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ABSTRACT8

This paper discusses incorporation of phase changes of the water substance that accompany9

moist atmospheric flows into the all-scale atmospheric model based on soundproof equa-10

tions. Specific issue concerns developing a theoretical basis and practical implementation to11

include pressure perturbations associated with atmospheric circulations, from small-scale to12

global, into representations of moist thermodynamics. In small-scale modeling using sound-13

proof equations, pressure perturbations are obtained from the elliptic pressure solver and are14

typically excluded from the moist thermodynamics. We argue that in larger-scale flows at15

least the hydrostatic component of the pressure perturbation needs to be included because16

pressure variation in synoptic weather systems may affect moist thermodynamics in a way17

comparable to the temperature variations. As an illustration, we consider two idealized test18

problems, the small-scale moist thermal rising in a stratified environment and the moist19

mesoscale flow over an idealized topography. We compare numerical solutions obtained with20

a fully-compressible acoustic-mode-resolving model and with two versions of the anelastic21

model, either including or excluding anelastic pressure perturbations in moist thermodynam-22

ics. The two versions of the anelastic model are referred to as the generalized and standard23

anelastic, respectively. In agreement with the scaling arguments, only negligible differences24

between anelastic and compressible solutions are simulated. Incorporation of the anelastic25

pressure perturbations into moist thermodynamics paves the way for future studies where26

larger-scale moist dynamics will be considered.27
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1. Introduction28

Modeling the atmospheric component of the climate system, often referred to as the29

atmospheric general circulation, has a long history; see collection of reviews in Miller and30

Smolarkiewicz (2008) and Randall (2010). Because of the computational limitations, early31

atmospheric general circulation models (AGCMs) featured relatively low spatial resolutions32

(hundreds to thousands of kilometers) and were based on simplified systems of equations ap-33

propriate for the large-scale atmospheric dynamics. Nevertheless, the critical role of clouds34

and cloud processes for the Earth energy budget and hydrological cycle has been already ap-35

preciated in early AGCM studies (Arakawa 1975; Charney 1979). Because in early AGCMs36

clouds were only considered through subgrid-scale parameterizations, their representation37

was at best questionable. With steadily expanding computational power and increasing38

awareness of the limitations of cloud parameterizations — the latter sometimes referred39

to as the cloud parameterization deadlock (Randall et al. 2003) — the past decade wit-40

nessed developments of novel modeling approaches to better represent cloud processes in41

AGCMs, such as the superparameterization (Grabowski and Smolarkiewicz 1999; Khairout-42

dinov and Randall 2001; Randall et al. 2003) or the convection-permitting nonhydrostatic43

AGCM (Miura et al. 2007). The emergence of the so-called seamless weather and climate44

prediction paradigm (Shukla 1998, 2009; Palmer et al. 2008) is another example for appre-45

ciating the small-scale atmospheric phenomena (i.e., weather) in the climate and climate46

change problem.47

Reducing the gridlength of AGCMs, down to the convective scale and beyond, is an exam-48

ple of the top-down approach, where increasingly smaller scale processes are resolved rather49

than parameterized through subgrid-scale modeling. However, one cannot simply reduce the50

AGCM gridlength to resolve small-scale processes without modifying the model equations51

to adequately represent the nonhydrostatic dynamics. An alternative approach where non-52

hydrostatic small-scale models are run applying increasingly large horizontal domains, up53

to the global scale, can be thought as the bottom-up approach, where cloud-scale processes54
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are capable to feed onto progressively larger scales and thus ultimately affect global atmo-55

spheric dynamics. Experiences of the communities pursuing the top-down or the bottom-up56

approaches accumulate and benefit the quest for the ultimate all-scale AGCM for weather57

and climate research.58

It may seem that the bottom-up approach is relatively straightforward as the hydro-59

static dynamics (appropriate for the large-scale flows) may be thought as an asymptotic60

limit of the nonhydrostatic small-scale dynamics. However, the issue is more complex.61

Small-scale models available today do not solve generic compressible equations that are62

valid across the entire range of spatial scales (small-scale turbulence to global). Histor-63

ically, the small-scale atmospheric models evolved along two separate paths and there is64

significant experience in using such models in weather-related small-scale studies. The first65

path consists of models built using soundproof equations (e.g., anelastic) with examples66

of specific models including the NCAR Clark/Hall model (Clark et al. 1996, and refer-67

ences therein), GFDL’s Lipps and Hemler model (Lipps and Hemler 1982, 1986), French68

MesoNH model (http://mesonh.aero.obs-mip.fr/mesonh/) and the EULAG model (Prusa69

et al. 2008, and references therein). The second path consists of models originating from the70

compressible dynamics, for instance, the Tapp/White model (Tapp and White 1976) and71

the Klemp/Wilhelmson model (Klemp and Wilhelmson 1978). NCAR’s Weather Research72

and Forecasting (WRF) Model (http://www.wrf-model.org) is a flagship example of this73

class of models. However, because compressible dynamics impose severe time-step limita-74

tion due to the presence of fast-propagating sound waves, atmospheric models developed75

based on compressible dynamics apply various techniques to limit the undesirable impact of76

physically-irrelevant (for weather and climate) sound waves, e.g., integrating acoustic modes77

with smaller timestep and low accuracy or applying implicit time integration. Systematic78

studies of the impact of such techniques on model solutions — for instance, when compared79

to fully-compressible models — especially when focusing on large-scale dynamics, are rare.80

We will refer to such models as elastic.81
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The study described in this paper builds upon the interests and recent developments in82

the area of soundproof systems of equations (e.g., anelastic or pseudo-incompressible). These83

are briefly reviewed in the next section. A key goal of this work is to progress towards moist84

thermodynamics valid uniformly in the context of all-scale atmospheric dynamics. Specific85

aspects that need to be addressed are discussed in section 3. Computational examples86

illustrating key points of the discussion are presented in sections 4 and 5. A brief summary87

and outlook in section 6 concludes the paper.88

2. Modeling atmospheric circulations with soundproof89

equations; an overview90

With higher resolution numerical weather prediction (NWP) and climate models becom-91

ing available, traditional numerical approaches face new demands. Compressible dynamics92

is universally valid across the entire range of spatial and temporal scales — from small-93

scale turbulence to planetary circulations — but impose computational limitations that are94

difficult to overcome; see e.g. Klein (2011). Consequently, current community efforts fo-95

cus on alternative, reduced forms of the governing equations for modeling large-scale dry96

atmospheric motions.97

An overall conclusion from the collection of works in Miller and Smolarkiewicz (2008) is98

that there is no set of governing equations uniformly adopted throughout the NWP com-99

munity, and all operational models differ in some aspects already at the theoretical level.100

