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Overview

● Cray Update

● Early KNL results with Earth System Models

● Thoughts future trends

● System Reliability@Exascale

● Deep Learning in Weather/Climate

● Converged Architectures
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Cray Solutions for the Earth Sciences
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Why Cray ?

• Cray’s solutions enable a broader and more detailed 
range of meteorological services and products

• Advanced modeling capabilities

• Shortened research to operations

• Experience delivering and operating world’s largest and 
most complex systems

• Emphasis on total cost of ownership – power, 
upgradability and efficiency

• Commitment to long-term partnerships delivering 
significant ongoing value to our customers.

Market 

Presence

• Broad presence across NWP and climate communities:

• From Terascale to Petascale

• Research and operational environments

• Model development platforms for extreme scale 
architectures



Cray Growth in Weather, Climate and Oceanography
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Cray Growth in Weather, Climate and Oceanography
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Since last workshop:

• >89,000 sockets shipped

• >53 PetaFlops nominal peak

• 89PB of Cray Sonexion

• >3TB/s nominal IO BW



Two Large XC Systems that will Impact Future Technologies 
and Applications Throughout the Community

● Los Alamos / Sandia – “Trinity”
● >40 Pflop system, mix of Haswell + KNL

● 3TB/s / 3PB SSD DataWarp Capability

● NERSC8 – “Cori”
● >40 Pflop system, mix of Haswell + KNL

● 3TB/s / 3PB SSD DataWarp Capability

● Transitioning user base to “many-core” 
processing

● NERSC Exascale Science Applications 
Program (NESAP)
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HOMME – KNL vs Broadwell

● Spectral element dynamical core within CAM component of CESM

● Performance dominated by advection (2nd order Runge-Kutta), memory bandwidth limited

● Key optimizations targeted at KNL implemented by NCAR ASAP group
● See John Dennis’ talk at the 6th UCAR MultiCore workshop

● “perfTESTWACCM” benchmark: Baroclinic wave in N. hemisphere
● Size NE=8, 70 vertical levels, 135 tracers

● Runtimes from “prim_main_loop”

● Node: Intel Xeon Phi 7250 68-core 1.4GHz, 96GB DDR4-2400, 16GB MCDRAM
● MCDRAM bandwidth (quad-flat): 475-490GB/s

● MCDRAM bandwidth (cache): ~350GB/s

● DDR4 bandwidth (quad-flat): ~90GB/s

● Node: 2 x Intel Xeon Broadwell E5-2699 22-core 2.2GHz, 128GB DDR4-2400
● DDR4 bandwidth = ~130GB/s

● Cray XC, with Cray compiler & programming environment

● Strong scaling study performed by Marcus Wagner, supported by NERSC CoE
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Single Node Results
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Multi Node Results - runtime
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Multi Node Results – parallel efficiency
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Unified Model – KNL vs Broadwell

● Unified Model v10.3 / AMIP test case 
● N96 (135km) Global Atmosphere

● Memory footprint approximately 26GB

● Test platforms: 
● Node: Intel Xeon Phi 7230 64-core 1.3GHz, 96GB DDR4-2400, 16GB MCDRAM

● MCDRAM bandwidth (cache): ~350GB/s

● DDR4 bandwidth (cache): ~70GB/s

● Node: Intel Xeon Phi 7250 68-core 1.4GHz, 96GB DDR4-2400, 16GB MCDRAM

● MCDRAM bandwidth (cache): ~350GB/s

● DDR4 bandwidth (cache): ~70GB/s

● Node: 2 x Intel Xeon Broadwell E5-2695 18-core 2.1GHz, 128GB DDR4-2400

● DDR4 bandwidth = ~130GB/s

● Cray XC, with Cray compiler & programming environment

● Investigation conducted by Eckhard Tschirschnitz
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Unified Model – KNL vs Broadwell

● Three cases tested
1. Unmodified code, compiled to target KNL/BDW, double precision solver

2. Unmodified code, compiled to target KNL/BDW removing all “vector0” flags, 
double precision solver

● Vector0 disables automatic vectorization

● Used to avoid some numerical issues observed previously in UM with higher 
vectorization

● No issues apparent in this particular test case

3. Unmodified code, compiled to target KNL/BDW, mixed precision solver

● Inspired by early KNC work, higher cache efficiency
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UM - Throughput & Energy Efficiency
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Thoughts on early KNL results

1. Potential for greater throughput/node 
● Significant optimization may be required to maximize potential

● Improving vectorization, threading & cache re-use

2. Significant potential for higher energy efficiency

3. Parallel efficiency reduces faster with scale 
● Not unexpected due to lower per-core performance

● May prove problematic where jobs have strict runtime targets 
which challenge Xeon today
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Reliability in the coming years

● Considering a contemporary 3000 node system

● Very high whole system MTTI/availabilities achievable 

● Expect job failures to occur every 5-10 days

● Caused by uncorrectable soft and hard errors in memory and/or CPUs

● Scales with number of devices/sockets in system

● Expect whole-system reliability to remain high, but rate 

of job failures to increase
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Impact on Weather/Climate models

● Not ideal for deterministic models
● Requires re-run from start or saved state

● Losing an ensemble member not so impactful
● Close coupling of ensembles into single MPI launch not desirable 

until MPI-resiliency features exist

● Overall impact modest?

● Providing workflows are engineered to expect & react to 
failures
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Machine/Deep Learning in Weather/Climate

● Deep Learning used to describe a family of algorithms related to 
multi-level neural networks:
● Deep Neural Networks

● Convolutional Neural Networks 

● Recurrent Neural Networks

● Lots more! 

● Key enabler has been access to compute resources
● DL is predominantly FLOP bound

● Large scale problems rapidly becoming “HPC”-class

● Delivering “state of the art” results in computer vision, speech 
recognition, natural language processing etc. 
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Machine/Deep Learning in Weather/Climate

● Almost the opposite of a physics/dynamics based 
model
● Arduous to train, but comparatively quick to run

● Use-cases will be complementary?

● Some ideas:
● Rapid classifiers for radar/observations

● Pattern recognition in model outputs

● Infilling/smoothing model outputs

Copyright 2016 Cray Inc.
18



Future Converged Architecture

Copyright 2016 Cray Inc.
19

Bulk Storage
Cache, Metadata & 

Data Movement

Automated 

Data 

Movement



Thank you for your attention


