

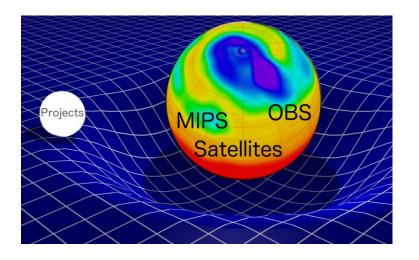
JASMIN (STFC/Stephen Kill)

JASMIN and the adoption of cloud-native architecture for managing data and compute at scale

16th Workshop on Meteorological Operational Systems, ECMWF 1 – 3 March 2017

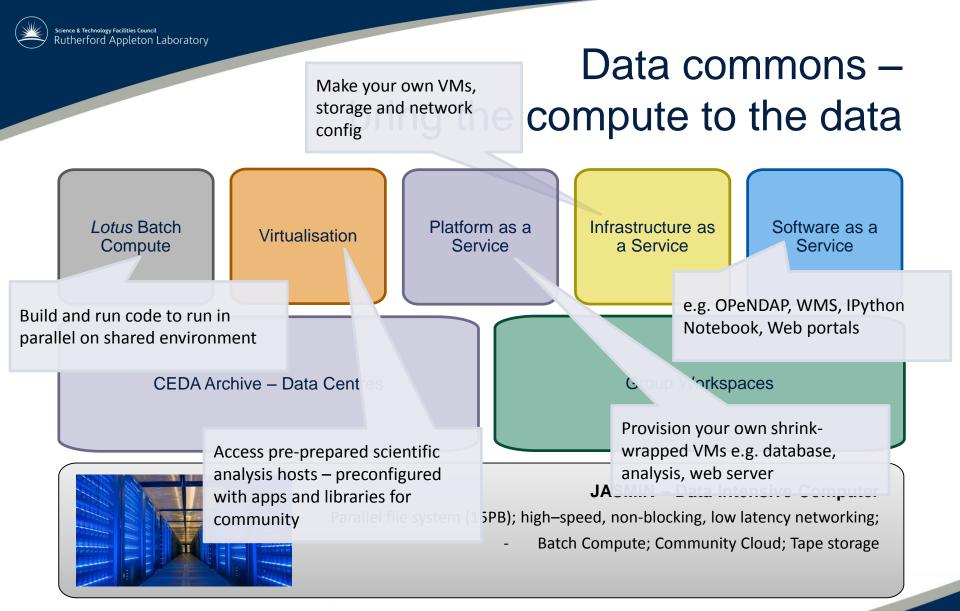
Philip Kershaw⁺, Jonathan Churchill^{*}, Bryan Lawrence[^], Matt Pritchard⁺, Matt Pryor⁺

+ NCAS/NCEO Centre for Environmental Data Analysis, RAL Space, STFC;


* Scientific Computing Department, STFC; ^ NCAS University of Reading

JASMIN Introduction

Data gravity associated *with managed data* so that users want to bring their projects to the the JASMIN environment


- JASMIN is a NERC-funded multi-petabyte data analysis facility
 - for the UK environmental science community and their international collaborators.
 - Over 1000 registered users
 - Hosts CEDA data centres supporting 30k users
- A data commons: *bringing the compute to the* [managed] *data* paradigm
 - Managed data analysis ready: Big Data Value 'V'
 - Predominantly climate science and Earth observation
- A response to the challenges of Big Data encountered in this and other research domains.
 - In operation since 2012
 - Celebrated 5th birthday earlier this week ③

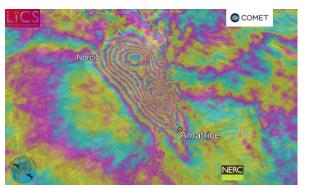
National Centre for Earth Observation

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

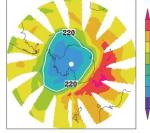
High Level themes

- Why adopt a cloud-native architecture?
 - Elasticity and scaling for Big Data
 - Cloudbursting: migrate into public cloud taking based on based on technical, policy and financial merits

- We already have a cloud architecture for JASMIN what do we need to evolve?
 - Compute and storage interfaces