In spite of the ongoing debate on the preferred theoretical formulation of the governing101

partial differential equations (PDEs), the dominant opinion seems to be that soundproof102

equations are not appropriate for predicting weather and climate. On the other hand, the103

soundproof models progress, expand their predictive skill and range of validity, and keep104

attracting interests of the community. For substantiation, consider an abbreviated list of105

works exemplifying the community efforts. The list starts with Davies et al. (2003) that106
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quantified departures of normal modes of atmospheric soundproof PDEs from normal modes107

of the fully-compressible Euler equations. Although the authors questioned the suitability108

of soundproof equations for weather and climate, their work in fact extended the validity of109

anelastic models beyond the earlier arguments of scale analyses (Ogura and Phillips 1962;110

Lipps and Hemler 1982). In Prusa and Smolarkiewicz (2003) and Wedi and Smolarkiewicz111

(2004) soundproof models were generalized to incorporate time-dependent curvilinear coor-112

dinates, thereby enabling approximations of pliant boundaries — such as finite-amplitude113

free surface — in soundproof equations and facilitating a coupling of nonhydrostatic anelastic114

and hydrostatic primitive equation models; see Wedi and Smolarkiewicz (2004) for examples.115

More recently, Durran (2008) generalized the pseudo-incompressible system (Durran 1989) to116

spatially inhomogeneous and time-dependent reference states, extending up-scale the accu-117

racy of soundproof approximations. Concomitantly, in Abiodun et al. (2008a) and Abiodun118

et al. (2008b) the authors compared standard aquaplanet simulations (Neale and Hoskins119

2000a,b) conducted with three different dynamical cores, including nonhydrostatic anelastic120

model EULAG (Prusa et al. 2008) within the framework of the Community Atmosphere121

Model (CAM). They reported favorable comparability of EULAG with the spectral and122

finite-volume hydrostatic dynamical cores, and found no evidence of inadequacy of anelastic123

nonhydrostatic equations for climate simulations, epitomized by the aquaplanet benchmark.124

More recent application of the the CAM-EULAG is reported in Abiodun et al. (2011).125

Arakawa and Konor (2009) proposed a hybrid system of atmospheric PDEs combining non-126

hydrostatic soundproof and hydrostatic primitive equations, thus paving the way for a new127

class of general circulation models. Using techniques of multiple-scale asymptotic analysis,128

Klein et al. (2010) showed a formal validity of the Durran pseudo-incompressible and the129

Lipps-Hemler anelastic equations for realistic magnitudes of the tropospheric potential tem-130

perature stratification, in contrast to single-scale asymptotics of Ogura and Phillips (1962)131

and common beliefs. Promising results from the application of an EULAG-based anelastic132

dynamical core to the limited area operational regional NWP model COSMO were reported133
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recently in Ziemianski et al. (2011). On the algorithmic side, Smolarkiewicz and Szmelter134

(2009) and Szmelter and Smolarkiewicz (2010a,b) generalized proven conservative numerics135

of EULAG to fully unstructured meshes, while sustaining the accuracy of structured-grid136

differencing on differential manifolds. This adds yet another path to the advancement of137

soundproof models.138

Smolarkiewicz (2011) provides a brief discussion of the numerical model EULAG and139

illustrates the discussion with dry simulations of idealized multiscale flow problems relevant140

to weather and climate. In addition, a progress towards an unstructured-mesh option of141

EULAG has been illustrated with simulations of atmospheric wave dynamics across a range142

of scales. Smolarkiewicz (2011) argues that it is difficult to find a numerical example relevant143

to NWP and climate studies conclusively showing a failure of soundproof approximations.144

The cumulative computational experience demonstrated surprising flexibility and a broader145

than anticipated range of validity of soundproof approximations. Nonhydrostatic soundproof146

equations imply non-negligible numerical advantages over fully-compressible equations, and147

the developments of the last decade document growing interest of the community in exploit-148

ing their strengths.149

3. The moist thermodynamics in the soundproof sys-150

tem151

The moist thermodynamics with phase changes of water substance and precipitation152

(rain and/or ice) impose theoretical and practical challenges that need to be addressed for153

the all-scale modeling of weather and climate. The extension of the moist thermodynamics to154

global flows — and flows for which some of the assumptions (e.g., neglecting nonhydrostatic155

pressure perturbations in moist simulation) may no longer be valid — is the key aspect.156

On theoretical grounds, moist thermodynamics involves two issues. The first one is the157

latent heating associated with phase changes of the water substance. Latent heating is the158
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key element of moist processes because it is a source of positive cloud buoyancy in otherwise159

stably-stratified dry atmosphere. The second issue concerns development and fallout of160

precipitation. Precipitation comprises a number of effects, from the impact on local buoyancy161

(through the condensate loading) to the impact of precipitation evaporation outside clouds162

and precipitation-laden downdrafts that strongly affect properties of the boundary layer. We163

focus here on the latent heating as its inclusion into the soundproof system brings challenges164

discussed below. Precipitation processes (ice processes in particular) involve representation165

of cloud microphysics, but its inclusion in the soundproof system is relatively straightforward.166

For the ideal gas, the laws of thermodynamics allow introduction of the potential tem-167

perature θ = T (poo/p)
Rd/cp as an invariant of adiabatic processes. The potential temperature168

is also a measure of entropy s = cplnθ, and it can be introduced based on entropy consider-169

ations; see discussions in Bauer (1908), Hauf and Hoeller (1987), Bryan (2008) and Pauluis170

