Deutscher Wetterdienst Wetter und Klima aus einer Hand

Representation of model error using stochastic equation with flow-dependent spatial and temporal correlations and noise amplitude

Ekaterina Machulskaya and Richard Keane, German Weather Service

Motivation

- In Kalman Filter based DA, the weights for the interpolation between the
 observations and the first guess are inversely proportional to the <u>corresponding</u>
 <u>uncertainties</u> (errors). The uncertainty of the first guess combines the propagated
 error of the analysis and the <u>model error</u>. An <u>estimate of the model error is
 needed</u> in order to give an appropriate weight to the first guess.
- The end-users should be provided with the information <u>how reliable/uncertain the</u> forecast is.
- If the perturbations are chosen <u>correctly</u>, the ensemble mean can (should) be better then the deterministic forecast.

A model for the model error

$$\frac{\partial \phi}{\partial t} = \left[\frac{\partial \phi}{\partial t}\right]_{det} + \eta_{\phi}(t)$$

 ϕ – prognostic variables (*T*,*q*,*U*,*V*)

 $\eta_{\phi}(t)$ – corresponding model error field

$$\frac{\partial \eta_{\phi}(x,t)}{\partial t} = -\gamma_{\phi}\eta + \gamma_{\phi}\lambda_{\phi}^{2}\nabla^{2}\eta + \sigma_{\phi}\xi(x,t)$$

persistence in time, $1/\gamma_{\phi}$ – correlation time scale diffusion establishes
spatial correlations
(governed by λ_{ϕ})random component,
 $\xi(x, t)$ – Gaussian white noise
 σ_{ϕ} – standard deviation

Parameter estimation

The model error η_i is estimated as time series of "1h forecast – analysis" differences, forecasts are run every hour ($\Delta t = 1h$) during one month (January and July) Then for each bin of a predictor (flow dependence!)

 λ is determined from the empirically determined spatial autocorrelation function $G(\vec{r})$ through the solution of the implicit equation wrt λ for a particular spatial lag \vec{r} (Garcia-Ojalvo at al., 1992)

$$G(\vec{r}) = \sum_{\vec{k}} \frac{\cos(\vec{k} \cdot \vec{r})}{1 + \lambda^2 \vec{k}^2}$$

General considerations

<u>Stochastic approach</u>: run an ensemble of forecasts with a randomly simulated model error. The spread between ensemble members serves as an estimate of the model uncertainty. The strategy to simulate the model error is

- to approximate the <u>empirically determined</u> error of the model tendencies by a random process with the <u>same statistical properties</u>;
- to add this estimate of the model tendency error to the right-hand side of the governing equations.

Disadvantage: lack of understanding of essential physics of model error

<u>Advantages</u>: the entire model error is represented (important for data assimilation); properties of the simulated model error, such as noise amplitude and time and space correlations, are not arbitrary

Present scheme vs. SPPT

First results

Simulation of the temperature error along a front, COSMO-DE, 01.01.2014, 00UTC + 3h

ABS(T_2m error) ens members – ens mean

Conclusions and outlook

A stochastic model for the model error is proposed, which is based on differential stochastic equations describing the flow-dependent time evolution of the error of the tendencies of model variables.

The parameters in the stochastic equations are dependent on resolved model variables, and this dependence is determined using an inexpensive training period. In this way, the resulting perturbations represent the behaviour of the model error appropriate to the current modelled weather conditions. Initial tests are carried out to assess the performance of the scheme in the full operational setup, and the first results show that the scheme is able to provide an increase in spread which corresponds well with the model error.

J. Garcia-Ojalvo et al., Generation of spatiotemporal colored noise, Phys. Rev. A, 1992, V. 46, N.8, pp. 4670-4675