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Contents

• Parameter estimation for chaotic dynamic systems:
• Short-time integrations: from ensemble UQ to parameter

optimization
• Long-time integrations: naive summary statistics vs fractal

concepts

• Examples, from 3D chaos to SWE, operational weather and
climate models



Chaotic Systems
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After a predictable interval, any changes (of initial values, model
parameters, solver settings) lead to unpredictable deviations.
Options:

• Avoid chaos: deal with predictable time intervals only

(Weather)

• Face it: deal with behaviour after predictability (Climate)
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Short time simulations: parameter estimation by
monitoring operational ensemble systems

• Estimate numerical weather prediction (NWP) model
parameters on-line, employing operational EPS runs.

• EPS (ensemble prediction system): an ensemble of
predictions is run, to estimate the uncertainty of prediction.

• Combine parameter optimization and EPS: only monitor the
results of EPS, no new model simulations added, no
additional CPU needed!

• Laine M, Solonen A, Haario H, Järvinen H. Ensemble prediction and parameter estimation
system: the method. Q. J. R. Meteorol. Soc. Vol. 138, nro. 663, pp. 289-297, 2012.



The EPPES concept

Assume some assimilation method used, to get initial values for
each assimilation window.

• EPS: Ensembles of
simulations by
initial/model perturbations.

• EPPES: model parameters
θ are additionally
perturbed. Sampled from
an adapted Gaussian
proposal distribution.

• The parameters are
weighted by importance
sampling by a cost function
that depends on forecast
skill.
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Cost function

Cost function for model F , observations yk, initial values xk, and
parameter θk for forecast time window k:

(yk − F (xk; θk))
′Σ−1obs (yk − F (xk; θk))

+ (θk − µ)′Σ−1 (θk − µ)

We weight local parameters θk by respective performance, and
update the global hyper parameters µ and Σ that give the
proposal distribution for θk+1



Proposal covariance updates by importance sampling

1. Sample θ̃
(j)
k from a Gaussian

distribution q, j = 1, . . . , nens

2. Resample θ̃
(j)
k with weights

wj ∝
p(θ̃

(j)
k |yk)

q(θ̃
(j)
k )

to produce θ
(j)
k .

3. For the next stage k + 1,
update the proposal
distribution N(µk,Σk). Go
back to step 1. −6 −4 −2 0 2 4 6
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Large scale NWP models

• After toy model experiments (Lorenz 95) the method tested
by running ECHAM 5 climate model in NWP mode
utilizing ECMWF initial values.

• ECMWF implementation (IFS, code update CY38R1), by
FMI and ECMWF people.

• Tune model parameters by training data and validate by
independent forecast runs, using the RMSE and ACC as
cost function. SPPT used in addition to initial value
perturbation.

• Selected model fields used as criteria;
• z500, the 500 hPa geopotential height
• Total energy norm

• Ollinaho, P., Bechtold, P., Leutbecher, M., Laine, M., Solonen, A., Haario, H., and
Järvinen, H.: Parameter variations in prediction skill optimization at ECMWF, Nonlin.
Processes Geophys., 20, 6,1001-1010, 2013.

• Ollinaho, P., Järvinen, H., Bauer, P., Laine, M., Bechtold, P., Susiluoto, J., and Haario,
H.: Optimization of NWP model closure parameters using total energy norm of forecast
error as a target, Geosci. Model Dev., 7, 1889-1900, doi:10.5194/gmd-7-1889-2014, 2014.



Results: IFS performance

Parameter evolutions as functions of assimilation steps



Results: IFS performance

Performance of the default (already highly tuned IFS model !) and

optimised model, in relative RMSE values.



Results: IFS performance

Score Cards of various other performance criteria. Green: improved,

Red: deteriorated.



Optimizing by evolution algorithms

Need for multicriteria optimization, for higher number of
unknowns, with faster convergence.

• Interprete each ensemble in an assimilation window as a
’generation’ of a population for a genetic optimisation
algorithm.

• We employ the Differential Evolution algorithm
• Mutation: add scaled differences of ensemble vectors to the

present ones
• Crossover: random survival of mutations
• Selection: survival of improvements

• The EPPES framework leads to a multicriteria stochastic
optimization problem, certain modifications needed for DE
to maintain population diversity.



Optimizing by DE

• Faster convergence than basic EPPES

• Multicriteria by products of the EPPES importance weights:
all selected criteria required to improve.
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Optimizing by DE/EPPES

Next:

• Multicriteria test runs with SWE, openIFS

• Implement for limited area models (HARMONIE ?)

• Combine EPPES-style optimization with stochastically
perturbed parametrizations discussed here, to include
multivariate correlations between parameters?



Long time simulations: summary statistics
The aim: characterise the distribution of model parameters that
produce the ’same’ known long-time behaviour. Ideally, by
Monte Carlo (MCMC) sampling of a statistical likelihood cost
function.

• Observations and simulations are averaged in space and
time to create ’summary statistics’.

• If the statistics of the summary expression is known, a
likelihood is formulated which yields the posterior for the
model parameters.

• Example: the approach was implemented for the ECHAM5
climate model, using likelihoods based on monthly global
and zonal net radiation averages.

• MCMC was used to estimate four parameters related to
cloud formation and precipitation. Technically possibly
but...
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Climate model MCMC results
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• Direct, naive summary statistics (projections) do not
identify the parameters, i.e., characterise the simulated
trajectories.

