble those from sensitivity simulations dis-
cussed in section 5 in BF02 (cf. Figs. 5 and 6 therein).
In particular, the solutions show not only positive θe per-
turbations associated with the imposed initial perturba-
tion, but also significant negative perturbations below and
above the thermal. These perturbations demonstrate that
the environment features nonvanishing θe vertical gradient
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because only then the displacement of the environmental
air (pushed upwards above the thermal and dragged below
the thermal) can lead to such a pattern. In other words,
environmental θ, qv and qc profiles prescribed as in BF02
do not result in a uniform θe environment according to EU-
LAG’s moist thermodynamics. Note that this also explains
a significantly smaller reach of the thermal (in agreement
with results shown in Fig. 6 in BF02) because the envi-
ronment features nonvanishing stability according to the
EULAG’s moist thermodynamics instead of the moist neu-
tral conditions intended by BF02. As a result, thermal’s
rise is suppressed.

In summary, results obtained with EULAG’s simplified
moist thermodynamics for both anelastic and compress-
ible versions agree between themselves and also with the
reference compressible BF02 solution when the environ-
mental θ, qv and qc profiles were derived from the uni-
form θe field applying EULAG’s formulation of the moist
thermodynamics. At the same time, the differences be-
tween two different compressible numerical models – the
one in BF02 and COMP herein – were larger than between
anelastic and compressible solutions (ANES and COMP)
obtained applying a highly unified numerical framework
(see Tab. 2). When BF02’s environmental θ, qv and qc

profiles were used, EULAG’s solutions remained close to
each other, but were substantially different from BF02 so-
lutions. The latter is explained by the violation of the
compatibility conditions in the setup of simulations, that
is, using BF02 moist-neutral environmental profiles with
the EULAG’s moist thermodynamics. The importance of
a consistent derivation of the moist-neutral state for differ-
ent atmospheric models was also pointed out in Miglietta
and Rotunno (2005). Our results are consistent with sev-
eral other moist deep convection experiments mentioned in
BF02 for which no significant differences between various
representations of moist thermodynamics were reported.1

A realistic setup of severe convection is discussed in the
next section.

4. Idealized simulations of a supercell formation

Kurowski et al. (2011, hereinafter KRZ11) reported
a large set of moist deep convection simulations us-
ing observation-based idealized model setups presented in
Klemp and Wilhelmson (1978) and Weisman and Klemp
(1982, hereinafter WK82). These simulations were con-
ducted using the anelastic version of the EULAG model.
One of the conclusions of that study was that simulated
storms featured smaller updraft maxima when compared to
simulations presented in the original papers. However, such
a statement is subject to a few caveats. First, KRZ11 noted
a significant sensitivity of the maximum updraft strength

1The role of compatibility conditions (not addressed in BF02)
has been clarified by Dr. G. Bryan on his homepage:
http://www.mmm.ucar.edu/people/bryan/Code/mbm.html

to the model spatial resolution (see Figs. 9 and 13 therein),
an aspect not addressed in the original studies. Second, the
initial sounding in Klemp and Wilhelmson (1978) had only
been presented in the graphical form and some uncertainty
existed when introducing numerical values for the KRZ11
simulations. Moreover, although analytical formulation of
the initial sounding is given in WK82, simulations reported
in the previous section suggest that observing the compat-
ibility conditions might require adjustments of the WK82
sounding taking into account EULAG’s formulation of the
moist thermodynamics. Finally, there is a possibility that
differences in the simulated storm intensity in KRZ11 (as
measured by the maximum vertical velocity) come from
fundamental differences between anelastic and compress-
ible dynamical frameworks, the issue that KRZ11 were not
able to address. We address this issue here by comparing
solutions obtained applying various versions of the EULAG
model.

To investigate the compatibility conditions, we applied
two publicly-available codes to calculate the reversible
CAPE (i.e., including the condensed water into parcel
buoyancy) and the pseudo-adiabatic CAPE (i.e., exclud-
ing condensed water when calculating the buoyancy) of the
WK82 sounding, one written by Dr. George Bryan2 and the
other by Prof. Kerry Emanuel3. The results were compared
with a simple adiabatic parcel code based on the EULAG’s
thermodynamics. The reversible CAPE was, respectively,
1298, 1242, and 1201 J/kg for the three codes, and the
pseudo-adiabatic CAPE was 1928, 1876, and 2056 J/kg.
Assuming that the maximum updraft velocity scales as
the square root of CAPE, the differences in the updraft
strength implied by the range of CAPE values are of the
order of 1 m s−1. This implies that modifying the WK82
sounding to satisfy the compatibility conditions (i.e., to
obtain the same CAPE using the EULAG’s formulation
of moist thermodynamics) would likely lead to only small
changes of the maximum updraft strength. Consequently,
adjustments to the sounding as prescribed in WK82 were
not considered. The above discussion suggests the Bryan
and Fritsch (2002) test discussed in the previous section
is particularly sensitive to the details of model thermo-
dynamics, and that satisfying compatibility conditions in
more realistic situations is less significant.

a. Setup of simulations

The simulations follow model setup presented in WK82.
Profiles of the relative humidity and potential temperature
are defined analytically (cf. Eqs. 1 and 2 in WK82) and rep-
resent typical conditions favoring severe deep convection.
The setup excludes Coriolis force and the moist physics is
limited to the bulk condensation/evaporation and precip-

2http://www.mmm.ucar.edu/people/bryan/Code/getcape.F
3ftp://texmex.mit.edu/pub/emanuel/BOOK/calcsound.f
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itation processes represented by a Kessler-type warm rain
parameterization following Klemp and Wilhelmson (1978).
A uni-directional horizontal velocity profile with a shear
layer in the lowest 5 km and the free-tropospheric flow ve-
locity Us=15 m s−1 was selected (see Fig. 2 in WK82).
Anelastic simulations with Us ranging from 0 to 45 m s−1

were discussed in KRZ11. Anelastic and compressible sim-
ulations applying different shear strengths were also run in
this study, and conclusions were broadly consistent with
those for Us=15 m s−1. To keep the solution in the cen-
ter of domain, a Galilean transformation with a constant
horizontal velocity of 9.15 m s−1 was applied. The domain
size (length×width×height) was 128×128×17.5 km3 with
horizontal and vertical gridlengths of 2 km and 350 m, re-
spectively. The integration time was 120 min with time
steps of 10 s for anelastic and implicit compressible simu-
lations and 0.5 s for the explicit compressible model (see
Tab. 1 for a description of the models).