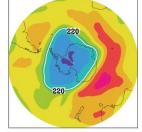


ATURAL ENVIRONMENT RESEARCH COUNCIL



Storage: Data-as-a-Service

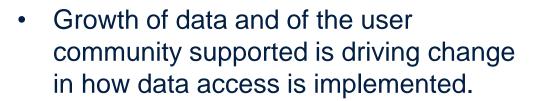
A map of deformation caused by an earthquake Contact: Tim Wright (University of Leeds) http://comet.nerc.ac.uk/


Column ozone OMI satellite October 2, 2011 TOMCAT/SLIMCAT 3D Model

National Centre for

Atmospheric Science

TURAL ENVIRONMENT RESEARCH COUNCIL

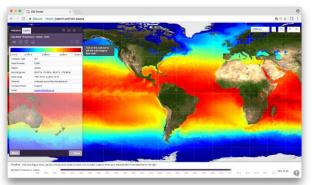


National Centre for

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Comparison of satellite coverage vs. model runs Contact: Martin Chipperfield (Uni Leeds), Wuhu Feng (NCAS), Chris Wilson and Richard Pope (NCEO) http://www.see.leeds.ac.uk/tomcat



- Ideally, data access should be both performant and ubiquitous for applications consuming them.
- There are two key factors for consideration:
 - the network architecture enabling performance and isolation
 - the interfaces used to access data.

Centre for Environmental Data Analysis

An e.g. data access scenario: ESA Climate Change Initiative and JASMIN

cience & Technology Facilities Council

Sea Surface Temperature CCI Contact: Dr Owen Embury (University of Reading) GISportal (PML) hosted on JASMIN

CCI Open Data Portal hosted on JASMIN's cloud

JASMIN enables a continuous chain:

Data Production: ECV (Essential Climate Variable)

climate Variable) datasets with JASMIN Lotus batch compute Curation: •~180TB on parallel file system • Metadata catalogue records Dissemination:

- Portal and discovery, visualisation, download services hosted on JASMIN cloud
- Lotus batch compute + parallel FS:
 - Sea Surface Temperature: scientists can generate 30+ years of datasets in just a few days, rather than months or years.

But . . .

- JASMIN's community cloud allows users to provision virtual machines using an IaaS (Infrastructure as a Service) model
- But there is a fundamental incompatibility between this and parallel file systems at scale
 - Parallel file system: a global uid/gid space under a single administrative authority
 - IaaS model: multiple tenant-defined administrative authorities
- IaaS on JASMIN is segregated into an isolated network
 - Gives full autonomy for tenants
 - access to the data archive and group workspaces via FTP and HTTP interfaces (such as OPeNDAP)

nce & Technology Facilities Council

TURAL ENVIRONMENT RESEARCH COUNCIL

From Parallel File Systems to Object Stores

- Motivations for using a parallel file system in the first place were:
 - 1) performance for massive data handling, and
 - 2) ease of management for petascale storage
- Object stores potential to provide a universal interface in the form of the widely adopted S3 REST API:
 - Decouple access policy from POSIX semantics
 - Software-defined solution: can incrementally add new h/w
 - Cost
- Support the main usage classes:
 - batch compute and cloud services from within JASMIN
 - external download
 - Interoperability: migrate easily between on-prem and cloud providers

Science & Technology Facilities Council Rutherford Appleton Laboratory

Object store work with JASMIN

- Proof-of-concept with vendors underway
 - Possibility of dual POSIX/Object store interfaces with some solutions
- HDF (and hence NetCDF4) REST API over object store
 - Development of as part of the European ESIWACE project
- How to address legacy scientific applications and their access to the file system via hierarchical directories?
 - Faceted search systems such as that created for ESGF (Earth System Grid Federation) illustrate alternative approach
 - Mimic directory hierarchy
 - But allow flexible combinations of vocabulary terms to find data
- CEDA File-Based Search project has indexed the whole archive (3.7PB) using ElasticSearch

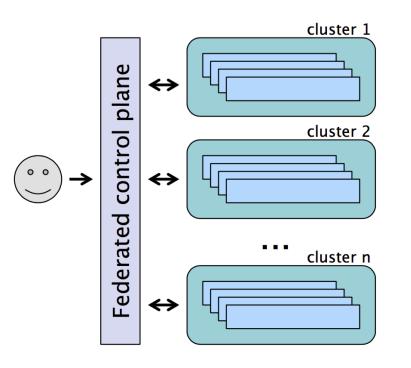
Compute interfaces and cloud

- Abstraction of compute with cloud
 - APIs allowing the dynamic provisioning of virtual machines
 - But the lack of consistent APIs and formats for sharing virtual machine images has hindered portability between platforms
- Possible solutions for interoperability of cloud compute:
 - Libraries: jclouds, libcloud
 - Terraform
 - Containers technologies

