

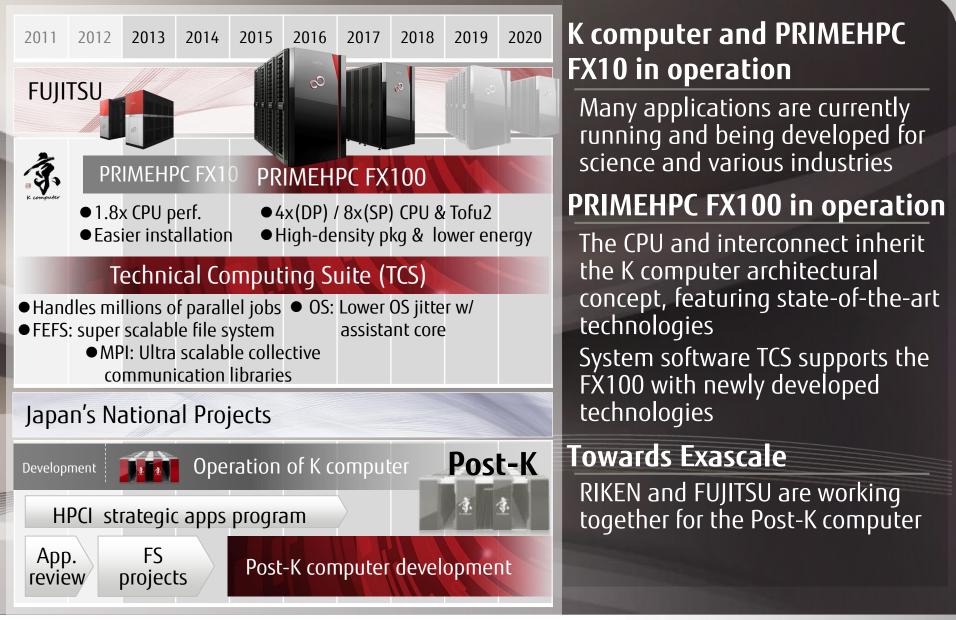
The System Design of the Next Generation Supercomputer: Post-K Supercomputer

Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED

Oct. 25th, 2016

Outline

Fujitsu in Technical ComputingPRIMEHPC FX100 overview


The System Design of the Next Generation Supercomputer: Post-K

- Background: FLAGSHIP2020 Project Overview
- Requirements
- System Design
- Effectiveness for Meteorology

Fujitsu in Technical Computing

Past, PRIMEHPC FX100, and "Roadmap for Exascale" Fujitsu

Features of Fujitsu high-end supercomputer and Post-K

FUjitsu

Post-K

FUJITSU designed high performance CPU

Dedicated high performance interconnect Tofu

Application compatibility throughout generations

PRIMEHPC Series

2

K computer

VISIMPACT SIMD extension HPC-ACE Direct network Tofu CY2010~ **128GF, 8-core/CPU**

FX10

VISIMPACT HPC-ACE Direct network Tofu CY2012~ 236.5GF, 16-core/CPU

FX100

0

SMa(

Tofu interconnect 2 HMC & Optical connections CY2015~ **1TF~, 32-core/CPU**

0

PRIMEHPC FX100, design concept and approach Fujirsu

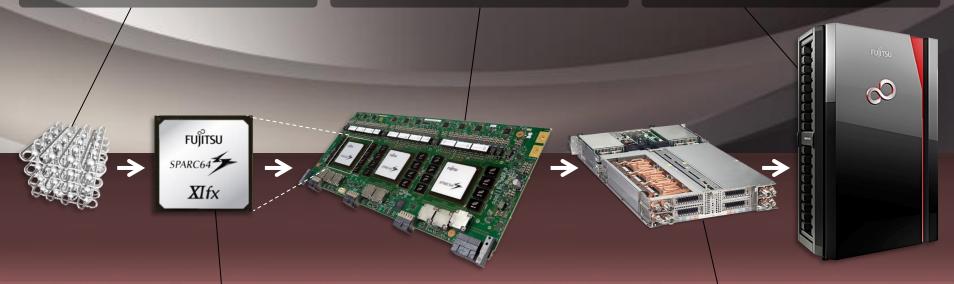
Provide steady progress for users

Continue to keep performance portability among K computer, FX10 and FX100
Facilitate the evolution of applications

