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1. Analysis uncertainties and the growth 
of forecast uncertainties in IFS



Zonally-averaged ensemble spread in EDA

Žagar et al., 2013, QJRMS

3-hour ensemble spread in the zonal wind, cy32r3

m/s



Zonally-averaged growth of forecast 
uncertainties in ENS

+12 hour +24 hours +120 hours

ECMWF ensemble prediction system: two weeks of data in May 2015
Ensemble spread in zonal wind (m/s) 

m/s

Žagar et al., 2016, Tellus



Global growth of forecast uncertainties  
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Global analysis and forecast uncertainties

Initial-state uncertainties are largest in the tropics

How do the forecast uncertainties grow as a function of scale? 

How the growth depends on dynamics (balanced versus 
unbalanced)? 

How the forecast errors in medium range in the mid-latitudes 
depend on the tropical analysis uncertainties?

We take a global, 3D view of forecast errors as represented by the 
ensemble spread of operational ensemble forecasts of ECMWF



Uncertainties in tropical winds:               
ERA Interim vs. MERRA reanalyses

Zonal wind averaged between 5oN and 5o S  
PreConcordiasi period in April 2010 with the balloon measurements 
(talks by A. Hertzog and R. Plougonven)



Uncertainties in tropical Kelvin wave:               
ERA Interim vs. MERRA reanalyses



Uncertainties in tropical Kelvin wave:               
ERA Interim vs. MERRA reanalyses



2. Modelling the tropical forecast-error 
covariances



Multivariate decomposition of global data 
using the Hough harmonics 

Solutions in terms of horizontal and vertical dependencies:

N. Žagar et al.: Normal-modefunction softwareand applications 3

2 Derivation of 3D normal mode functions

Thederivation of 3D normal modespresented in thissection

follows KP981 and the reader is referred to the original pa-

pers for any missing details. Note that the notation is some-

what different.180

2.1 Model of theatmosphere

As a model of the atmosphere, we deal with the tradi-

tional hydrostatic baroclinic primitive equation system on a

sphere, customarily adopted for numerical weather predic-

tion (Kasahara, 1974). The model describes the time evolu-185

tion of eastward and northward velocity components(u
′

,v
′

)

and geopotential height asfunctionsof longitude, λ, latitude,

ϕ, vertical coordinate, σ, and time t. Theσ coordinateisde-

fined by

σ =
p

ps

, (1)190

wherep and ps denote thepressureand surfacepressure, re-

spectively (Phillips, 1957).

Although the atmospheric model is nonlinear, we are in-

terested in small-amplitude motions around the basic atmo-195

sphere at rest. Therefore, we can deal with a linearized adi-

abatic and inviscid version of the model. Solutions of such

a system with appropriate boundary conditions are referred

to as normal modes (Lamb, 1932). It should be noted that

we are dealing with free oscillations instead of forced os-200

cillations such as atmospheric tides (Chapman and Lindzen,

1970).

A new geopotential variable introduced by KP1981 ac-

counts for the fact that the surface pressure ps varies due to

topography and it isdefined as205

P = Φ+ RT0 ln(ps) , (2)

where Φ= gz. Here, z denotes the height corresponding

to the hydrostatic pressure and g the Earth’s gravity. Also,

T0(σ) denotes the globally averaged temperature at a given

σ level and R the gas constant of air. It is convenient to in-210

troduceamodified geopotential height h
′

= P/ g in the sub-

sequent development.

Thesystem of linearized equationsdescribing oscillations

(u
′

,v
′

,h
′

) superimposedonabasic stateof rest with temper-

atureT0 asa function of σ takesthefollowing form:215

∂u
′

∂t
− 2Ωv

′

sin(ϕ) = −
g

acos(ϕ)

∂h
′

∂λ
, (3)

∂v
′

∂t
+ 2Ωu

′

sin(ϕ) = −
g

a

∂h
′

∂ϕ
, (4)

∂

∂t

∂

∂σ

gσ

RΓ0

∂h
′

∂σ
− ∇ ·V

′

= 0. (5)

Here, a is the Earth’s radius and Ω is the Earth’s rotation220

rate. Equation (5) is obtained as a combination of the conti-

nuity and thermodynamicequationsafter thechangeof vari-

able and by using the suitable boundary conditions. For de-

tailsseeKP1981. Theboundary conditionsfor thesystem of

equations(3-5) are225

g
∂h

′

dσ
= finite at σ = 0, (6)

g
∂h

′

dσ
+

gΓ0

T0

h
′

= 0 at σ = 1. (7)

Thestatic stability parameter Γ0 isdefined as

Γ0 =
κT0

σ
−

dT0

dσ
, (8)230

and it is a function of the globally averaged temperature on

σ levels, T0, itsvertical gradient andσ.