The horizontal domain size applied in current simula-
tions is significantly larger than the one in WK82. The
main reason comes from different lateral boundary condi-
tions: instead of the open boundaries as in WK82, cur-
rent simulations apply periodic conditions and a sponge
zone near lateral boundaries. The sponge zone (Davies
1976) extends over 6 model gridpoints and features relax-
ation towards the prescribed profiles for all model vari-
ables with the time-scale of 50 sec. The main differ-
ence between open and periodic lateral boundaries is that
the horizontally-averaged vertical velocity at all levels has
to vanish when periodic lateral boundary conditions are
used.4 With open lateral boundaries, the model is capa-
ble in developing the mean ascent across the domain asso-
ciated with convectively-driven low-level convergence and
upper-level divergence. KRZ11 discussed the impact of
lateral boundary conditions in their simulations by com-
paring results obtained with increasingly large horizontal
computational domains, up to 256×256 km2. The domain
applied here is sufficiently large so the impact of the lateral
boundary conditions can be neglected. Rigid lid free-slip
boundary conditions are applied at lower and upper bound-
aries, as in WK82 and KRZ11. As in the previous section,
six model configurations are considered (Tab. 1), namely
ANES, ANEG, COMP, COMPa, COMPe and ANESc.

b. Results

Overall, the results applying different model configura-
tions are in excellent agreement as illustrated by the fol-

4Strictly speaking, such a statement is correct for the anelastic
model only. Using the anelastic continuity equation, one can show
that the vertical gradient of the domain-averaged vertical velocity
has to vanish. Since the vertical velocity is zero at the surface, the
average has to vanish at all levels. For the compressible system with
periodic lateral boundary conditions, horizontally-averaged vertical
velocity can only be nonzero because of the flow compressibility.

lowing discussion. Figures 4 and 5 combine various model
fields to highlight the agreement. Before discussing the
figures, a comment concerning the pressure field is in or-
der. The pressure perturbation fields shown in the fig-
ures exclude the horizontally-averaged quasi-hydrostatic
pressure profile that develops in a response to the mean
(horizontally-averaged) buoyancy perturbation. In the
compressible model, the horizontally-averaged pressure
profile also includes a constant component that forms be-
cause of the domain-averaged temperature increase. We
will refer to this time-evolving component as the compress-
ible pressure offset. We include an extensive discussion of
various aspects of the anelastic and compressible pressure
fields in the Appendix B. It provides computational ex-
amples illustrating development of the pressure offset in
the compressible model and formation of hydrostatically-
balanced pressure profiles in the anelastic and compress-
ible models. We stress that these components are removed
from the pressure field in the figures (as only nonhydro-
static pressure perturbations contribute to the vertical mo-
mentum equation) to document similarities between model
solutions. However, they are included in all model compu-
tations, including the moist thermodynamics (unless pur-
posely omitted). Nonetheless, their magnitude is so small
(101-102 Pa) that their effect on the moist processes is in-
significant, as illustrated by the discussion below.

Figure 4 compares anelastic and compressible super-
cell solutions at 120 min in a manner similar to WK82.
The plots represent horizontal cross sections through the
simulated structure at 120 min and document the storm-
relative horizontal flow near the ground, the extent of the
surface cold pool, the surface precipitation rate, the ver-
tical velocity at 4900 m, and the nonhydrostatic pressure
perturbations at 2800 m. Only half of the domain is shown
(i.e., the left cell for ANES and COMP and the right cell
for ANEG and COMPa) because the solutions remain sym-
metric with respect to the y = 0 axis. As the figure docu-
ments, all model configurations reproduce storm splitting
in a consistent way, and the solutions differ only in minor
details. The location of convective cores is similar in all
cases, so are the low-level winds and the updraft inten-
sities. Rain formation and fallout progress similarly and
the surface precipitation areas are almost identical in all
solutions. The shape of the cold pool formed as the nega-
tively buoyant precipitation-laden air hits the surface and
spreads horizontally seems to be almost unaffected by the
model configuration. The anelastic (diagnosed) and com-
pressible (prognosed) pressure perturbations compare well
in terms of the spatial distribution and the magnitude. The
largest differences (about 30 Pa) are ahead of the storm
(i.e., to the right of the cold pool edge) and between the
two convective cells (i.e., near the y = 0 axis).

Figure 5 shows y−z cross sections of anelastic (ANES)
and compressible (COMP) solutions at 60 and 120 min,
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at the same x location for both simulations, close to the
maximum vertical velocity. As in Fig. 4, we take advan-
tage of the solution symmetry and only show either right
or left half of the solution. Similarly to Fig. 4, the figure
documents strong similarities between the two solutions.
The pattern and magnitude of all fields, including the non-
hydrostatic pressure perturbations, also compare well be-
tween the models.

Small differences between solutions obtained with the
six model configurations are further supported by the evo-
lutions of the vertical velocity and cloud/rain water mix-
ing ratio maxima shown in Fig. 6. The w maxima from
different simulations are close for all six model configura-
tions with the solution envelope in the first hour defined
by ANESc (the lowest values) and COMP (the highest
values). In general, compressible models yield a few per-
cent larger wmax than anelastic models for the same time
step. This difference is attributed to the baroclinic pro-
duction of vorticity that is abbreviated in the anelastic
model.5 As it will be shown in the sensitivity experiments,
the difference slightly increases for larger updraft veloci-
ties. This is the first systematic difference between the
two mathematical systems observed in the study. Within
each group (i.e., anelastic versus compressible), sensitivity
to the time step is also similar, with the largest maxima
for the largest time steps. All realizations of convection for
a given time step are similar to each other, regardless of
the model configuration, but slightly different for different
time steps. Insignificant differences between ANES and
ANEG as well as COMP and COMPa solutions imply that
not only compressible and anelastic dynamics differ little
in this case, but also that including or excluding pressure
perturbations into the moist thermodynamics has virtually
no impact. These differences are much smaller than those
resulting from various modifications of the model numerics
(e.g., the time step as shown in Fig. 6, advection scheme,
etc.), domain geometry (e.g., size and horizontal/vertical
gridlength as documented in KRZ11), or subgrid-scale pa-
rameterizations (as will be illustrated in section 4c). The
evolutions of the cloud/rain water mixing ratio maxima
are practically indistinguishable between models applying
either large or small time step. Extending simulations up
to 240 min (i.e., beyond those documented in WK82 and
KRZ11) continues to show excellent agreement between the
simulations.