Challenge to state-of-art technologies for future generation

20nm CMOS technology
Hybrid Memory Cube (HMC)
25Gbps optical connection

PRIMEHPC FX100 Overview



Tofu Interconnect 2

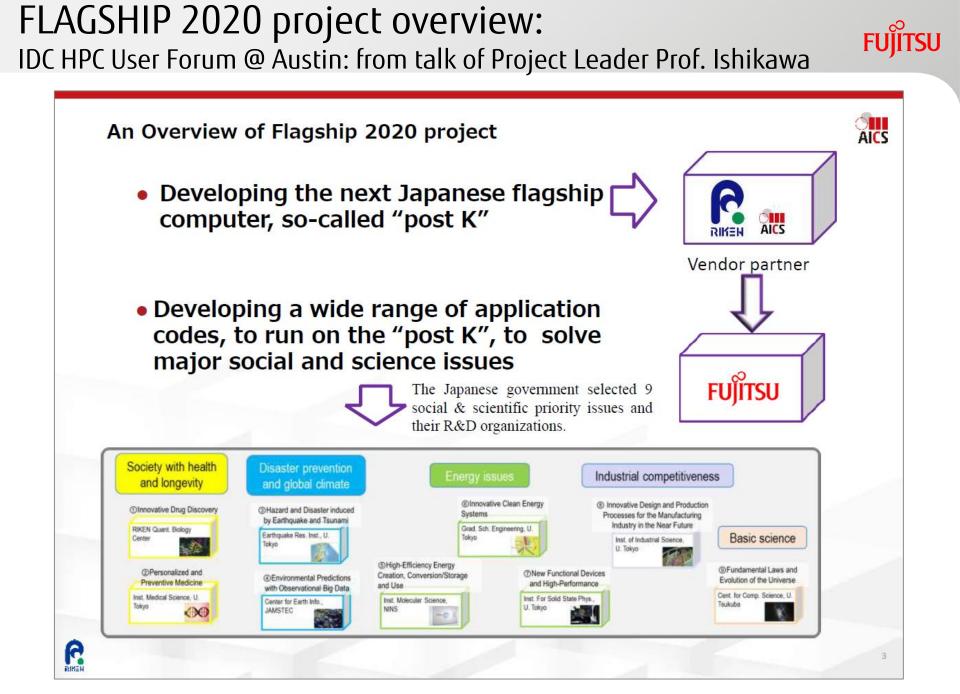
- •12.5 GB/s × 2(in/out)/link
- •10 links/node
- Optical technology

CPU Memory Board

- •Three CPUs
- 3 x 8 Micron's HMCs
- 8 opt modules, for inter-chassis connections
- Cabinet
- Up to 216 nodes/cabinet High-density
- 100% water cooled with EXCU (option)

Fujitsu designed SPARC64 XIfx

- 1TF~(DP)/2TF~(SP)
- 32 + 2 core CPU
- HPC-ACE2 support
- Tofu2 integrated


Chassis

- •1 CPU/1 node
- 12 nodes/2U Chassis
- Water cooled

The System Design of Post-K

- Background: FLAGSHIP2020 Project Overview
- ■Requirements of Post-K
- Design for Application Performance Portability
- Effectiveness for meteorology

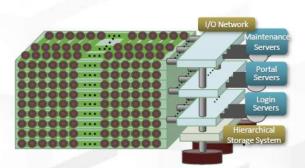
FLAGSHIP 2020 project overview 2: IDC HPC User Forum @ Austin: from talk of Project Leader Prof. Ishikawa

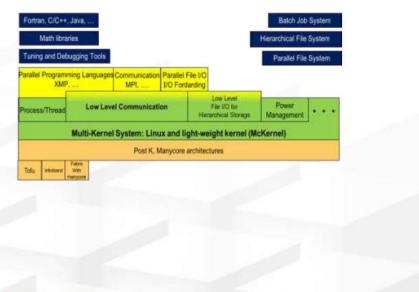
R

T	Farget Applications' Characteristics				
	Target Application				
	Program	Brief description	Co-design		
1	GENESIS	MD for proteins	Collective comm. (all-to-all), Floating point perf (FPP)		
2	Genomon	Genome processing (Genome alignment)	File I/O, Integer Perf.		
3	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)	Comm., Memory bandwidth		
4	NICAM+LETK	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)	Comm., Memory bandwidth, File I/O, SIMD		
5	NTChem	molecular electronic (structure calculation)	Collective comm. (all-to-all, allreduce), FPP, SIMD,		
6	FFB	Large Eddy Simulation (unstructured grid)	Comm., Memory bandwidth,		
7	RSDFT	an ab-initio program (density functional theory)	Collective comm. (bcast), FFP		
8	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)	Comm., Memory bandwidth, SIMD		
9	CCS-QCD	Lattice QCD simulation (structured grid Monte Carlo)	Comm., Memory bandwidth, Collective comm. (allreduce)		