As inferred from the work of G. I. Taylor (1936), the 3D

linearized model (3-5) can besolved by themethod of sepa-

ration of the variables. It means that thevector of 3D model235

variables [u′ ,v′ ,h′ ]T as functions of (λ,ϕ,σ) and time t is

represented as the product of 2D motions and the vertical

structurefunction G(σ):

[u′ ,v′ ,h′ ]
T

(λ,ϕ,σ, t) = [u,v,h]
T

(λ,ϕ, t) × G(σ) . (9)

Three- and 2D motionsare govern by two equation systems240

which areconnected by particular values of a separation pa-

rameter D which iscalledequivalent height followingTaylor

(1936). It turnsout that the governing system of the 2D mo-

tions is identical in form with theglobal shallow water equa-

tions having the water depth of equivalent height, D . This245

system isalso knownastheLaplaceTidal Equationswithout

forcing.

2.2 Vertical structureequation

We first discuss the vertical structure functions G(σ) gov-

ern by the vertical structure equation (VSE). Solutions of250

the VSE were first investigated by physicists in connection

with the theory of atmospheric tides under various basic

state temperature profiles and upper boundary conditions.

For the tidal problems, however, solutionsof VSE arecalcu-

lated under specified tidegeneratingmechanismswith apre-255

scribed value of equivalent height corresponding to a given

wave frequency. In contrast, for normal modeproblems, so-

lutions of VSE are sought for free oscillations (no forc-

ing and dissipation) that determine the values of equivalent

height and correspondingvertical functional profiles. During260

the late 1960’s Jacobsand Wiin-Nielsen (1966) and Simons

(1968) for example investigated solutions of the VSE in

pressure-coordinates based on quasi-geostrophic modelling.

Sincethen many investigatorshaveexamined thevariousas-

pects of VSE and its solutions as we shall summarize them265

briefly in the following.

X(l,j,s j )= Sm
m=1

M

å Xm(l,j) ×Gm( j)

Xm(l,j)= cn
k (m)Hn

k (l,j,m)
k=-K

K

å
n=1

R

å



Two kinds of Hough harmonic solutions for the 
horizontal wave motions

Frequencies of spherical normal modes for different equivalent depths

D=10 km D=1 km

D=100 m D=10 m

Žagar et al., 2015, GMD

Balanced 
Or 
Rossby-
type

Unbalanced 
Or 
Inertio-
gravity



HSFs are pre-computed for a 
given number of vertical 
modes, M

For every m=1,…,M, i.e. for 
every Dm

Meridional structure for 
Hough functions is 
computed for a range of the 
zonal wavenumbers K, 

k=-K,..,0,...,K

and a range of meridional
modes for the balanced, 
NROSSBY, a range of EIG, NEIG, 
and a range of WIG, NWIG, 
modes. 

R=NROSSBY + NEIG + NWIG

Meridional structure of Hough functions

Žagar et al., 2015, GMD



History of Hough functions in data 
assimilation (1)

 Flattery, 1970s: NCEP OI based on the Hough functions

 D. Parrish, mid 1980s: computed correlations for single point 
in the tropics including the impact of KW and MRG waves

Single height observations at EQ

(h,h), Rossby+MRG (h,h), 
Rossby+MRG+KW, 
k=1-3

(h,u), 
Rossby+MRG+KW, 
k=1-3

Parrish, 1988, AMS proceedings



History of Hough functions in data 
assimilation (2)