Small differences in the pressure field shown in Figs. 4
and 5 are apparently insignificant for the model dynamics
as documented in Fig. 6. This is most likely because not
the pressure magnitude but the pressure gradient is rele-

5This result has been substantiated by a complimentary pseudo-
incompressible experiment that closely reproduces compressible so-
lution (cf. section 4.1 in Smolarkiewicz et al. 2014). Unlike the
anelastic system, a pseudo-incompressible system (Durran 1989) is
based on the unapproximated evolutionary form of the momentum
equation.

vant for the dynamics (and the pressure gradients compare
well; cf. Figs. 4 and 5), or alternatively because the mag-
nitude of the differences (typically a fraction of 1 hPa) is
simply too small to have any appreciable effect. Moreover,
the differences are also insignificant for the model thermo-
dynamics despite the fact that in this case the pressure
magnitude does matter. Nevertheless, the differences de-
serve attention to better understand physical processes in
anelastic and compressible models. Figure 7 shows profiles
of horizontally-averaged pressure perturbation fields from
the initial hydrostatically-balanced profile. For the ANES
model, this is the horizontally averaged output from the el-
liptic pressure solver. For the compressible model, the pres-
sure perturbation also excludes the time-evolving volume-
averaged offset that develops as the simulation progresses.
Evolution of this volume-averaged mean pressure perturba-
tion is shown in Fig. 7c. This systematic offset develops in
the compressible model due to the continuous latent heat
release and gradual increase of the mean temperature of
the domain. Since we apply periodic lateral boundary con-
ditions and rigid-lid lower and upper boundary conditions,
the simulations represent processes inside a closed box, and
the increase of the mean temperature has to lead to the in-
crease of the mean pressure. This effect is absent in the
anelastic system because the total pressure combines the
initial pressure profile and dynamics-driven pressure per-
turbations from the elliptic solver. The development of
the pressure offset in the compressible system and the hy-
drostatic pressure profile in the anelastic and compressible
systems are discussed in detail in the Appendix B.

c. Sensitivity simulations

Sensitivity simulations in KRZ11 showed a consider-
able dependency of the maximum updraft velocity wmax

for the entire simulation on the horizontal and vertical
resolution. The maximum wmax increased from around
29 m s−1 to 39 m s−1 when the model gridlengths changed
from ∆x/∆z=2000/350 m to ∆x/∆z=1000/175 m. We
conducted additional simulations using anelastic and com-
pressible models with gridlenths of ∆x/∆z=1000/175 m.
The results proved similar to KRZ11, with large sensitiv-
ity to model gridlength for both compressible and anelastic
models. Perhaps more importantly, with much stronger
updrafts for the finer resolution, the difference between
cloud water and vertical velocity maxima between anelastic
and compressible solutions remained as small as in Fig. 6.

To further document similarities and differences be-
tween anelastic and compressible solutions, we also con-
sidered the impact of the mixing length Λ in the EULAG’s
subgrid-scale scheme based on the prognostic equation for
the turbulent kinetic energy (Margolin et al. 1999). The
mixing length Λ is typically selected considering the model
gridlength. This is straightforward when each spatial direc-
tion has the same grid spacing. However, when horizontal
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and vertical gridlengths differ significantly, selecting Λ is
more ambiguous. Fig. 8 shows wmax for different mixing
lengths Λ for ANES and COMP solutions. Since model gri-
dlengths differ significantly (∆x/∆z ≈ 6), the range of Λ is
used to demonstrate the sensitivity. The maximum updraft
velocity increases from about 26 m s−1 to 47 m s−1 for Λ
decreasing from ∆x to zero. The anelastic and compress-
ible models provide consistent solutions with only a few
percent difference for each Λ. The difference increases for
larger updrafts, which is the first systematic disparity be-
tween the two approaches. Nonetheless, even for the largest
updraft velocities reaching almost 50 m s−1 (Mach number
0.15) the anelastic and compressible solutions remain close
to each other, with only about 4% weaker updrafts for the
anelastic model. The impact of Λ on the supercell’s spatial
structure is shown in Fig. 9. Apparently, the subgrid-scale
transport controls the formation of convective structures
and affects formation of the cold pool. The differences for
different Λ are significantly larger than those resulting from
different mathematical formulations (cf. Fig. 4).

5. Summary and conclusions

After exploring shallow small-scale and mesoscale
anelastic and compressible flows in Kurowski et al. (2013,
KGS13), the focus of the current study is on the simulation
of deep convection. The temperature range encountered
by a parcel rising from near the surface to the tropopause
and the magnitude of vertical velocities in deep convection
justifies a closer look at numerical solutions obtained ap-
plying the two contrasting frameworks. The overall goal
of this research is to develop universal and efficient model-
ing approaches valid across the entire range of scales, from
the small-scale dynamics to planetary flows. As argued in
KGS13, compressible dynamics provides the most compre-
hensive framework for the all-scale atmospheric modeling,
but impose computational limitations that are difficult to
overcome. Nevertheless, compressible dynamics can pro-
vide reference solutions for simplified frameworks, such as,
for instance, anelastic dynamics. In the case of moist pro-
cesses, additional issue is the incorporation of pressure per-
turbations into the moist thermodynamics (cf. KGS13).

We presented a detailed comparison between anelas-
tic and compressible solutions for the two deep-convection
benchmark cases: a two-dimensional thermal rising in
a deep moist-neutral saturated environment (Bryan and
Fritsch 2002, BF02) and a three-dimensional severe con-
vection leading to the supercell formation (Weisman and
Klemp 1982, WK82). Numerical experiments were per-
formed using consistent numerical framework of the EU-
LAG model which enables a better control of numerical
effects and consequently a more credible exposition of the
differences resulting from contrasting formulations of the
governing equations. The implicit compressible model per-

mits the use of large time steps (i.e., the same as in the
anelastic model in simulations presented here) and miti-
gates the severe limitation of the compressible system.

Our experiments did not confirm the high sensitivity
of model results to the details of the moist thermody-
namics formulation as suggested in BF02. In contrast,
the anelastic and compressible EULAG solutions based on
EULAG’s simplified thermodynamics agreed not only with
each other, but also with the compressible benchmark so-
lution from BF02, the latter based on the comprehensive
representation of moist thermodynamics. The explanation
of sensitivity reported in BF02 is in the different excitation
of the convectively unstable modes, due to the violation of
the compatibility conditions, specific for each set of the
governing equations, an aspect not addressed in BF02. A
base state which is moist neutral under one formulation
of moist thermodynamics may have non-zero moist stabil-
ity when the governing equations change, e.g., through the
neglect of water vapor or liquid water contributions to the
specific heat.