• Järvinen, H., Räisänen, P., Laine, M., Tamminen, J., Ilin, A., Oja, E., Solonen, A., and
Haario, H.: Estimation of ECHAM5 climate model closure parameters with adaptive
MCMC, Atmos. Chem. Phys., Vol. 10, nro. 2, 9993-10002, 2010.



Climate model MCMC results

0

0.2

0.4

C
M

F
C

T
O

P

CAULOC

0

0.005

0.01

0.015

C
P

R
C

O
N

CMFCTOP

0 20 40
0

2

4

6
x 10

−3

E
N

T
R

S
C

V

0 0.2 0.4 0 0.01 0.02

CPRCON

• Direct, naive summary statistics (projections) do not
identify the parameters, i.e., characterise the simulated
trajectories.
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Distance between attractors, based on fractal concepts

In chaotic dynamics a fixed model parameter corresponds to
different trajectories, depending on slightly different initial
conditions, solver settings etc. But they all give samples of the
same underlying attractor.

• We want to separate the ’internal’ model variability due to
initial values etc, but with fixed model parameters, from
that due to different model parameters.

• We modify the concept of Correlation Dimension: from
fractal dimension estimation to a statistical distance concept
between attractors.

• Get a Gaussian likelihood (’by CLT’) for the ’internal’
variability.
Heikki Haario, Leonid Kalachev, Janne Hakkarainen Generalized Correlation integral
vectors: A distance concept for chaotic dynamical systems. Chaos, 25, 2015



Numerical estimation of Correlation Dimension
In numerical practice, we have a finite time interval [0, T ] the
trajectory vector si is evaluated on a finite number of time
instants ti, i = 1, 2, ..., N . For R > 0 set

C(R,N) = 1/N2
∑
i,j

#(||si − sj || < R)

and define then the correlation integral as the limit
C(R) = limN→∞C(R,N). So we take the total number of points
closer than R, normalize by the number of pairs N2 and take the
limit. Note that for each N we have 1/N ≤ C(R,N) ≤ 1.

If ν is the dimension of the trajectory, we should have

C(R) ∼ Rν

and the Correlation Dimension ν is defined as the limit

ν = lim
R→0

logC(R)/ log(R).



Distance via a generalized correlation sums

Modify the definition to get a measure for the distance between
two model trajectories, as given, e.g., with different model
parameters:

C(R,N, θ, x, θ̃, x̃) = 1/N2
∑
i,j

#(||si − s̃j || < R), (1)

where θ, θ̃ denote the respective model parameters and x, x̃ the
initial values. For θ̃ = θ, x̃ = x the formula reduced to the
original definition of the correlation sum.



Correlation Curve variability with fixed model parameter
First, characterize the ’within variability’ of a chaotic dynamical
system with fixed model parameter vector:

1. Repeatedly simulate the trajectory, with varying initial
values (and solver tolerances), but fixed model parameter θ0.

2. Compute the distance matrix between (all) different
trajectory pairs, to get the values C(R,N, θ0, x, θ0, x̃) . An
example for Lorenz3, with a log-scale for R:
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Cost function for parameter estimation

We treat the above vectors y = C(Rk, N, θ0, x, θ0, x̃), k = 1, ...,M
as ’measurements’ of the variability of a chaotic trajectory with a
given fixed model parameter. Construct the respective likelihood:

1. Empirically estimate the statistics of
y = C(R,N, θ0, x, θ0, x̃) from repeated simulations.

2. Create the empirical likelihood function.

3. For any trajectory s(θ) compute the distance matrix from
the reference trajectory, and the respective
C(Rk, N, θ, x, θ̃, x̃). Evaluate the likelihood.



Example: Likelihood for 3D Lorenz

Fix an integration time interval [0, T ] and the time points where
the state vector is observed.
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Figure: Normality check of the correlation integral vector by the χ2 test
for the Lorenz 63 system. Left: with 10 radius values used. Right: with
92 radius values



Example: 3D Lorenz

Find the distribution of model parameters that generate the
’same’ trajectories, by MCMC.
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Example: 3D Lorenz
Verification: a trajectory created by a model parameter slightly
outside the sampled posterior, vs the reference.
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Other examples
Similar results for
• Rössler equation
• Chua circuits (3D state but more complex attractors)
• Lorenz95 (dimension 42 or 210)
• Shallow water (high dimensional, GPU implementation)
• FitzHugh-Nagumo pattern formation



Where is the real data ?

• No measured data is directly used for parameter estimation.
Instead, assume “basic” model parameters given, and want
to determine the posterior of parameters that would produce
essentially the same chaotic dynamics.

• An example: reanalysis studies of weather and climate
models (e.g., the ERA-40 data and ECHAM5), that
combine past real data and model predictions to achieve the
best understanding of the systems.

• The aim here: characterize the parameter distributions of
the reanalyzed models, that fit the “climatology” of long
time runs of a given climate model. Further use them to
quantify the uncertainty of model predictions with respect
to the given parameters, by parameter ensemble simulations
under various scenarios, such as increased CO2 levels.



Conclusion, Next

The summary statistics

• Need long integration times to cover the underlying
attractor.

• Direct projection approaches have problems in properly
identifying the parameter.

• Fractal dimension-based approaches promising.

• Ongoing work: High dimension. Shallow water, openIFS ?
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