(2008), among others. An important difference, however, is that entropy considerations in-171

volve assumption of the thermodynamic equilibrium which is only approximately valid for172

condensation and typically invalid for ice processes. Moreover, applying potential tempera-173

ture as the main thermodynamic variable allows semi-implicit (i.e., implicit with respect to174

the fast-propagating gravity waves) formulation of the model integration scheme essential175

for an efficient application of the model in large-scale simulations (Smolarkiewicz et al. 2001;176

Grabowski and Smolarkiewicz 2002). Based on those arguments and considering that it is177

conserved in dry adiabatic circulations, we focus on models applying potential temperature178

θ as the main thermodynamic variable, in addition to mixing ratios of water substance in179

its various forms; cf. Grabowski (1998, 1999).180

In the general case of a diabatic flow, the conservation law for the potential temperature181

includes the heating rate that may include contributions from radiative transfer, chemical182

reactions, or — the emphasis in our case — phase changes of the water substance. In the183

latter case, the potential temperature equation becomes:184
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185

dθ

dt
=

Lθ

cpT

dq

dt
, (1)

where q is the appropriate water mixing ratio, L is the appropriate latent heat, and cp is186

the specific heat of air at constant pressure. For the condensation, latent heating is derived187

through the change of the cloud water mixing ratio. In turn, this change depends on the188

saturation water vapor mixing ratio qvs = ǫes(T )/[p− es(T )] ≈ ǫes(T )/p, where es(T ) is the189

saturated water vapor pressure and ǫ = Rd/Rv (Rd and Rv are the gas constants for the190

dry air and for the water vapor, respectively). The key point is that changes of both T and191

p impact qvs. The change of the saturated water mixing ratio ∆qvs, due to change of the192

temperature ∆T and pressure ∆p, can be estimated as:193

∆qvs =
∂qvs
∂es

des
dT

∆T +
∂qvs
∂p

∆p . (2)

However, since the model predicts not the temperature T but the potential temperature θ,194

one needs locally convert θ into T . Such a conversion involves again pressure p and thus195

∆T =
∂T

∂θ
∆θ +

∂T

∂p
∆p . (3)

Combining (2) and (3) and using the Clausius-Clapeyron relationship for des/dT leads to:196

∆qvs
qvs

= βL
∆θ

θ
−

(

1 +
R

cp
βL

)

∆p

p
, (4)

where βL = L/RvT is a coefficient that varies between 15 and 20 for air temperatures encoun-197

tered in the troposphere, and R/cp ≈ 0.3. Equation (4) implies that pressure perturbations198

have approximately an order of magnitude larger impact on qvs through the conversion of θ199

perturbations into T perturbations [the second term in the parenthesis on rhs of (4)] than200

the direct effect on qvs (i.e., via the denominator in qvs). In particular, (4) implies that201

∆qvs
qvs

∼ 15
∆θ

θ
− 5

∆p

p
. (5)

The first term on rhs of (5) represents effects of the potential temperature change on202

qvs. In small-scale atmospheric dynamics, the temperature perturbations — or, more gen-203

erally, perturbations of the density temperature that include effects of water vapor and204
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cloud condensate on buoyancy (Emanuel 1994) — are a few degrees at most and conse-205

quently ∆θ/θ ∼ 0.01. Nonhydrostatic pressure perturbations can be estimated using several206

methods. For instance, the Bernoulli equation implies that the nonhydrostatic pressure per-207

turbation (over the motionless environment) within a rising plume should vary as ρu2. This208

gives pressure perturbations around 1 hPa for the velocity of ∼10 m s−1. A similar estimate209

can be obtained by considering a parcel of a buoyant fluid and estimating pressure perturba-210

tions required to move the air above and below the parcel to allow the parcel to rise. Finally,211

vortical motions with velocity magnitudes of 10 m s−1 also imply pressure perturbations of212

∼ 1 hPa within the vortex core. Computational example presented in the next section will213

substantiate these estimates. It follows that ∆p/p ∼ 0.001 for typical situations of small-214

scale atmospheric dynamics. Hence, as far as moist thermodynamics is concerned, pressure215

perturbations can be neglected compared to the potential temperature perturbations as it216

is typically done in anelastic models; see e.g., Lipps and Hemler (1982); Grabowski and217

Smolarkiewicz (1996), among many others.218

However, neglecting pressure perturbations in moist thermodynamics cannot be univer-219

sally valid. For instance, in a tornado, pressure perturbations can reach 100 hPa when220

the velocities reach 100 m s−1, and then ∆p/p ∼ 0.11. As far as larger-scale dynamics is221

concerned, temperature and hydrostatic pressure perturbations within midlatitude weather222

systems can be of the order of 10 K and 10 hPa. Their impact on moist thermodynam-223

ics would then be comparable according to (5). Thus, to extend the validity of the moist224

soundproof system to small-scale and mesoscale extreme events as well as into larger-scale225

dynamics (e.g., moist baroclinic waves), one should develop an approach to include pressure226

perturbations into moist thermodynamics.227

Traditional thinking is that pressure perturbations obtained from the mass continuity228

1Note that we put aside the issue whether the soundproof equations can accurately simulate such a flow

in the first place. However, the Mach number squared, an appropriate parameter determining validity of

the soundproof system, is ∼ 0.1 is such a case. This suggests that the soundproof solution may still be

sufficiently accurate.
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constraint via the associated elliptic pressure solver in the anelastic or pseudo-incompressible229

system should not be used in other parts of the model. This is because, for instance,230

anelastic model dynamics only care about pressure gradients, not the pressure magnitude,231

and the pressure is only known up to a constant. As will be illustrated by computational232

examples below, one can design a pressure solver in such a way that the pressure magnitude233

is predicted in addition to the pressure gradients and thus the pressure can be used in the234

moist thermodynamics. The key aspect concerns the formulation and application of the235

boundary conditions and specifics of the generalized Laplacian operator ∼ ∇·(C∇ p), where236

C represents the coefficient matrix; see the appendix for details.237

For illustration, the next two sections compare idealized two-dimensional moist simu-238

lations performed with the EULAG model applying either anelastic or fully-compressible239

dynamics options. The anelastic moist EULAG model applies explicit thermodynamics240