As far as WK82 benchmark is concerned, the anelastic
and compressible models provided consistent solutions as
well. The patterns of the vertical velocity, potential tem-
perature and moisture variables were almost identical in
all simulations. The evolutions of the maximum vertical
velocity were close to each other, with slightly stronger up-
drafts for the compressible system. This difference, how-
ever, was insignificant for the evolution of the supercell.
The pressure perturbations, diagnosed/prognosed in the
anelastic/compressible framework, also compared well, ex-
cept for the build-up of the quasi-hydrostatic component
due to the latent heat release in a periodic computational
domain. The resulting mean temperature increase leads
to the development of a pressure offset in the compress-
ible model. In contrast, the elliptic pressure solver of the
anelastic model derives the pressure perturbations without
the development of any mean component (see Appendix in
KGS13). This difference results from the choice of bound-
ary conditions and can be argued to diminish for open con-
ditions that allow propagation of acoustic modes out of the
domain. The quasi-hydrostatic component along with the
nonhydrostatic pressure perturbations were found to have a
negligible impact on the saturation adjustment even for the
updrafts exceeding 30 m s−1, consistently with findings of
Wilhelmson and Ogura (1972). Perhaps most importantly,
differences in the numerical/physical details (such as the
advection scheme or details of the subgrid-scale transport)
turned out to have a larger impact than those resulting
from application of either of the two frameworks.

Comparison of numerical efficiency of the model ver-
sions applied in this study shows that the anelastic and
implicit compressible codes, both using a large anelastic
time step dta, require about the same computing time and
are roughly 0.5 dta/dtc faster than the explicit compress-
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ible code, where dtc is the acoustic compressible time step.
Therefore, a benefit of using larger time steps in anelastic
and implicit compressible models is partially reduced by
the algorithms employed to solve the Poisson or Helmholtz
equations, respectively. As argued in the introduction, the
advantage of using large time steps becomes increasingly
important for larger scale flows. This paves the way for
computationally-efficient numerical simulation at synop-
tic and global scales, where vorticity dynamics differ sig-
nificantly between anelastic and compressible frameworks.
This issue is currently being addressed and will be reported
in forthcoming publications.
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APPENDIX A

A unified anelastic/compressible framework for
moist flows

A numerical framework for consistent integrations of
soundproof and the fully compressible nonhydrostatic
equations of motion for inviscid, adiabatic, all-scale dry
atmospheric flows has been documented in Smolarkiewicz
et al. (2014, hereafter SKW14). Because the design of the
compressible solvers derives from the preexisting anelas-
tic solvers, viscous, diabatic, and moist processes can be
easily incorporated into the compressible integrators; in
particular, without affecting the moist anelastic schemes
documented in Grabowski and Smolarkiewicz (1990, 1996,
2002). However, these processes enter the dynamical core,
and the elliptic Helmholtz solver in particular, as additional

forcings. Here we highlight this aspect of the framework,
limiting the mathematical formalism of SKW14 to that rel-
evant for the current paper. Thus, we restrict the presenta-
tion to the anelastic and compressible PDEs, and write the
governing equations in a physically intuitive non-rotating
Cartesian vector form, in abstraction from the model ge-
ometry and the coordinate frame adopted. Furthermore,
in the discussion that follows we do not include equations
representing evolution of the moist phase, but only account
for their contributions to the dynamical core.

The generalized anelastic/compressible dynamical core
that accounts for moist, diabatic and viscous forcings can
be compactly written as

du

dt
= −Θ∇ϕ − gΥB

θ′

θb
+ FE , (A1)

dθ′

dt
= −u · ∇θa + H , (A2)

d̺

dt
= −̺∇ · u . (A3)

Here, vector u denotes the flow velocity, θ is the poten-
tial temperature, while ϕ and ̺ denote a perturbation of
the generalized Exner-pressure and generalized density of
dry air. Furthermore, the differential operators of the total
derivative d/dt and the nabla ∇ = (∂x, ∂y, ∂z) have their
generic meaning; so, d/dt = ∂/∂t+u ·∇ . On the rhs of the
momentum equation (A1), FE combines all explicit forc-
ings, including moist part of the buoyancy (cf. Grabowski
and Smolarkiewicz 2002) and the divergence of the vis-
cous stress.6 On the rhs of the entropy equation (A2),
the source/sink term H subsumes all diabatic effects in-
cluding latent heating and diffusion. The subscript b in-
dicates the basic (reference) hydrostatically-balanced state
of the anelastic asymptotic expansion, whereas primes de-
note perturbations with respect to a balanced ambient
state θa, πa — compatible with the governing PDEs —
that can, but does not need to coincide with the basic
state θb, πb. Standardly, g = (0, 0,−g) denotes the grav-
itational acceleration. The generalized density and pres-
sure variables ̺ and ϕ are defined, respectively, for the
[anelastic, compressible] PDE sets as

̺ := [ρb(z), ρ(x, t)] , ϕ := [cpθbπ
′, cpθ0π

′] , (A4)

together with corresponding dimensionless coefficients

Θ :=

[
1,

θ(x, t)

θ0

(1 + qv/ǫ)

(1 + qt)

]
, ΥB :=

[
1,

θb(z)

θa(x)

]
, (A5)

6To facilitate the implementation of the framework for dry and
moist equations, the moist compressible solver assumes θd/θda ≈

θ/θa while formulating the buoyancy force; typically neglecting
O(10−4) departures from the unity — since the density potential
temperature θd = θ(1 + qv/ǫ)/(1 + qt), and θda is its ambient value.
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wherein cp is the specific heat at constant pressure, θ0 is a
constant reference value of θ, qv is water vapor mixing ra-
tio, qt denotes the total water mixing ratio and ǫ = Rd/Rv.
While the generalized system (A1)-(A3) takes a form of
compressible equations, its interpretation depends on the
definition of the generalized density used in (A3), either
as a prescribed problem parameter for the anelastic sys-
tem (A4) or as a dependent prognostic variable with the
associated constitutive law

ϕ = cpθ0

[(
Rd

p0
̺θ(1 + qv/ǫ)

)ξ

− πa

]
, (A6)

where ξ := Rd/(cp − Rd), and p0 is a constant reference
pressure.