FLAGSHIP 2020 project overview 3: IDC HPC User Forum @ Austin: from talk of Project Leader Prof. Ishikawa

An Overview of post K




Hardware

- Manycore architecture
- 6D mesh/torus Interconnect
- 3-level hierarchical storage system
 - Silicon Disk
 - Magnetic Disk
 - Storage for archive

- Multi-Kernel: Linux with Light-weight Kernel
- File I/O middleware for 3-level hierarchical storage system and application
- Application-oriented file I/O middleware
- MPI+OpenMP programming environment
- Highly productive programing language and libraries

Goal and Requirements of Post-K

Goals:

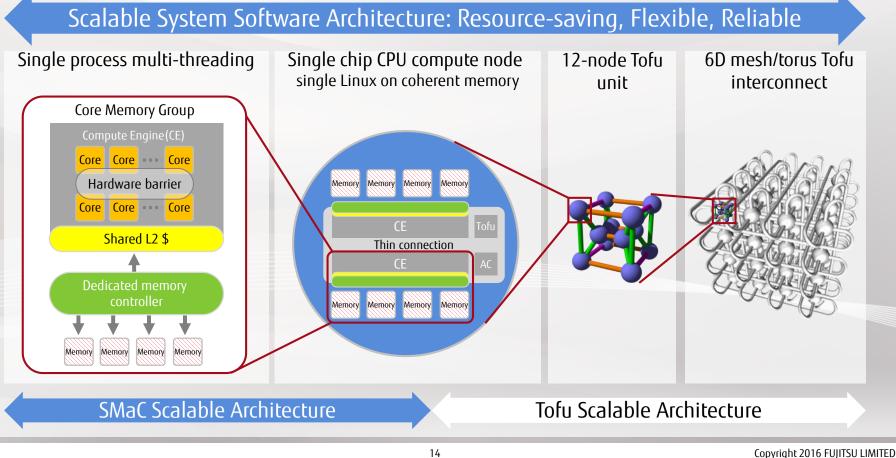
- World's top class application performance with solving social and scientific priority issues
- Reliable system operation with limited power consumption

Requirements:

- World's top class application performance with limited power consumption
- Keeping system reliability as much as possible as well as K computer.
- Easy migration of existing application from existing systems including K computer to expand system use

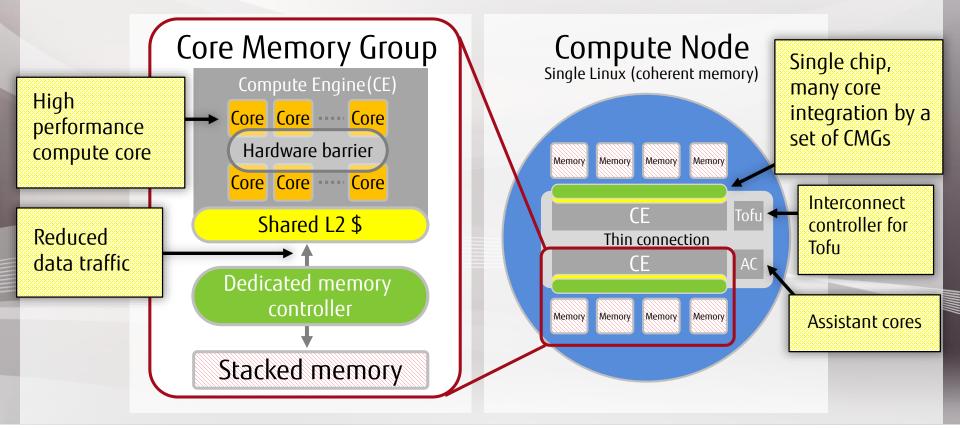
Especially, performance portability of existing application on K computer is important

Post-K Performance Portability Design


- Application Execution Model Backward Compatibility
 - Processor Architecture
 - System Architecture
- System Balance among Processor Core, Memory, Interconnect and Storage I/O Performance
 - Trying to keep system balance with limited power consumption and cost.
- Binary Compatibility Mechanism for Future Generations
 - Preferring to keep portability without re-compiling applications
- Execution Environment: Compiler, Runtime System, MPI, Batch Script etc.
 - Backward Compatibility of System Operation and Application Execution Environment

APPLICATION EXECUTION MODEL BACKWARD COMPATIBILITY

System Architecture for Performance Portability Fujirsu


- A scalable, many-core micro architecture concept: "SMaC,"
 - Single Process Multi-Threaded Model in a Socket: CMG
 - Scalable interconnect: "Tofu"
 - High Performance Lustre Based Cluster File System: FEFS