(Grabowski and Smolarkiewicz 2002, and references therein). It is applied in either the241

original version, that is, with the perturbation pressure excluded from the moist thermo-242

dynamics (Lipps and Hemler 1982; Grabowski and Smolarkiewicz 1996) (referred to as the243

standard anelastic; ANES) or with the anelastic perturbation pressure combined with the244

input hydrostatically-balanced pressure profile and used in the moist thermodynamics (re-245

ferred to as the generalized anelastic; ANEG). The compressible model (Smolarkiewicz and246

Szmelter 2009), referred to as COMP, solves equations of gas dynamics applying nonoscil-247

latory forward-in-time integration scheme (Smolarkiewicz and Margolin 1997), very much248

alike the anelastic EULAG; cf. section 4 in Smolarkiewicz (2006) for discussion. Extension249

to moist processes includes replacing dry density by its moist counterpart, with the moist250

equation of state given by p = ρRT (1 + 0.61qv), where ρ is the moist air density and qv is251

the water vapor mixing ratio. The compressible model uses the acoustic time step required252

for numerical stability. This is impractical from the perspective of weather and climate, but253

leads to accurate compressible solutions, unobscured by numerical devices admitting long254

time steps in elastic models. Here compressible solutions are considered references for the255
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anelastic models. The emphasis in the discussion will be on the comparison of the pertur-256

bation pressure between compressible and anelastic models because these perturbations are257

used in the moist thermodynamics. Applying the same numerical framework—the anelas-258

tic/compressible EULAG model—minimizes the influence of the numerics and better exposes259

differences in the theoretical model formulation.260

4. Anelastic and compressible small-scale dynamics:261

moist thermals in stratified environment262

a. Setup of simulations263

The computational examples presented in this section address two-dimensional moist264

thermals rising from rest in a stratified environment, following Grabowski and Clark (1991,265

1993a,b). A range of initial buoyancy perturbations is considered. The initial buoyancy266

perturbation combined with water-saturated initial conditions within the thermal leads to267

the rising motion accompanied by the condensation and latent heat release. As the thermal268

rises, shear and buoyancy gradients across the cloud-environment interface lead to the devel-269

opment of interfacial instabilities (entraining eddies) as discussed in Grabowski and Clark270

(1991, 1993a,b). These instabilities are sensitive to details of model numerics and can result271

in different flow realizations at later times; see, e.g., Figs. 2 and 3 in Grabowski and Smo-272

larkiewicz (2002). To delay the onset of these instabilities, model physics includes explicit273

diffusion with a constant diffusion coefficient of 2.5 m2s−1. Periodic lateral boundaries and274

rigid-lid lower and upper boundaries are assumed. As in simulations reported in section 3a of275

Grabowski and Smolarkiewicz (2002), a uniform 10-m gridlength is used in both horizontal276

and vertical directions.277

The environment is assumed to have constant static stability of 1.3 × 10−5 m−1 and278

relative humidity of 20%, with the temperature and pressure of 283 K and 850 hPa at the279
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lower boundary. The hydrostatically-balanced anelastic profiles of the potential temperature,280

pressure and density are prescribed as in Clark and Farley (1984, see Eq. 2 therein). The281

same initial profiles are also used in the compressible model, except for the density profile282

that is modified to include effects of moisture.283

The circular initial temperature perturbation with 300 m radius is imposed in the middle284

of the 3.8× 4 km2 computational domain. The perturbation center is initially at the height285

of 800 m above the bottom boundary. The air within the 200 m radius is assumed satu-286

rated and the relative humidity smoothly decreases as in Grabowski and Clark (1991) over287

100 m towards the 20% environmental relative humidity. The compressible model solves the288

continuity equation for the moist air density with the pressure derived from the predicted289

potential temperature and moist air density. Because of that, the initial density perturba-290

tion is derived from the moist equation of state at the onset of the compressible simulation.291

Three different initial potential temperature perturbations are considered: 0.5, 5 and 50 K.292

The first one may be considered typical for small convective clouds. The largest perturbation293

represents magnitude outside the range typical for atmospheric moist convection and is used294

here to expose differences between anelastic and compressible systems.295

Table 1 shows comparison of model timesteps and total integration time for all simu-296

lations. A relative ratio of the anelastic and compressible timesteps for 0.5, 5, and 50 K297

simulations is 100, 25 and 1, respectively. The difference in total integration time is dom-298

inated by this ratio. Both models use the same timestep in the 50 K case, and the total299

integration time of the anelastic model is about 10% smaller than of the compressible model.300

This indicates that solving the elliptic problem for the pressure perturbation carries com-301

parable cost to the advection of one additional field, the air density, in the compressible302

model.303
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b. Results304

The large difference in the initial buoyancy perturbation for the three cases has a strong305

impact on the evolution of moist thermal in terms of the vertical velocity and the con-306

densation rate evolutions. To better compare results with various initial perturbations, a307

non-dimensional buoyancy time scale Tb is introduced following Sanchez et al. (1989):308

Tb = r0(2gr0θ
′/θ̄)−1/2, (6)

where r0 = 300 m is the initial radius of thermal, θ′ is the initial potential temperature309

perturbation, θ̄ = 300 K, and g = 9.81 m s−1 is the gravity constant. The real time t is310

normalized by the buoyancy time scale Tb. The buoyancy time scale for the initial potential311

temperature perturbations of 0.5, 5, and 50 K is 95, 30, and 9.5 s, respectively.312

In this paper, results are considered from only the first 10 t/Tb. This is because interfacial313

instabilities that develop at the leading edge of the thermal in all three cases begin to have314

a noticeable impact on the solution roughly at 5 t/Tb, and they dominate the solution after315

10 t/Tb. As a consequence, gradual disintegration of the single convective structure and a316

formation of a variety of secondary circulations is simulated. The instabilities develop at317

scales determined by the characteristics of the leading edge interfacial layer, such as the318

shear and buoyancy gradient; see Grabowski and Clark (1991) for a detailed discussion.319

Test simulations with different values of the diffusion coefficient showed that adding explicit320

diffusion can only delay the development, but is not able to suppress it.321

As an illustration of the above discussion, we show in Fig. 1 the total water fields from322

all nine simulations (three model formulations and three magnitudes of the initial pertur-323

bation) at the nondimensional time of 10 t/Tb. For the smallest initial perturbation, the324

solutions correspond to the dimensional time of about 16 min. The solutions are strongly325

affected by the explicit diffusion; see a diffused pattern of contours near the bottom of the326

thermal, especially when compared to the other solutions. Condensed water is only present327

in the central overshooting part of the initial perturbation — it represents late evolution328
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of the interfacial instability — and this is where the solutions differ between compressible329

and anelastic models. Similar conclusions apply to the intermediate initial perturbation.330