Combining ̺·(A1) with u·(A3), and ̺·(A2) with
θ′·(A3), and combining the rhs of (A3) with the total
derivative d̺/dt on the lhs, leads to the set of conserva-
tion laws

∂̺u

∂t
+ ∇ · (̺u ⊗ u) = ̺R

u , (A7)

∂̺θ′

∂t
+ ∇ · (̺uθ′) = ̺Rθ , (A8)

∂̺

∂t
+ ∇ · (̺u) = 0 , (A9)

wherein R
u and Rθ symbolize rhs of (A1) and (A2), re-

spectively, and ⊗ denotes the tensor product. The mo-
mentum (A7) and potential temperature (A8) equations
can be viewed as the generic conservation law

∂̺ψ

∂t
+ ∇ · (̺uψ) = ̺R , (A10)

consistent with the Lagrangian form

dψ

dt
= R , (A11)

for (A7) and (A8), respectively; here, ψ — a specific vari-
able expressed per unit of mass — symbolizes the three
components of the velocity vector (viz. specific momenta)
and potential temperature perturbation (tantamount of
specific dry entropy), while R denotes the associated rhs.
Importantly, the generalized dry air mass continuity equa-
tion (A9) is a special case of (A10), with predetermined
ψ≡ 1 and R≡ 0 for all (x, t) and both sets of governing
PDEs. This makes the mass continuity distinct from con-
servation laws for specific dependent variables ψ, and its
role for the design of the framework is summarized next.

A standard template for the EULAG’s second-order
anelastic integrators takes compact symbolic form

ψn+1
i

= Ai

(
ψ̃n,Vn+1/2, ̺, ̺

)
+ 0.5δtRn+1

i
, (A12)

where i, tn refers to the position on a co-located grid dis-
cretizing an (x, t) model domain. The operator A sym-
bolizes a second-order-accurate non-oscillatory advection

scheme MPDATA (cf. SKW14 and references therein) de-
fined in (A12) in terms of its entries: the auxiliary field

ψ̃n ≡ ψn + 0.5δtRn; an O(δt2) accurate estimate of the
transportive momentum Vn+1/2 = ̺un+1/2 at an interme-
diate time level tn+1/2 = tn + 0.5δt; and the prescribed
anelastic density ̺ = ρb(z) in (A4). An akin template for
compressible equations takes the form

ψn+1
i

= Ai

(
ψ̃n,Vn+1/2, ̺n, ̺n+1

)
+ 0.5δtRn+1

i
, (A13)

assuming the preceding integration of the prognostic mass
continuity equation in (A9)

̺n+1
i

= Ai

(
̺n,un+1/2, I, I

)
, (A14)

where I(x, t) ≡ 1. The integration in (A14) supplies (A13)
with both the updated value of ̺n+1 and the transportive
momentum Vn+1/2 defined as the cumulative mass flux
in the solution (A14). The latter assures compatibility of
the transport operator in (A13) with the mass continuity;
e.g., it preserves a local constancy of ψ in conservative
advection, in analogy to the anelastic integrator (A12).

Given the template (A13) an iterative acoustic algo-
rithm accounting for the nonlinearity of the pressure gra-
dient force on the rhs of the momentum equations, can be
compactly written as

θ′|ν
i

= θ̂′
i
− 0.5δt (uν · ∇θa)

i
(A15)

uν
i

= ûi − 0.5δt

(
Θν−1∇ϕν + gΥB

θ′
ν

θb

)

i

,

where, θ̂′
i

and ûi are shorthands for the transport opera-

tor A applied to θ̃′ and ũ in (A13) and subsumed with
contributions from the explicit forcings 0.5δtHn+1 and
0.5δtFn+1

E , respectively. Furthermore,

ϕν
i

= cpθ0

[(
Rd

p0
̺n+1θν−1

(
1 + qn+1

v /ǫ
))ξ

− πa

]

i

,

(A16)

θν
i

=
(
θ̂′ − 0.5δtuν · ∇θa + θa

)

i

, (A17)

where the availability of updated water mixing ratios, such
as qn+1

v in (A16), is ensured by design of the moist scheme
(Grabowski and Smolarkiewicz 2002). Throughout (A15)-
(A17), the index ν = 1, .., Nν numbers the iterations, with

the first guess θ0
i

= θ̂i generated by advecting full θ,

θ0
i

= Ai

(
θ̃n,Vn+1/2, ̺n, ̺n+1

)
+ 0.5δtHn+1 . (A18)

With this design, the solution is fully second order ac-
curate even for Nν = 1, and Nν = 2 gives already close
approximation to the trapezoidal integral (Smolarkiewicz
and Szmelter 2009); relevant calculations reported in this
paper use Nν = 3.
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The scheme outlined in (A15)-(A17) contains fully im-
plicit trapezoidal integral of the dry buoyancy; whereas
pressure perturbations (viz. acoustic modes) and the co-
efficient Θ depending on full potential temperature and
water mixing ratios are integrated explicitly. To derive the
closed-form expression for the velocity update, we substi-
tute the potential temperature perturbation in the buoy-
ancy term of the momentum equation with the rhs of the
entropy scheme and gather all terms depending on uν on
the lhs of the momentum scheme, while dropping the spa-
tial grid index i everywhere, as all dependent variables,
coefficients and terms are co-located in (A15)-(A17). This
results in a system of three linear algebraic equations with
three unknown components of the velocity vector uν at
each point of the co-located grid,

Luν ≡ uν − (0.5δt)2gΥB
1

θb
uν · ∇θa = (A19)

û − 0.5δt

(
gΥB

θ̂′

θb

)
− 0.5δtΘν−1∇ϕν

≡ ̂̂u − 0.5δtΘν−1∇ϕν ,

the closed-form solution of which may be compactly writ-
ten as

uν = ˇ̌u − C∇ϕν , (A20)

where ˇ̌u = L−1 ̂̂u and C = L−10.5δtΘν−1 denotes a 3 × 3
matrix of known coefficients; cf. SKW14 and references
therein. In each iteration ν the velocity update in (A20)
uses the thermodynamic pressure in (A16), and the total
potential temperature (required in the coefficient Θ) gets
updated according to (A17). The potential temperature
perturbation θ′ is updated according to (A15), upon com-
pletion of the velocity update for ν = Nν .

The acoustic scheme summarized above is an adap-
tation of the soundproof pseudo-incompressible algorithm
(Smolarkiewicz and Dörnbrack 2008), an extension of the
anelastic algorithm (Prusa et al. 2008). In essence, the
acoustic scheme replaces the anelastic density and the el-
liptic pressure perturbation with the prognosed thermody-
namic density and pressure. Conversely, with the density
prescribed as ̺ = ρb(z), and thus the mass continuity (A9)
reduced to

∇ · (̺u) = 0 , (A21)

the anelastic algorithm consistent with the acoustic scheme
solves the Poisson equation implied by (A21) applied to
(A20):

0 = −
δt

̺
∇ · (̺uν) = −

δt

̺
∇ ·

[
̺

(
ˇ̌u −∇ϕν

)]
. (A22)

This consistency minimizes numerical differences between
the anelastic and compressible algorithms, and provides the
reference solution for large-time-step compressible schemes

for atmospheric flows. Furthermore, the acoustic scheme
forms the foundation of the semi-implicit compressible
models with large (soundproof) time steps, discussed next.