ATURAL ENVIRONMENT RESEARCH COUNCIL

RCUK Cloud Working Group: Pilot project

- Research Councils UK Cloud Working Group
 - goal is to support researchers and technical specialists in the application of cloud computing technologies and services for the research community in the UK
- Exploring a number of areas around cloud adoption:
 - Technical; legal, policy and regulatory; costs
- Pilot project: targeted activity to investigate interoperability across clouds
 - Particle physics chosen as the domain area
 - Use container technologies as a means of abstraction and therefore interoperability across cloud platforms
- Containers allow change from
 - application only to instead
 - an encapsulation of application + dependency bundle



National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

kubernetes

<pre>\$ kubectlcontext=federation-cluster get clusters</pre>		
NAME	STATUS	AGE
azure-west-europe	Ready	6h
gce-europe-west1	Ready	13h
gce-us-central1	Ready	5m
gce-us-east1	Ready	13h
gce-us-west1	Ready	5m

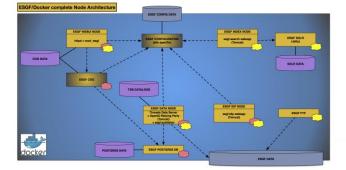
Example with 1 cluster in Azure & 4 clusters in different regions in Google Cloud Platform

- single API to deploy applications on both Azure and Google Cloud Platform
- run one command to create squids in all 5 clusters

Centre for Environmental

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL

Data Analysis



Containers and JASMIN: work to date and plans for the future

cience & Technology Facilities Council

Attendees at ESA Summer school, ESRIN used OPTIRAD environment – Credit ESA

https://github.com/ESGF/esgf-docker/wiki

- OPTIRAD
 - ESA-funded project to collaborative research environment for land-surface data assimilation
 - JupyterHub and IPython.parallel
 - Used to provide training environment at ESA summer school
 - Docker containers with Swarm orchestration
- Build on OPTIRAD and make a generic Jupyter (IPython) Notebook service for JASMIN
 - Replace Swarm with *Kubernetes* for orchestration
 - Fully automated deployment with Ansible playbook(s)
 - Looking at integration with MetOffice Informatics Lab work with Jade – using Dask scheduler
- Kubernetes
 - Pod encapsulates an application container(s), storage resources, network IP, and container run options
- Adopt container-based solutions for ESGF and Copernicus services

National Centre for Earth Observation

Conclusions

- JASMIN: data commons bring compute to the (managed) data
- Evolution of Data-as-a-Service is necessary for scale-up for demands of Big Data and the needs of a multi-tenancy hosted computing environment
- Careful stepped approach for object store implementation is required
 from deployment to full adoption for user community
- There are new possibilities for abstraction of compute and storage
 - Developments in container technology Kubernetes
 - Possible future convergence with batch compute / HPC with Shifter
- Docker, Kubernetes + S3 API for object stores
 - → Complete solution for migration of applications between on-prem private and public cloud

TURAL ENVIRONMENT RESEARCH COUNCIL

Further Information

- CEDA and JASMIN:
 - <u>http://www.jasmin.ac.uk/</u>
 - <u>http://www.ceda.ac.uk/</u>
- JASMIN paper

Lawrence, B.N., V.L. Bennett, J. Churchill, M. Juckes, P. Kershaw, S. Pascoe, S. Pepler, M. Pritchard, and A. Stephens. **Storing and** manipulating environmental big data with JASMIN. *Proceedings of IEEE Big Data 2013, p68-*75, doi:10.1109/BigData.2013.6691556

- ESA Climate Change Initiative Open Data Portal
 - <u>http://cci.esa.int/</u>
- ESNet Science DMZ
 - <u>http://fasterdata.es.net/</u>
- CEDA ESGF node
 - <u>https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/</u>
- ESGF ICMWG (International Climate Network Working Group)
 - <u>http://icnwg.es.net/</u>
- Research Councils UK Cloud Working Group
 - <u>https://cloud.ac.uk/</u>
- philip.kershaw@stfc.ac.uk, @PhilipJKershaw

NATURAL ENVIRONMENT RESEARCH COUNCIL