 ECMWF, early 1990s: first formulation of 3D-Var used Hough functions

Single westerly 
wind obs at the EQ

Single easterly 
wind obs at the EQ

Single southerly 
wind obs at the EQ

ε=0.1 ε=0.1 ε=0.1

Heckley et al., 1993, ECMWF proceedings



History of Hough functions in data 
assimilation (3)

 ECMWF, early 1990s: first formulation of 3D-Var used Hough functions

Single westerly wind obs at the EQ at 500 hPa

ε=0.1 ε=0.5 ε=0.9

Heckley et al., 1993, ECMWF proceedings



Tropical data assimilation system 
including Rossby and IG wave constraints

 Application of parabolic cylinder functions as the basis functions for 
the representation of the background-error covariances

Daley, 1993, Atm.-Ocean; Žagar et al., 2004, QJRMS  

1

xy FFDPL 

Py – projection operator on the meridionally
dependent part of equatorial eigenmodes

D – spectral variance density normalization

F – Fourier transform operator
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Distribution of tropical forecast-error 
variance among equatorial modes

ER modes    
EIG modes

K modes

500 hPa

100 hPa

Žagar et al., QJRMS 2005

Dataset from October 2000
10 member ensemble
Perturbed obs

Parabolic cylinder functions  
as basis functions applied on 
each level
Equatorial belt 20S-20N



Impact of the equatorial wave constraint on 
analysis increments

No KW, no Eql IG modesNo Eql IG modes

No Kelvin modeAll modes included

Single h observations at the equator

Kelvin wave coupling
is decisive for the 
structure of analysis
increments near the 
equator

EIG waves reduce the 
meridional
correlation scale, and 
also effect the 
mass/wind coupling

Žagar et al., 2004, QJRMS



Impact of the equatorial wave 
constraint on analysis increments

Single westerly wind obs at the EQ

Rossby waves Rossby, KW, MRG All waves

ε=0.1 ε=0.5 ε=0.9



Truth: ER n=1

Potential impact of ADM-Aeolus in the 
tropics: Rossby wave example

Reliable bkg-error variance spectrum

Poor bkg-error variance spectrum

Žagar et al.,MWR 2008

The spectrum of forecast 
error variance of the day is 
very important in the 
tropics



3. Scale-dependent and flow-dependent 
growth of tropical forecast errors



Representation of the global error 
covariances using Hough functions

Estimate of the bkg error from the ensemble

Žagar et al.,MWR 2016

Gy – projection on the vertical structure

Θ – projection on the meridionally part of
Hough harmonics

D – spectral variance density normalization

F – Fourier transform in the zonal direction

Entropy reduction

Fc-error variance reduction

M. Fisher, 2003



Decomposition of the ensemble spread in 
balanced and unbalanced (IG) parts

Time 00 7-day fc

Balanced
spread

IG
spread

Time 24 m/s



Short-range forecast error statistics, EDA

12-hr fc range

Almost half of the variance in short-term forecast errors is associated with the 
inertio-gravity modes. EIG dominates over WIG on all scales. Data from July 
2007.

ROT EIG WIG

~52% ~27% ~21%

EIG w/o KW

EIG with KW

Kelvin waves make about 15% 
of EIG fc-error variance



Flow dependency of the simulated 
forecast errors in EDA

0.7 N, ~96 hPa 9 N, ~96 hPa 45 N, ~200 hPa

3-h fc errors in the zonal wind, derived from the ECMWF ensemble 
(cy32r3) during 1 month (July 2007)

Žagar et al., 2013, QJRMS

m/s



Short term growth of simulated forecast 
errors in EDA in relation to flow

kkk

n

In the tropics, the short-range growth is largest in the Kelvin mode

The growth in WIG modes is accompanying the balanced variance 

growth in the midlatitudes

[Variance(12) – Variance(3)] / Variance(3)*100%

WIGEIGROT

Žagar et al., 2013, QJRMS

%



longitude

Flow dependent growth of forecast 
uncertainties in ENS

Mid-latitudes 45 N
Zonal wind (m/s) 
Ensemble spread

Tropics, 0.7 S 
Zonal wind (m/s) 
Ensemble spread

100 hPa 700 hPa

800 hPa300 hPa

2 Apr 2016, 00 UTC, ECMWF  ENS

m/s



Growth of the spread w.r.t. initial spread as a 
function of the zonal scale

IG spread

12

Balanced spread

24

168

k

Dataset: operational ENS in Dec 2014
Initially, the growth of spread is largest in the smallest scales and the 
synoptic scales of the IG modes (tropics).