To derive the large-time-step semi-implicit compressible
integrators, SKW14 employ the evolutionary form of the
gas law (A6), rather than the gas law itself (A16). Com-
bining ̺d/dt(A6) with ϕ·(A3) leads to the conservation-law
form (A10) for ϕ:

∂̺ϕ

∂t
+ ∇ · (̺uϕ) = ̺Rϕ (A23)

with the rhs forcing

Rϕ = −ξφ∇ · u −
1

̺
∇ · (̺uφa) +

φa

̺
∇ · ̺u + ξφΠ ;(A24)

where φa = cpθ0πa(x), φ = ϕ + φa, ξ was defined in A6,
and the explicit forcing Π is given as

Π =
H

θ
+

Qv/ǫ

1 + qv/ǫ
(A25)

with Qv symbolizing the rhs forcing of the qv equation.
The resulting equation (A23) is integrated to O(δt2) using
the template

ϕn+1
i

= Ai

(
ϕ̃,Vn+1/2, ̺n, ̺n+1

)
+ δtRiϕ|n+1

i
, (A26)

with the auxiliary field under the transport operator de-
fined as ϕ̃ = (ϕ + δtξφΠ)n and the implicit forcing Riϕ ≡
Rϕ − ξφΠ. Integrating the pressure equation to the first-
order accuracy in time still suffices for the second-order-
accurate model solution, as ϕ enters (A20) with the δt fac-
tor. Denoting the first term on the rhs of (A26) shortly as
ϕ̂ and regrouping all terms on the rhs, leads to the implicit
Helmholtz problem for ϕν

0 = − ξδt∇ · uν −
φa

φν−1

δt

̺n+1φa
∇ · (̺n+1φau

ν)(A27)

+
φa

φν−1

δt

̺n+1
∇ · ̺n+1u

ν
−

1

φν−1
(ϕν − ϕ̂)

to replace the explicit thermodynamic pressure in (A16)
of the acoustic scheme. The resulting Helmholtz opera-
tor is composed of the three Poisson operators of the form
(A22), each using a different effective density — 1, ̺n+1φa

and ̺n+1, respectively — and entering the problem with
different weights. The second and the third Poisson oper-
ator combine into the term proportional to u · ∇φa, so the
expression in (A27) could be simplified. However, the form
of (A27) is beneficial, as it allows to build the Helmholtz
solver from the Poisson solver with minimal changes to the
EULAG model code.
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APPENDIX B

Effects of heat sources on the mean pressure in
anelastic and compressible models

To investigate the development of the mean pressure
offset in the compressible system, and to highlight the role
of lateral boundary conditions in this problem, we devel-
oped a simple one-dimensional compressible model that
mimics physical processes taking place in multidimensional
compressible simulations. Details of the model and results
of simulations illustrating the development of the pressure
offset are presented in the next section. The main conclu-
sion is that the offset develops in simulations with periodic
lateral boundary conditions (i.e., for a closed box), and
that the mean pressure should not change if more natural
truly-open lateral boundary conditions are used. Subse-
quently, we consider an idealized problem of horizontally-
uniform constant heating applied within a layer in the lower
troposphere in the two-dimensional non-rotating stratified
dry atmosphere. The simulations document hydrostatic
adjustment in the anelastic and compressible models in re-
sponse to the continuous heating and aid interpretation of
supercell simulations discussed in section 4.

a. Development of the pressure offset in one-dimensional

compressible model

To illustrate evolution of the mean pressure inside the
computational domain, we consider 1D compressible dry
model with a localized heat source Q mimicking latent
heating in the moist multidimensional case. The governing
set of equations has the form:

dρ

dt
+ ρ

∂u

∂x
= 0 (B1)

du

dt
= −

1

ρ

∂p

∂x
(B2)

dT

dt
= Q (B3)

p = ρRdT, (B4)

where ρ(x, t), u(x, t), T (x, t) and p(x, t) are 1D fields of
the air density, velocity, temperature, and pressure, re-
spectively; Rd is the gas constant of the dry air; d/dt ≡
∂/∂t + u∂/∂x; and ∇ ≡ ∂/∂x. Model variables are split
into a constant reference state and perturbations:

ρ(x, t) = ρ0 + ρ′(x, t), (B5)

u(t) = u0 + u′(x, t), (B6)

T (t) = T0 + T ′(x, t), (B7)

p(t) = p0 + p′(x, t), (B8)

and the set (B1-B4) is solved for the perturbations with
all of them initially set to zero. The reference state is de-
fined as ρ0 = 1.16 kg/m3, u0 = 0 m s−1, T0 = 300 K,
and p0 = 105 Pa. The domain length is 20 km with the
gridlength of ∆x = 31.25 m. The prescribed heat source is
Q = 0.1 K/s in the 2-km-wide region in the middle of the
domain and zero otherwise. Model equations are converted
into the flux form and solved applying the non-oscillatory
forward-in-time method using the 1D MPDATA advection
scheme (cf. Smolarkiewicz and Szmelter 2009). The density
and temperature equations are solved first and the equa-
tion of state is used to obtain pressure needed to solve the
momentum equation. Model equations are integrated for
240 s applying 0.12 s time step.

Two types of lateral boundary conditions are consid-
ered, ”open” and periodic. The open boundary scheme
applies an absorber defined in Davies (1976) over 6 points
near the lateral boundaries to remove perturbations be-
fore they reach the boundaries; reference state values are
prescribed at the boundaries. Such an approach mimics
open boundaries where perturbations are allowed to prop-
agate freely out of the domain. In contrast, periodic lateral
boundary conditions result in a closed domain because per-
turbations are never able to escape: as they leave one side
of the domain, they come back from the other.

Numerical solutions to the 1D heating problem show
strong increase/decrease of the temperature/density in the
central region of the domain where the prescribed heating
is applied, a weak flow away from the heating (maximum
around 0.3 m s−1), and solitary sound waves propagating
away from the central region and allowing adjustments of
model fields away from the prescribed heating. The adjust-
ment through propagating solitary waves appears similar
to a case of the heating in motionless stratified atmosphere
(see, for instance, Nicholls et al. 1991), although obviously
solitary sound waves rather than gravity bores occur in
our case. The solitary sound waves are either absorbed
near lateral boundaries when ”open” boundary conditions
are used, or they return through the other boundary in the
case of periodic conditions. The two situations result in a
different mean pressure in the domain.