<u>Core Memory Group (CMG) Structure</u>

- Cores in the group share the same L2 cache
- Dedicated memory and memory controller for the CMG provide high BW and low latency data access
- Loosely coupled CMGs using tagged coherent protocol share data with small silicon overhead
 - Hierarchical configuration promises good core/performance scalability

SYSTEM PARAMETER BALANCE AMONG PROCESSOR CORE, MEMORY, INTERCONNECT AND STORAGE I/O

Post-K's System Balance

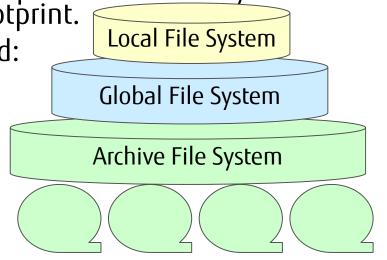
FUJITSU original CPUs steadily increase their fundamental performance Support a programing model, hybrid parallel execution Uncompromised **system balance** for the best use of applications From FX100, an **assistant core** and **CMG** is introduced

	Post-K	FX100	FX10	K computer
Double Flops / CPU		1 TF	235 GF	128 GF
Single Flops / CPU		2 TF	235 GF	128 GF
SIMD width		256 bit	128 bit	128 bit
# of CMG(# of cores/CMG)	TBD	2(17)	1(16)	1(8)
# of cores / CPU		32 + 2xAC	16	8
Memory / CPU		32 GB	32 GB	16 GB
Memory BW		480 GB/s	83.5 GB/s	64 GB/s

Tofu Interconnect of K, PRIMEHPC and Post-K Fujirs

Compatible highly scalable FUJITSU original interconnect

- Optimal implementation keeping high application scalability
 Flexible and efficient communication patterns for application performance
 Non blocking CPU off loadable DMA engines for calculation and
- communication overlapping


	Post-K	FX100	FX10	K computer
Interconnect	Tofu 6D mesh/torus			
Interconnect BW		12.5 GB/s	5 GB/s	5 GB/s
# of DMA engines	TPD	4	4	4
Node injection BW	TBD	50 GB/s	20 GB/s	20 GB/s
Collective operations		Yes	Yes	Yes

Next Generation File System and Storage Design

K computer File System Design

- How should we realize High Speed and Redundancy together?
- How do we avoid I/O conflicts between Jobs?
- These are not realized in single file system.
 - •Therefore, we have introduced Integrated Layered File System.
- K computer achieved 1 TB/s sustained file I/O performance
- Next Generation File System/Storage Design
 - Another trade off targets: Power, Capacity, Footprint
 - Difficult to realize enough capacity and performance file system in limited power consumption and footprint.
 - Third Storage layer for Capacity is needed: Three Layered File System
 - Local File System for Performance
 - Global File System for Shared Use
 - Archive File System for Capacity

BINARY COMPATIBILITY MECHANISM FOR FUTURE GENERATIONS

FUJITSU HPC CPU Transition to the ARM V8 + SVE

Post-K fully utilizes FUJITSU proven supercomputer microarchitecture

FUJITSU, as a lead partner of ARM SVE development, is contributing to complement ARM SVE (Scalable Vector Extension), for application performance efficiency

ARM V8+SVE brings out the real strength of FUJITSU's microarchitecture

ISA	Functions for Perf.	Post-K	FX100	FX10	K computer
SVE w/ FJ	FMA	 ✓ 	✓	✓	v
contribution	Math. acc. prim.*	✓Enhanced	~	~	v
	Inter core barrier	 ✓ 	~	✓	v
Fujitsu Extension	Sector cache	✓Enhanced	~	✓	v
	Prefetch	Enhanced	~	 ✓ 	v

*Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential...

Overview of SVE (Scalable Vector Extension)

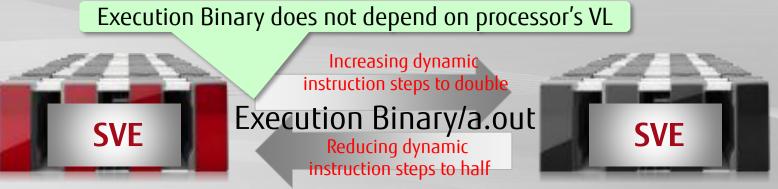
- HPC Extension Instruction Set of AArch64
 - SVE is not an extension of NEON, independent of NEON for HPC processing
 - SVE instruction and NEON instruction are able to execute independently
 - SVE includes various amount instruction set to support higher SIMD execution