Žagar et al., 2015, JAS



Growth of the spread w.r.t. initial spread as 
a function of zonal scale

EIG spreadWIG spread

+24

k

IG 
spread

Žagar et al., 2015, JAS



IG spreadBalanced spread

Wrt to initial spread
May 2015 ENS data

Total 
spread

Growth of the spread w.r.t. initial spread as a 
function of the zonal scale 



Lorenz, 1984

Scale-dependent limits of the growth 
of spread in ENS

wn 3 wn 7

wn 30wn 15

Dalcher and Kalnay, 1987

Growth of error variance for Z500 in the 
ECMWF model in early 1980s. The smaller 
the scale, the shorter the predictability limit



Scale and flow dependent representation of 
the ensemble reliability

A lack of variability 
is initially seen in 
subsynoptic 
balanced scales, 
and lateron in 
tropical IG modes, 
primarily the Kelvin 
mode

p
lan

etary
syn

o
p

tic
su

b
syn

o
p

ticŽagar et al., 2015, JAS

Dec 2014, 
Operational ENS data



4. Role of observations and model error in 
tropical uncertainties 

m/s



Analysis and forecast uncertainties in OSSE 
with a perfect model 

Data Assimilation Research Testbed (DART), by Jeff Anderson and 
collaborators, http://www.image.ucar.edu/DAReS/DART/

Spectral T85 Community Atmosphere Model, CAM 4 physics

Long spin-up (from 1 Jan 2008) with the observed SST 
to reproduce nature run (‘truth’) 

Preparation of the observations from the nature run 

Preparation of the homogeneous observing 
network (Δ~920 km)

Assimilation cycle during three months 
(Aug-Oct) in 2008

No inflation

Žagar et al., 2016, MWR



Short-range global forecast errors in the 
perfect-model EnKF framework 

pr, zonal wind (pr-po)/pr, zonal wind

Spread of 12-hr forecast 
ensemble
3-month average

m/s %

Prior – posterior ensemble 
spread in each (x,y,z), 
averaged in time and zonally



Perfect model vs. NWP model

k

Perfect model exp ECMWF EDA

Data assimilation is not efficient in reducing the tropical large scale 
spread, not even in the perfect model framework



Scale-dependency of the 12-hr forecast 
error variances in EnKF with a perfect model

Distribution of the variance in analysis ensmeble looks very similar. 

As expected, largest variance is in synoptic scales and balanced 

modes (mid-latitudes) and in the large-scale Kelvin wave

WIGEIGROSSBY

Žagar et al., 2016, MWR



Data assimilation efficiency: variance reduction  

The assimilation is most efficient in synoptic scales, 

for both balanced and IG motions

Efficiency = (po-pr)/pr

WIGEIGROSSBY

Žagar et al., 2016, MWR



EIG

WIG

ROT

k

The assimilation is most 
efficient in synoptic scales, 
for both balanced and IG 
motions but much more 
efficient for balanced. 

Efficiency = variance 
reduction as a function of 
zonal wavenumber

Data assimilation efficiency: variance reduction  

Žagar et al., 2016, MWR

Covariance localization 
radius was 0.2 (around 
1300 km at Eq).



Impact of the covariance localization radius 

0.2 rad 0.4 rad 0.6 rad



Summary

 Tropics are characterized by largest analysis uncertainties and largest 
growth of forecast uncertainties during the first 24-36 hours in the IFS 
system.

 The uncertainties are on average largest on the largest scales.

 Uncertainties are flow dependent. Uncertainties in wind and geo. 
height fields in the tropics are balanced about 50%. 

 Maximal short-range forecast uncertainties in the tropical upper 
troposphere have not been reduced using a perfect model with an 
EnKF. Covariance localization radius is very important in the tropics.

 Introducing a mass-wind constraint based on large-scale equatorial 
waves may be helpful.



Thank you for your attention!

http://meteo.fmf.uni-lj.si/MODES