Fig. 10 compares solutions at the end of the simulations
for the two types of boundary conditions. The figure shows
spatial distributions of relative perturbations of the tem-
perature (T/T0), density (ρ/ρ0), pressure (p/p0), and the
horizontal velocity, the latter scaled by the speed of sound
cs = (cp/cv · p0/ρ0)

1/2 = 347 m s−1 and multiplied by
20 to fit the vertical scale of the figure. In both cases, the
temperature increase within the heating region leads to the
reduction of the density, with the pressure field remaining
approximately constant across the domain. The key dif-
ference between the two solutions is the magnitude of the
pressure field. In the case of periodic conditions, the pres-
sure increases from the initial value of 1000 hPa to about
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1011 hPa, consistent with the increase of the mean temper-
ature (i.e., < p′ >=< ρ > Rd < T ′ >, where < . > depicts
domain average). When open boundary scheme is used, the
pressure field increases just slightly (about 0.8 hPa), illus-
trating that the scheme only approximately mimics unob-
structed propagation of perturbations out of the domain.
The domain-averaged density does not change when peri-
odic conditions are used (i.e., the total mass is conserved),
but it does change when open boundary scheme is used.
The latter is because of the mass exchange through the
lateral boundaries.

Overall, the simple 1D test highlights the role of lateral
boundary conditions in the formation of the mean pressure
in the domain for the compressible system of equations.
This aspect is relevant to the comparison among anelastic
and compressible solutions as discussed in the main text.

b. Hydrostatic adjustment in anelastic and compressible

models

We consider anelastic and compressible solutions to
a problem of horizontally-uniform heating in the two-
dimensional non-rotating stratified dry atmosphere. Since
the atmosphere and the heating are horizontally-uniform,
the problem is one-dimensional and, in principle, the model
described in the previous section can be used after adding
stratification in (B5) to (B8) and gravitational acceleration
in (B2). However, we use the full EULAG model in a 2D
configuration to retain numerical implementation of both
anelastic and compressible versions. The atmosphere is as-
sumed to have a constant static stability of 1.3×10−5 m−1.
The domain size is 2×10 km2 (width×height) with a uni-
form gridlength of 100 m. The heat source is Q = 5 K/hr
in a layer between 1 and 3 km and zero otherwise. Surface
temperature and pressure are 1000 hPa and 300 K, respec-
tively. Periodic lateral boundary conditions and rigid/free-
slip boundary conditions at the top and bottom of the do-
main are applied. The models are integrated for 1 hour
with 0.25 s time step.

The atmosphere remains motionless in the anelastic
simulation. The compressible model simulates insignifi-
cant vertical motions of the atmosphere (velocities ∼ 10−2

ms−1) resulting from the hydrostatic adjustment involv-
ing vertically-propagating sound waves. The anelastic and
compressible models start from a balanced (i.e., satisfy-
ing compatibility conditions) initial state with no pressure
perturbations. Without any heat sources (i.e., Q = 0) the
initial state remains unchanged, and no pressure pertur-
bations are generated. Hence, the only change in pressure
comes from the non-zero temperature source mimicking the
effects of the latent heating in moist simulations.

Evolution of the pressure perturbation profiles for
the anelastic and compressible simulations are shown in
Fig. 11. Because the nonhydrostatic pressure perturba-
tions are not allowed to develop in the simulations (except

for those minuscule due to sound waves in the compress-
ible system), the only change of the pressure field comes
from a gradual build-up of the hydrostatic component in
response to the temperature increase. Slight changes of
the temperature and density profiles away from the pre-
scribed heating are simulated in the compressible model
(not shown). These come from adjustments of the tem-
perature and density profiles outside the heating region
facilitated by vertically-propagating sound waves. For pe-
riodic boundary conditions, conservation of mass in the
compressible model leads to a small increase of the den-
sity outside the heating region to compensate the density
decrease within the heating region. The density profile in
the anelastic model does not change by definition.7 To al-
low a better comparison of the anelastic and compressible
solutions, the pressure offset (Fig. 11c) that develops sim-
ilarly as in 1D tests was subtracted from the compressible
solution.

The pressure offset simulated in the compressible model
can also be estimated theoretically for both anelastic and
compressible models. We use the same formulation of the
equation of state as used in the model, that is:

p = p0 (ρθRd/p0)
cp/(cp−Rd)

, (B9)

where p0 = 105 Pa. For the compressible model, the off-
set is derived by averaging local values of the pressure de-
rived from (B9), that is, including spatial variability of the
density and potential temperature fields. For the anelastic
model, only spatial variability of the potential temperature
is considered and the reference state density is used. Nev-
ertheless, the estimates are accurate as shown in Fig. 11c.
It should be stressed that the development of the pressure
offset cannot be simulated in the anelastic system because
the elliptic solver adds no constant to the pressure per-
turbation solution (see appendix in Kurowski et al. 2013).
The fact that the offset can be recovered for the anelastic
model has potentially important implications.

To verify the origin of pressure perturbations shown in
Fig. 11, a hydrostatic component of pressure perturbations
p′ can be calculated for each model based on its hydrostatic
balance equation. The compressible hydrostatic balance is:

1

ρ

dp′

dz
= −g

ρ′

ρ
, (B10)

where ρ is the air density, ρ′ = ρ − ρ0 denotes the density
perturbation around the initial profile ρ0, and g is the grav-
itational acceleration. The anelastic hydrostatic balance is

d

dz

(
p′

ρ̄

)
= g

θ′

θ̄
, (B11)

7As shown in Bannon (1996), one can reconstruct the thermody-
namic density within the heating region for the anelastic system using
a linearized diagnostic relation between density, pressure and the po-
tential temperature perturbations (see eq. 3.17 therein). However,
the reconstruction cannot account for the density increase outside
the heating region.

13



where ρ̄ and θ̄ define reference (and initial) profiles of the
density and potential temperature, respectively, and θ′ is
the potential temperature perturbation about θ̄.

Integrating (B10) upwards or downwards and applying
p′ at the starting level derived from (B9) as p′ = p − p0

leads to pressure profiles exactly as shown in Fig. 11b for
the compressible model. Similarly, integrating (B11) up-
wards and downwards from the level where p′ is zero in
the anelastic system (around 2.4 km) results in the pres-
sure perturbation profiles as shown in Fig. 11a. Interest-
ingly, if the information about an actual pressure pertur-
bation from the compressible model is used to calculate
the anelastic hydrostatic balance (B11), then the hydro-
static profile from the compressible model (i.e., Fig. 11b)
is approximately recovered. Therefore, the key differences
between the anelastic and compressible hydrostatic adjust-
ments originate from different boundary conditions for the
pressure field rather than slightly different formulations of
the hydrostatic balance.