However, since these are for dimensional time of around 5 min, the edges of the thermal331

remain relatively sharp. Solutions for the strongest initial perturbation correspond to only332

about 2 min of the thermal rise, and the interfacial instabilities seem to evolve in a sur-333

prisingly similar manner between all three model formulations. The only difference between334

the anelastic and compressible models is slightly slower rise of the compressible thermal as335

quantified in more detail in the subsequent analysis.336

Based on results presented in Fig. 1, we show in Fig. 2 pressure perturbations at the337

nondimensional time of 5 t/Tb. The figure shows that pressure perturbations are dominated338

by pairs of counter-rotating vortices, with a reduced pressure within their centers, into which339

the initially circular buoyancy perturbations evolved. Positive pressure perturbations are340

found in front of the thermal as the thermal pushes upward through the initially motionless341

air. For each of the initial buoyancy perturbation, the anelastic solution in the left panel342

(i.e., ANES) agrees well with the compressible solution in terms of spatial structure and343

magnitude, the latter reaching minimum of about −6, −70 and −1000 Pa, respectively. The344

figure shows that the anelastic pressure perturbations compare well with the compressible345

solutions. The solutions based on the generalized anelastic model (ANEG) are shown in the346

middle column of Fig. 2. These results are practically identical to those from the standard347

anelastic model; this is consistent with the discussion in the previous section (cf. Eq. 5).348

Figure 3 compares pattern of the vertical velocity at 5 t/Tb. Again, the differences are349

very small, except that the 50-K anelastic solution propagates slightly faster than the com-350

pressible one as evident from higher vertical velocities. This agrees with our experience with351

similar dry simulations where even larger temperature perturbations were considered and352

consequently larger deviations between compressible and anelastic solutions were simulated.353

Arguably, this is also consistent with a heuristic argument that larger buoyancy perturba-354

tions and thus stronger vertical velocities lead to more significant effects of air compressibility355
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above the thermal that impede the thermal rise.356

To further support above statements, time evolutions of the minimum and maximum357

pressure perturbations within the computational domain are shown in Fig. 4. Although358

pressure solutions from the compressible model presented in Fig. 2 are smooth, one should359

keep in mind that sound waves form an integral part of the solution. They are induced mostly360

by an upward movement of the density perturbation, but also by the continuous latent heat361

release inside the thermal. Sound waves propagate across the entire domain, reflect from362

model boundaries, and are responsible for the formation of the pressure perturbation field363

shown in Fig. 2. Their effect is clearly visible in Fig. 4, where compressible solutions feature364

oscillations with periods between 10 and 20 sec. The latter roughly agrees with the time365

needed for the sound waves to propagate across the computational domain. In order to366

reduce the impact of these waves, the compressible model employed divergence damping367

technique of Skamarock and Klemp (1992). Solutions without divergence damping were368

similar to those shown here, but with significantly larger oscillations in Fig. 4 and with small369

wiggles on the pressure perturbation isolines in Fig. 2. The key point is that compressible370

solutions tend to oscillate close to smooth anelastic solutions, perhaps with the exception of371

the solutions for the largest initial perturbation. The two anelastic solutions are practically372

indistinguishable for all cases considered.373

Figure 5 shows evolutions of the height of the center of mass (barycenter) of the to-374

tal water mixing ratio qt and the maximum of the updraft strength. The total water was375

chosen because it is an invariant of the phase change and marks well the evolution of the376

initial moisture perturbation. For the smallest initial perturbation – slightly larger than377

in Grabowski and Clark (1991) where only initial humidity perturbation was considered —378

thermal approximately reaches the level of neutral buoyancy after about four nondimensional379

time units (i.e., around 400 s) and remains close to this altitude for the rest of the simulation.380

Maximum vertical velocities are around a few meters per second. Differences between com-381

pressible and anelastic solutions in the latter part of the simulations merely reflect different382
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flow realizations due to interfacial instabilities as illustrated in Fig. 1. This is supported by a383

set of supplementary simulations with the anelastic model for a range of model timestep ∆t.384

These simulations show that the differences between anelastic and compressible solutions385

decrease significantly with the decreasing difference in ∆t. For instance, the difference in386

the qt barycenter height after 10 t/Tb is 138 m for the 2 s anelastic timestep (cf. Fig. 5),387

but it decreases to 66 m for 0.2 s and 49 m for 0.02 s; the latter timestep is the same as in388

the compressible model. Moreover, anelastic simulations applying smaller timesteps result389

in solutions that loose their horizontal symmetry earlier. This suggests that the cumulative390

numerical (truncation plus round-off) errors have a considerable impact on a development391

of small-scale interfacial instabilities and thus on the overall behavior of a rising thermal.392

Therefore, one should keep in mind that the differences between compressible and anelastic393

solutions can be of various origins, with details of model numerics playing an important role394

in the comparison. This point is especially valid for simulations with weak forcing, when the395

difference between the forcing and the numerical noise is relatively small.396

Solutions for the intermediate temperature perturbation in Fig. 5 are close to each other,397

with small differences apparent only in the last two nonodimensional time units (about one398

minute of the dimensional time) as illustrated in Fig. 1. For the largest initial perturbation,399

thermals rise about 10% faster in the anelastic model than in the compressible model, in400

agreement with the previous discussion. Differences in the maximum vertical velocity are401

initially small, 1-2 m s−1, and reach several m s−1 in the second half of the simulation. No402

significant difference between the two anelastic models are present regardless of the initial403

perturbation. The magnitude of simulated pressure perturbations (Fig. 4) are consistent404

with the maxima of the vertical velocity as argued in the previous section (i.e., ∼ 10, ∼ 100,405

and ∼ 1000 Pa for the three initial perturbations).406

The large perturbation of 50 K is used here to illustrate the limits of the anelastic407

approach, and only in this case the nonhydrostatic pressure perturbations have some (albeit408

