

COMPUTE | STORE | ANALYZE

Supercomputing Trends in Earth System Modelling

ECMWF Workshop on HPC in Meteorology 26 October 2016 Dr. Phil Brown Earth Sciences Segment Leader

Cray Update

• Early KNL results with Earth System Models

Thoughts future trends

- System Reliability@Exascale
- Deep Learning in Weather/Climate
- Converged Architectures

COMPUTE

STORE

ANALYZE

Cray Solutions for the Earth Sciences

- Cray's solutions enable a broader and more detailed range of meteorological services and products
 - Advanced modeling capabilities
 - · Shortened research to operations
- Experience delivering and operating world's largest and most complex systems
- Emphasis on total cost of ownership power, upgradability and efficiency
- Commitment to long-term partnerships delivering significant ongoing value to our customers.
- Broad presence across NWP and climate communities:
 - From Terascale to Petascale

COMPLITE

- Research and operational environments
- Model development platforms for extreme scale architectures

ANALYZE

Why Cray ?

Market Presence

Cray Growth in Weather, Climate and Oceanography ⊂ ⊂

Cray Growth in Weather, Climate and Oceanography ⊂ ⊂

ECMWF

- >89,000 sockets shipped
 - >53 PetaFlops nominal peak
- 89PB of Cray Sonexion

INSTITUTE

>3TB/s nominal IO BW

DWD

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

ANALYZE

COMPUTE

STORE

Two Large XC Systems that will Impact Future Technologies and Applications Throughout the Community

• Los Alamos / Sandia – "Trinity"

- >40 Pflop system, mix of Haswell + KNL
- 3TB/s / 3PB SSD DataWarp Capability

NERSC8 – "Cori"

- >40 Pflop system, mix of Haswell + KNL
- 3TB/s / 3PB SSD DataWarp Capability
- Transitioning user base to "many-core" processing
- NERSC Exascale Science Applications
 Program (NESAP)

STORE

ANALYZE

HOMME – KNL vs Broadwell

- Spectral element dynamical core within CAM component of CESM
- Performance dominated by advection (2nd order Runge-Kutta), memory bandwidth limited
- Key optimizations targeted at KNL implemented by NCAR ASAP group
 - See John Dennis' talk at the 6th UCAR MultiCore workshop
- "perfTESTWACCM" benchmark: Baroclinic wave in N. hemisphere
 - Size NE=8, 70 vertical levels, 135 tracers
 - Runtimes from "prim_main_loop"
- Node: Intel Xeon Phi 7250 68-core 1.4GHz, 96GB DDR4-2400, 16GB MCDRAM
 - MCDRAM bandwidth (quad-flat): 475-490GB/s
 - MCDRAM bandwidth (cache): ~350GB/s
 - DDR4 bandwidth (quad-flat): ~90GB/s
- Node: 2 x Intel Xeon Broadwell E5-2699 22-core 2.2GHz, 128GB DDR4-2400
 - DDR4 bandwidth = ~130GB/s
- Cray XC, with Cray compiler & programming environment
- Strong scaling study performed by Marcus Wagner, supported by NERSC CoE

COMPUTE

ORE

ANALYZE

Single Node Results

RAY

Multi Node Results - runtime

Multi Node Results – parallel efficiency

Unified Model – KNL vs Broadwell

• Unified Model v10.3 / AMIP test case

- N96 (135km) Global Atmosphere
- Memory footprint approximately 26GB

• Test platforms:

- Node: Intel Xeon Phi 7230 64-core 1.3GHz, 96GB DDR4-2400, 16GB MCDRAM
 - MCDRAM bandwidth (cache): ~350GB/s
 - DDR4 bandwidth (cache): ~70GB/s
- Node: Intel Xeon Phi 7250 68-core 1.4GHz, 96GB DDR4-2400, 16GB MCDRAM
 - MCDRAM bandwidth (cache): ~350GB/s
 - DDR4 bandwidth (cache): ~70GB/s
- Node: 2 x Intel Xeon Broadwell E5-2695 18-core 2.1GHz, 128GB DDR4-2400
 - DDR4 bandwidth = ~130GB/s
- Cray XC, with Cray compiler & programming environment
- Investigation conducted by Eckhard Tschirschnitz

COMPUTE

ORE

ANALYZE

Unified Model – KNL vs Broadwell

- 1. Unmodified code, compiled to target KNL/BDW, double precision solver
- 2. Unmodified code, compiled to target KNL/BDW removing all "vector0" flags, double precision solver
 - Vector0 disables automatic vectorization

COMPLITE

- Used to avoid some numerical issues observed previously in UM with higher vectorization
- No issues apparent in this particular test case
- 3. Unmodified code, compiled to target KNL/BDW, mixed precision solver
 - Inspired by early KNC work, higher cache efficiency

ANALYZE

UM - Throughput & Energy Efficiency

13

Thoughts on early KNL results

1. Potential for greater throughput/node

- Significant optimization may be required to maximize potential
- Improving vectorization, threading & cache re-use

2. Significant potential for higher energy efficiency

3. Parallel efficiency reduces faster with scale

- Not unexpected due to lower per-core performance
- May prove problematic where jobs have strict runtime targets which challenge Xeon today

Reliability in the coming years

Considering a contemporary 3000 node system

- Very high whole system MTTI/availabilities achievable
- Expect job failures to occur every 5-10 days

COMPUTE

- Caused by uncorrectable soft and hard errors in memory and/or CPUs
- Scales with number of devices/sockets in system

Expect whole-system reliability to remain high, but rate of job failures to increase

STORE |

aniai y7f

Impact on Weather/Climate models

Not ideal for deterministic models

- Requires re-run from start or saved state
- Losing an ensemble member not so impactful
 - Close coupling of ensembles into single MPI launch not desirable until MPI-resiliency features exist
- Overall impact modest?
 - Providing workflows are engineered to expect & react to failures

Machine/Deep Learning in Weather/Climate

- Deep Learning used to describe a family of algorithms related to multi-level neural networks:
 - Deep Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Lots more!
- Key enabler has been access to compute resources
 - DL is predominantly FLOP bound
 - Large scale problems rapidly becoming "HPC"-class
- Delivering "state of the art" results in computer vision, speech recognition, natural language processing etc.

COMPUTE

TORE

ANALYZE

Machine/Deep Learning in Weather/Climate

- Almost the opposite of a physics/dynamics based model
 - Arduous to train, but comparatively quick to run
- Use-cases will be complementary?

• Some ideas:

- Rapid classifiers for radar/observations
- Pattern recognition in model outputs
- Infilling/smoothing model outputs

Future Converged Architecture

Thank you for your attention