In summary, the differences in the pressure field sim-
ulated by anelastic and compressible models can be un-
derstood through the development of different hydrostatic
components in both model formulations. These compo-
nents have negligible impact on moist processes because of
its small amplitude, at least for the cases considered in the
current study.
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Fig. 1. Fields of the equivalent potential temperature per-
turbations θ′e at 1000 s for simulations of thermal rising in
a cloudy moist-neutral environment applying various ver-
sions of the anelastic (left column) and compressible (right
column) EULAG model (see text for more details). En-
vironmental profiles are prescribed according to the EU-
LAG’s moist physics. Contour interval (c.i.) is shown at
the top of upper panels. Model time steps are shown at
the bottom of each panel.
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Fig. 2. As in Fig. 1 but for the vertical velocity.

ANES

COMP COMP

ANES

Fig. 3. As Figs. 1 and 2 but for the initial profiles as given
in BF02. Only solutions for ANES and COMP models are
shown.

15



ANES COMP

ANEG COMPa

Fig. 4. Comparison of four different EULAG solutions
(ANES, ANEG, COMP, and COMPa) after 120 min from
the WK82 storm splitting experiment for the Us=15 m s−1

case. Each panel represents horizontal cross section
through the supercell and shows the surface rain mixing
ratio (light blue lines; contours at 0.1, 1.5, 3, 4.5 g/kg),
surface cold pool edge (defined by the θ′ = −0.5 K con-
tour; thick dark blue line), updraft strength at 4900 m
(black solid lines; contour interval of 4 m s−1), and pres-
sure perturbations at 2800 m (red lines, contour inter-
val of 15 Pa). Positive/negative values are marked with
solid/dashed lines. Arrows show surface horizontal flow.
As in WK82, the mean flow of 12 m s−1 was subtracted
from the x-component of horizontal velocity. Only half of
the solution is shown for each model. The horizontal gri-
dlength is 2000 m.

ANES (a)COMP

ANES (b)COMP

Fig. 5. Similar to Fig. 4, but for the vertical cross sec-
tions (y − z) through the convective cores for ANES and
COMP solutions at 60 min (a) and 120 min (b). Black
contours are vertical velocity every 5 m s−1, shaded re-
gions show presence of rain water with qr > 1 g/kg, light
blue isolines mark the cloud edge (qc > 0.1 g/kg), dark
blue thick line indicates location of the near-ground cold
pool (θ′ = −0.5 K) and red lines are pressure perturbations
contoured with 40 Pa interval and negative values dashed.
Only half of the solution is shown for each model. The
vertical gridlength is 350 m.
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↓
∆t = 10 s

↑
∆t = 0.5 s

Fig. 6. Evolutions of the maximum vertical velocity (w),
maximum cloud water mixing ratio (qc) and maximum rain
water mixing ratio (qr) for ANES, ANEG, ANESc, COMP,
COMPa and COMPe supercell simulations. The insert in
the upper panel shows detailed evolution of wmax for times
between 20 and 40 min.

ANES COMP

(a) (b)

Pressure offset

(c)

Fig. 7. Profiles of horizontally averaged pressure perturba-
tions for ANES (a) and COMP (b) models. Panel c shows
the evolution of the pressure offset for the COMP model
that was subtracted from profiles shown in panel b.

Fig. 8. Maximum vertical velocity w for the entire simula-
tion for ANES and COMP simulations as a function of the
mixing length Λ in the subgrid-scale turbulence scheme.
ILES (implicit large-eddy simulation) represents simula-
tion without explicit subgrid-scale model.

Λ = ∆z

(a)

Λ = (∆x + ∆y + ∆z)/3

(c)

Λ = (∆x∆y∆z)1/3

(b) (d)

Λ = ∆x

Fig. 9. As Fig. 4, but for ANES model applying four
different values of the mixing length Λ.
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Open b.c.

Periodic b.c.

Fig. 10. 1D compressible model solutions to the problem
of local heating for ”open” and periodic lateral boundary
conditions.

ANES COMP

(a) (b)

Pressure offset

(c)

Fig. 11. Profiles of horizontally-averaged pressure pertur-
bations for ANES and COMP models for the problem of the
horizontally-uniform heating applied between 1 and 3 km.
Panel c presents the time evolution of the pressure offset for
the compressible model (black) that was subtracted from
the COMP profiles shown in panel b. In addition, theoret-
ical estimation of the offset based on the assumption that
the pressure increases due to gradual temperature increase
within a closed-box domain is shown.
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Table 1. Description of the EULAG models used in the
study with an explanation of main differences in the gov-
erning equation sets, model time steps (∆t, with a and
c subscripts indicating anelastic and acoustic compress-
ible time step sizes, respectively), whether pressure pertur-
bations p′(x, t) are included/excluded (Y/N) in/from the
moist thermodynamics, and how sound waves are treated
in the compressible models.

model governing ∆t p′ treatment of
acronym equation set sound waves

ANES anelastic ∆ta N n/a

ANEG anelastic ∆ta Y n/a

ANESc anelastic ∆tc N n/a

COMP compressible ∆ta Y implicit

COMPa compressible ∆ta N implicit

COMPe compressible ∆tc Y explicit

Table 2. Comparison of BF02 and anelastic/compressible
EULAG solutions for the moist thermal experiment. The
columns show the extreme values (min/max) for θ′e, w, and
p′, the mean values (avg) for θ′e, the standard deviations
(std) of θ′e, w and p′, the mean height of θ′e (Zmean), and
the height of the thermal’s leading edge in the middle of
the domain (Ztop), all at time of 1000 s.

θ′

e w p′ Zmean Ztop

MODEL min max avg std min max std min max std

[K] [K] [K] [K] [ms−1] [ms−1] [ms−1] [Pa] [Pa] [Pa] [m] [m]

BF02 -0.31 4.10 0.119 0.486 -9.93 15.71 3.34 -93.5 49.0 18.4 6450 8535

ANES -0.17 4.07 0.127 0.515 -10.15 16.14 3.60 -107.0 51.0 20.2 6564 8655

COMP -0.16 4.10 0.129 0.518 -10.00 16.30 3.54 -98.0 51.3 18.9 6580 8629

ANEG -0.17 4.06 0.127 0.515 -10.15 16.14 3.60 -107.0 51.0 20.2 6564 8655

COMPa -0.16 4.11 0.129 0.518 -10.00 16.30 3.54 -98.0 51.3 18.9 6580 8630

COMPe -0.55 5.17 0.129 0.533 -9.64 16.35 3.44 -94.2 54.3 18.1 6604 8701

ANESc -0.57 5.14 0.129 0.534 -9.66 16.32 3.54 -103.4 55.4 19.2 6640 8751
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