still small) impact on the saturation adjustment. This is documented in Fig. 6 that shows409
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the evolution of the maximum of the cloud water mixing ratio. The differences between410

anelastic and compressible solution for nondimensional times larger than two are consistent411

with the previous discussion (i.e., weaker updraft in the compressible case). Small differences412

between the two anelastic models are apparent as well. More interesting, however, are the413

differences during the initial two nondimensional time units, documented in the insert of the414

figure. The insert shows that the standard anelastic model underpredicts the amount of the415

cloud water by about 0.1 g kg−1, whereas the compressible and generalized anelastic model416

agree quite well. The latter is not true during the initial 0.1 of the nondimensional time,417

that is, during the initial approximately 1 s of the simulation time. The 1-s time corresponds418

to a period required by sound waves to propagate across the initial buoyancy perturbation419

to establish corresponding pressure perturbation in the compressible model. This happens420

instantaneously in the anelastic model.421

5. Anelastic and compressible mesoscale dynamics: moist422

orographic flow423

a. Setup of simulations424

The second example considered in this study examines moist two-dimensional stratified425

flow over a bell-shaped mesoscale mountain. Experimental setup follows Grabowski and426

Smolarkiewicz (1996, GS96 hereinafter; see section 4b therein), with parameters exactly427

as in GS96 unless otherwise stated. As in simulations of the previous section, the moist428

thermodynamics is limited to the condensation/evaporation only. The height of the mountain429

is increased to h = 1000 m compared to GS96 to enhance orographically induced cloud430

water. The uniform inflow horizontal velocity of U = 20 ms−1 is assumed to maintain431

similar to GS96 flow regime in terms of the Froude number U/Nh ≈ 3/2. The relatively cool432

surface temperature of 273 K ensures absolute stability of the flow and eliminates potential433
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instability which occurs when the equivalent potential temperature decreases with height in434

the lower troposphere due to the impact of water vapor (see section 6.7 in Emanuel 1994).435

All simulations apply the subgrid-scale turbulence scheme based on the the turbulent kinetic436

energy (Margolin et al. 1999). The domain size is 640× 18 km2 with horizontal and vertical437

gridlength of 2 km and 250 m, respectively. Anelastic/compressible models are integrated438

applying 10/0.5 s time step. Simulations are run for 6 hrs, sufficient to reach approximately439

steady-state solutions. The simulations require 49 and 667 s of the wallclock time when440

using 32 processors for the anelastic and compressible models, respectively.441

As in the previous section, solutions from the three models are compared: the standard442

anelastic (ANES), the generalized anelastic (ANEG) and the fully-compressible (COMP). A443

significant difference from the rising thermal simulations of the previous section is that the444

orographic flow is differently affected by the round-off and truncation errors. More specifi-445

cally, in the case of a rising moist thermal, these errors affected development of interfacial446

instabilities and had a strong impact on the flow at later times. Model results for a stable447

orographic flow with a steady-state solution (i.e., no convection) are affected predominantly448

by the model mathematical formulation and to a smaller degree by the model numerics.449

b. Results450

Figure 7 shows results for the three models, ANES, ANEG, and COMP, after 6 hours451

of the simulation. Only central 300 km of the horizontal domain is shown. The solution452

consists of two vertical wavelengths apparent in the fields of the pressure and potential453

temperature perturbations and the vertical velocity. Perturbations in the upper part of454

domain attenuate with height due to the presence of the gravity-wave absorber. The vertical455

velocity pattern is limited to the region directly above the topography (thus documenting the456

close-to-hydrostatic flow regime), with the pressure and potential temperature perturbations457

extending horizontally hundreds of kilometers. The patterns are almost identical regardless458

of the model considered. The two anelastic models provide almost the same solutions that459
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compare well to the fully-compressible solution. Minor differences (around a single contour460

interval, i.e., ∼10 Pa) are simulated for the pressure perturbations in the upper part of461

the domain and away from the mountain. More detailed comparison of the anelastic and462

compressible pressure perturbations shows that the differences are mostly located in a narrow463

zone between 4 and 8 km right above the mountain, with extreme values as large as 20 Pa.464

This region is also characterized by a slight (0.1-0.2 K) underestimation of the potential465

temperature perturbation by the anelastic models. Cloud fields for all three simulations466

are very similar. The latter is consistent with the magnitude of temperature and pressure467

perturbations, up to 5 K and 2 hPa, that according to (5) imply only a small impact of468

pressure perturbations on the moist thermodynamics.469

Table ?? shows the extreme values of the fields from Fig. 7 together with the extrema470

of the difference fields between the anelastic and compressible solutions. The maxima and471

minima of various fields differ little, typically 1 or 2%, with the largest differences for the472

maxima of the potential temperature perturbations (up to 4%). The extrema of the difference473

fields (ANES-COMP and ANEG-COMP) are significantly larger (in the absolute sense) than474

the differences in the extrema between ANES, ANEG, and COMP. This implies that the475

differences come from slightly different spatial patterns of model solutions rather than from476

under- or overprediction of the extreme values. Overall, the table provides no hint as to477

whether the generalized anelastic model provides solutions that are closer to the compressible478

model. For instance, the maximum cloud water mixing ratio is 1.037 g kg−1 for ANES479

and 1.049 g kg−1 for ANEG and COMP. But the extrema for other fields in the ANES480

solution are typically closer to COMP than the ANEG, and the cloud water seems to be481

an exception. Such an ambiguity is also supported by the extrema of the difference fields,482

with the extrema of the ANES-COMP smaller for some fields and larger for others than483

ANEG-COMP. Additional simulations of ANEG and ANES models with the same time step484

as used in the COMP model has not clarified the situation either. Overall, one can only485

conclude that the differences between various model formulations are small and difficult to486
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explain, perhaps in agreement with the scaling suggested by Eq. 5.487

Time series of the extreme values of pressure perturbations, the maximum of cloud water488

mixing ratio and the total mass of the condensed water (
∫

ρqc dxdz; in kgm−1) are shown in489

Figs. 8 and 9. The series demonstrate how the anelastic and compressible models approach490

their steady state solutions. Pressure fluctuations in the compressible solution are due to491

sound waves propagating horizontally across the domain. The amplitude of the oscillations492

decline with time, and after about 5 hours a solution close to the steady state is reached.493