Post-K processor ISA will be ARM with SVE

SIMD ISA Extension Comparison

		SVE	HPC-ACE2	AVX-512
Base ISA		ARMv8-A	SPARC V9	Intel 64
	Bit width	128 ~2048	256	512
SIMD	SP Elements	4~64	8	16
	DP Elements	2~32	4	8
GP Registers (#)		31+SP (Same as v8-A)	32+32	16
Vector Registers (#)		32	128	32
Predicate Registers (#)		16	(Included in Vector Regs.)	8

FUJITSU


Scalable Vector Length for ABI Compatibility

□ ISA does not fix Vector Length

- SVE supports VL from 128 to 2048 bit with multiples of 128 bit
- ■VL is set by processor before executing a binary dynamically
- Single execution binary can be executed on processors with multiple VLs
 - Vector-Length Agnostic(VLA) programing enables ABI Compatibility

Execution Binary Portability

512bit SIMD

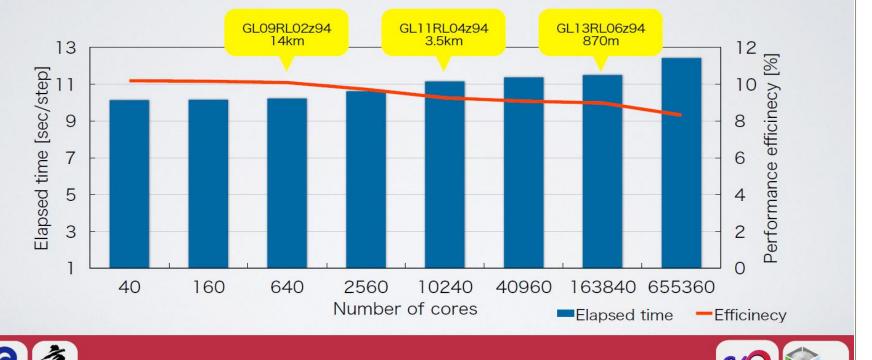
256bit SIMD

EFFECTIVENESS FOR METEOROLOGY ON POST-K

Effectiveness for Meteorology of Post-K

Achievements with K computer

- NICAM performance on K computer is good scalability up to 81920node x 8 threads with 0.9 PFLOPS
 - "Recent performance of NICAM on the K-computer and activities towards post-petascale computing", Hisashi Yashiro (Riken/AICS), Workshop on Scalability (ECMWF, 14-15 April, 2014)
 - http://www.ecmwf.int/sites/default/files/elibrary/2014/13821-recent-performance-nicam-kcomputer-and-activities-towards-post-petascale-computing.pdf

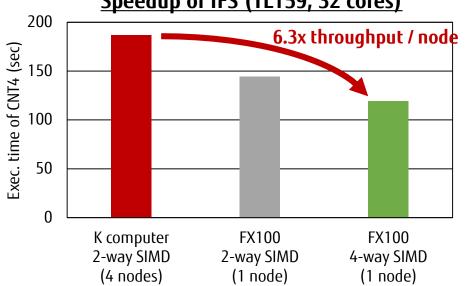

Effectiveness for meteorology on Post-K

Wider SIMD with good system balance using meteorology application: IFS

Hisashi Yashiro (Riken/AICS)@Workshop on Scalability (ECMWF, 14-15 April, 2014)

Weak scaling test

- Same problem size per node, same steps
 - Full configuration / full components
 - Realistic boundary / initial data set
- Good scalability up to 81920node x 8threads with 0.9PFLOPS



Performance Portability from K to FX100 and Post-K Fujirsu

- SIMD width and memory bandwidth are enhanced from K to FX100
 - 4-way SIMD is supported on FX100 and Hybrid Memory Cube (HMC) provides higher memory bandwidth
 - Speedup of IFS on FX100 is realized by wider SIMD and good system balance
 - 2-way SIMD can benefit from high memory bandwidth
 - 4-way SIMD accelerates calculations and drives memory bandwidth more
- Trying to keep system balance will be expected to provide higher performance on the next-generation machine: Post-K with more wider SIMD width
 SIMD width

	K computer	FX100
Flops / CPU	128 Gflops	1 Tflops
SIMD width	128 bit	256 bit
Memory BW	64 GB/s	480 GB/s
Byte per flop	0.4 ~ 0.5	

Summary

Fujitsu in Technical Computing PRIMEHPC FX100 Overview

The System Design of the Next Generation Supercomputer: Post-K

- Performance Portability: Trying to keep system balance with limited power consumption and cost will be expected to provide higher performance on the next-generation machine: Post-K with more wider SIMD width.
- Application Binary Compatibility: Scalable Vector Length will help to keep binary compatibility for the future systems without re-compilation of programs.

FUJTSU

shaping tomorrow with you