The evolution of the maximum cloud water mixing ratio and the total condensed water mass494

show consistent differences between ANES and ANEG models as well as a better agreement495

between ANEG and COMP. The comparison between the three solutions at the early stage496

of simulation is highlighted by enlarged panels (a) and (b) in Fig. 9. These show that the497

generalized anelastic solution better follows the fully-compressible solution.498

6. Summary and outlook499

This paper seeks to advance theoretical methodologies and their efficient implementa-500

tions for very-high-resolution nonhydrostatic simulation of the Earth’s atmosphere general501

circulation with soundproof equations. Compressible dynamics is universally valid across502

the entire range of spatial and temporal scales (i.e., from small-scale turbulence to planetary503

circulations), but impose computational limitations that are difficult to overcome. Cur-504

rent community efforts focus on alternative forms of the governing equations for modeling505

large-scale dry atmospheric motions. Efficient numerical simulation of moist processes in506

very-high-resolution cloud-resolving general circulation models applying those alternative507

equations is an uncharted territory.508

There is a significant experience in modeling moist processes at the opposite limits of509

the spatial scales involved (i.e., small-scale nonhydrostatic versus large-scale hydrostatic510

dynamics and thermodynamics). A practical approach suitable for multiscale simulation of511
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weather and climate that combines experiences from large-scale and small-scale dynamics512

calls for unification of moist thermodynamics. We focus on an approach that applies potential513

temperature as the main thermodynamic variable because it is conserved in dry adiabatic514

motions. Alternative approaches, for instance, based on entropy concepts (i.e., the equivalent515

potential temperature) are deemed inappropriate because of the underlying thermodynamic516

equilibrium assumption, only approximately valid for water clouds and invalid for ice-bearing517

clouds. Moreover, semi-implicit integration of the governing equations (Smolarkiewicz 2011;518

Grabowski and Smolarkiewicz 2002) favor application of the potential temperature as the519

main thermodynamic variable.520

The moist thermodynamics require local values of the temperature and pressure. The521

pressure field is needed not only in the formula for the saturated water vapor mixing ratio,522

but — more importantly — for the conversion of the potential temperature into temperature.523

In the soundproof system of equations, the key question is whether the pressure perturba-524

tions obtained from the elliptic pressure solver can be applied in the moist thermodynamics.525

In traditional small-scale soundproof models, pressure perturbations are typically neglected526

in the moist thermodynamics and only the environmental hydrostatic pressure profile is used527

(Lipps and Hemler 1982). A simple scaling argument shows that such an approach is ap-528

propriate for low-Mach-number small-scale flows. However, for flows with appreciable Mach529

numbers (e.g., ∼ 0.1 or larger) pressure perturbations should be used in the moist thermo-530

dynamics. The same is true for larger-scale flows (e.g., midlatitude weather systems) where531

nearly-hydrostatic pressure perturbations may affect moist thermodynamics in a manner532

comparable to the potential temperature perturbations.533

In support of the scaling argument, we compare model solutions to two idealized small-534

scale and mesoscale moist atmospheric flow problems (rising moist thermal and moist flow535

over topography, respectively) obtained with anelastic and fully-compressible flow solvers.536

The anelastic solver that includes pressure perturbations into moist thermodynamics is re-537

ferred to as generalized anelastic. In agreement with the scaling argument, we document538
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strong similarities between solutions obtained with the compressible, standard anelastic and539

generalized anelastic flow solvers. It thus follows that the pressure perturbations derived540

from the elliptic pressure solver in the soundproof system can be applied in the moist ther-541

modynamics. We plan to further substantiate this conjecture by studying diverse cases of542

moist atmospheric flows for a range of scales and physical scenarios and compare moist543

solutions obtained with soundproof and fully-compressible options of the EULAG model.544

Results of such studies will be reported in forthcoming publications.545
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APPENDIX557

558

Conservativity of elliptic solver559

A discrete anelastic elliptic pressure equation, at an arbitrary mesh point xi and instant560

tn, can be compactly written as561

1

ρo
∇ · ρo

(

û−C∇φ
)

= 0 . (A1)

Here: ρo = ρo(z) is the density of an anelastic reference state, defined by the hydrostatic562

balance and a constant nonnegative stratification; the differential operator ∇ is identifiable563

with the vector of primitive discrete spatial partial derivatives in a model code; and û564

denotes the explicit counterpart of the velocity vector u at tn. The C∇φ term specifies565

the implicit complement of û (such that u = û − C∇φ), where C symbolizes a matrix of566

known coefficients, generally varying with i and n. The role of the implicit complement is567

to assure the anelastic mass continuity constraint ∇ · ρou = 0 for all xi and tn. At heart of568

the complement is the implicit potential φ ∝ (p − pe)/ρo — a density normalized pressure569

perturbation2 with respect to an ambient pressure pe, often (but not necessarily) coinciding570

with the anelastic reference pressure po = po(z). Together with suitable boundary conditions571

and the integrability condition, (A1) forms the generalized Poisson boundary value problem572

for φ.573

In anelastic models, natural and most common boundary conditions for φ are either574

periodic or Neumann. While the former are straightforward, the latter deserve a comment.575

A Dirichlet boundary condition for velocity, n · u|nB = n · ue, imply Neumann condition576

n ·C∇φ|B = n · (û−ue)|
n
B for φ; where subscript B refers to the boundary points, ue(x, t) is577

a larger scale ambient flow that satisfies the anelastic mass continuity ∇ · ρoue = 0, and n is578

2The proportionality constant is a model time step or its fraction, depending on the details of numerics.
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the outward unit normal to the boundary ∂Ω of the integration domain Ω. Such a design of579

the boundary conditions assures the integrability condition
∫

∂Ω
ρon · un = 0 for (A1), given580

∫

∂Ω
ρon · ue = 0.581

In EULAG, the elliptic problem (A1) is effectively solved to a specified physically-582

motivated tolerance, ‖ ru ‖∞≡‖ (δt/ρo)∇·(ρou) ‖∞≤ ε, using the preconditioned generalized583

conjugate residual algorithm (GCR), an iterative nonsymmetric variational Krylov approach,584

reviewed recently in Smolarkiewicz and Szmelter (2011). Regardless of the complexity and585

details of the GCR, an archetype iteration for the problem (A1) may be viewed as586

φk+1 = φk + bkrk , (A2)

where, k = 0, .., N numbers the iterations while φk is a shorthand for the kth iterate of587

φn
i . Furthermore, r denotes the residual error, i.e., the actual value of the lhs of (A1) for588

φk, whereas bk is a coefficient (constant at any given k) derived variationally by minimizing589

residual error of subsequent iteration(s). For either Dirichlet or Neumann boundaries, the590

recurrence relation (A2) implies, respectively,591

φk+1

B = φk
B + bkrkB , (A3)

592

n ·C∇φk+1|B = n ·C∇φk|B + bkn ·C∇ rk|B , (A4)

The recurrences (A3) or (A4) imply that if the boundary conditions were satisfied at593

the preceding iteration, they will be satisfied at the subsequent iteration, given that the594

respective boundary conditions for r or C∇r are homogeneous. Thus, to ensure the correct595

boundary conditions for φ throughout the iteration process, it is important to satisfy them596

from the outset, at the initialization of the iteration loop, and to maintain the equivalent597

homogeneous boundary conditions while computing directional vectors, residual errors, and598

solution-error estimates that enter advanced Krylov-subspace solvers; see Smolarkiewicz and599

Szmelter (2011) for an exposition.600

In particular, calculating Neumann boundary condition for φ0 from the ambient flow (as601

discussed above) assures the correct boundary conditions for all φk, given the corresponding602
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gradient term C∇(.) of the residual error, directional vectors, etc., is set to zero at the603

boundaries. Furthermore, because (A3) amounts to604

ρoφ
k+1 = ρoφ

k + bk∇ · (ρou
k) , (A5)

its discrete volume integral605

∫

Ω

ρoφ
k+1 =

∫

Ω

ρoφ
k + bk

∫

∂Ω

ρon · uk (A6)

implies606

∫

Ω

ρφk+1 =

∫

Ω

ρφk , (A7)

because the constructed boundary condition for velocity assures zero total flux through the607

model boundary ∂Ω. Thus, initializing the model with φ = 0 at t = 0, assures that the608

volume integral of φ vanishes at all times, thus adding no constant to the solution of the609

elliptic pressure equation.610
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Table 1. Model timesteps ∆t and the total integration times (run times) using 32 processors
for the anelastic and compressible rising thermal simulations.

MODEL EXPERIMENT

θ′ = 0.5 K θ′ = 5 K θ′ = 50 K

∆t run time ∆t run time ∆t run time
[s] [s] [s] [s] [s] [s]

anelastic 2 69 0.5 74 0.02 369

compressible 0.02 4992 0.02 1135 0.02 404
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Table 2. Minima and maxima of the pressure perturbations (p′), vertical velocity(w), cloud
water mixing ratio (qc) and potential temperature perturbations (θ′) for the orographic flow
solutions obtained with ANES, ANEG, and COMP models after 6 hours. Bottom two rows
show minima and maxima of the difference fields ANES-COMP and ANEG-COMP.

p′ w qc θ′

[Pa] [m s−1] [g kg−1] [K]

min max min max min max min max

ANES -259.8 91.2 -2.54 2.83 0 1.037 -5.14 5.09

ANEG -258.1 91.1 -2.53 2.81 0 1.049 -5.10 5.03

COMP -252.4 92.0 -2.62 2.86 0 1.049 -5.17 5.25

ANES-COMP -21.2 11.8 -0.15 0.13 -0.07 0.02 -0.32 0.32

ANEG-COMP -23.2 12.4 -0.16 0.13 -0.07 0.02 -0.31 0.36
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Fig. 1. Total water mixing ratio at 10 t/Td for 0.5 K (upper row), 5 K (middle row) and 50 K
(bottom row) for ANES (left column), ANEG (middle column) and COMP (right column).
Regions of cloud water mixing ratio greater than 0.01 g kg−1 are shaded. Contour interval
(CI; in g kg−1) is shown in the upper right corner of each panel.
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Fig. 2. Pressure perturbations at 5 t/Tb for 0.5 K (upper row), 5 K (middle row) and
50 K (bottom row) of the initial potential temperature perturbation. Left, middle, and right
columns show results for ANES, ANEG, and COMP, respectively. Contour interval (CI; in
Pa) is shown in the upper right corner of each panel.

38



Fig. 3. As in Fig. 2, but for the vertical velocity field. Contour interval (CI; in m s−1) is
shown in the upper right corner of each panel.
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Fig. 4. Evolution of the minimum (left column) and maximum (right column) pressure
perturbation for rising thermal simulations with different initial potential temperature per-
turbation: 0.5 K (upper row), 5 K (middle row), and 50 K (bottom row). ANES and ANEG
solutions are almost indistinguishable.
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Fig. 5. Evolutions of the height of the total water mixing ratio barycenter (left panel) and
the maximum vertical velocity (right panel) for rising thermal simulations with the three
different initial potential temperature perturbations.
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Fig. 6. Evolution of the cloud water mixing ratio maxima for rising thermal simulations
with the initial potential temperature perturbation of 50 K. The insert (a) shows enlarged
evolution during the first 1.5 unit of time. See text for a discussion.
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Fig. 7. Pressure perturbation (upper row), vertical velocity (2nd row), cloud water mixing
ratio (3rd row) and potential temperature (bottom row) at hour 6 of the moist flow over
mesoscale topography. Left, middle, and right columns show results for ANES, ANEG, and
COMP, respectively. Contour intervals (CI) are shown in the right upper corner of each plot.
The dashed line in the cloud water panels represents isoline of 0.01 g kg−1.
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Fig. 8. Evolution of the minimum (upper panel) and maximum (lower panel) of the pressure
perturbations for ANES, ANEG and COMP orographic flow simulations.
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Fig. 9. Evolution of the maximum of the cloud water mixing ratio (upper panel) and total
liquid water mass (lower panel) for ANES, ANEG and COMP orographic flow simulations.
The inserts (a) and (b) show enlarged evolution during the model spinup. See text for a
discussion.
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