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• Trend in HPC continues to be towards more cores, 
slower clock speed. 
– Applications will require increasing parallelism. 

– Some parallelism will be soaked up within a node, but 
there will also be a requirement for inter-node 
communication. 

– Some of today’s best performing interconnect 
technologies do not scale linearly with increasing 
system size – may no longer be feasible. 

– Future capability systems likely to have relatively 
sparse interconnects compared to today. 

– Applications may need to place processes carefully 
across topology to maximize performance. 

Motivation 
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Common Topology Options 

Fat Tree (Clos Networks) 
All-To-All 

Hypercube Multi-Dimensional 

All-To-All 

Torus 

Supported  

on SGI ICE 
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• Fat Tree: 
– Strong, general purpose fabric.  

– Effective for small systems. 

– Expensive for large systems. 

– Rich path fabrics and consistent  
hop-counts: predictable job latency. 

– Cost does not scale linearly: switching and cabling 
becomes increasingly expensive with size. 

• Torus: 
– Highly scalable: switching and cabling scales 

linearly with size. 

– Multiple paths between two nodes: good load 
balancing, fault resilience. 

– Can lead to large hop-count for some messages 
on larger systems (poor latency). 

 

 

Pros and Cons 
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• All-To-All: 
– Ideal for apps that are highly sensitive 

to MPI latency. 

– Limited to small systems by port 
counts on switches. 

• Multi Dimensional All to All: 
– Low latency interconnect: maximum 

hop count is D+1. 

– Fewer cables than All-To-All, but 
number of cables still does not scale 
linearly with system size. 

– Connectivity “islands”: sudden 
discontinuity in latency for jobs above 
a certain size or spanning two islands. 

 

Pros and Cons 
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9 or 18 
nodes 

9 or 18 
nodes 

• Add orthogonal 
dimensions of 
interconnect to grow 
the system. 

• Cost grows linearly 
with system size. 

• Easily optimized for 
both local and global 
communication. 

• Rich bandwidth 
capability that scales 
easily from small to 
very large systems. 

SGI’s Hypercube Topology 
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• At small scale, real applications tend to show 
limited sensitivity to interconnect topology. 

Enhanced Hypercube 

Harmonie (DKE) OFAM3 

BQCD GAMESS 
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• EHC provides good off-the-shelf performance for most 
applications. 

• It is possible to extract  
even better performance  
for some applications by  
placing processes  
optimally. 
– Put MPI processes that  

communicate heavily on  
nearby nodes. 

– This is increasingly  
important as the number  
of nodes (and switches)  
increases. 

• SGI provide tools to 
assist with placement. 

Process Placement 
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Bandwidth per node for a QCD application with a 4-d grid 

stencil communication pattern. Placing processes optimally 

makes all communications one-hop, increasing scalability. 
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• SGI’s MPI profiling tool 

– Useable with thousands of MPI ranks. 

– No need to re-compile or re-link. 

– Break down how much time application spends in 
each MPI routine. 

– Generate communications matrices to assist 
understanding of complex applications. 

• Amount of data transferred, number of requests, wait time. 

– Simple performance modelling. 
• Use virtual clocks to perform on-the-fly “what-if” experiments. 

• E.g. Investigate the impact of an interconnect with different 
performance characteristics. 

SGI MPInside 
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MPInside Example Profile 
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• A profile-guided placement tool for MPI 

– Map MPI ranks to nodes using knowledge of 
underlying interconnect topology and MPInside 
communication matrix. 

– Minimize inter-node and inter-switch transfer costs. 

SGI MPIplace 

Optimal 
placement 

of MPI 
ranks on 

nodes 
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• Six MPI processes on three nodes (or on six nodes, 
three switches). 

• Each rank sends some data to every other rank. 
– Some ranks send more data to others. 

– Three pair of “partners”. 

• Optimal communication pattern is to have partners 
located on the same node (or switch). 

A Toy Example 
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jsouthern@cy002: $ qsub -I -lselect=3:ncpus=56:mpiprocs=2 

qsub: waiting for job 49679.cy002 to start 

qsub: job 49679.cy002 ready 

jsouthern@r2i7n0: $ mpiexec_mpt ./test | sort -k 7 

MPI rank 0 runs on host r2i7n0 

MPI rank 1 runs on host r2i7n0 

MPI rank 2 runs on host r2i7n2 

MPI rank 3 runs on host r2i7n2 

MPI rank 4 runs on host r2i7n3 

MPI rank 5 runs on host r2i7n3 

jsouthern@r2i7n0: $ mpiexec_mpt MPInside ./test > /dev/null 

MPInside 3.6.1 standard: 

MPInside... Writing Reports. Please wait 

jsouthern@r2i7n0: $ mpiexec_mpt ${PWD}/mpiplace_compute -n pbs.nodefile  

-p MPINSIDE_MAT_DIR/ -o mpiplace.out -v 

This job will use 3 hosts and 1 switches 

jsouthern@r2i7n0: $ export MPI_WORLD_MAP="mpiplace.out" 

jsouthern@r2i7n0: $ mpiexec_mpt ./test | sort -k 7 

MPI rank 0 runs on host r2i7n0 

MPI rank 4 runs on host r2i7n0 

MPI rank 1 runs on host r2i7n2 

MPI rank 2 runs on host r2i7n2 

MPI rank 3 runs on host r2i7n3 

MPI rank 5 runs on host r2i7n3 

jsouthern@r2i7n0: $ 

 

Three Node Example 

1. Run with default placement to get baseline. 

2. Generate profiling data with MPInside. 

3. Calculate optimal process 

placement with MPIplace. 

4. Run with optimal placement. 
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jsouthern@cy002: $ qsub -I -lselect=36:ncpus=56:mpiprocs=1 

qsub: waiting for job 49680.cy002 to start 

qsub: job 49680.cy002 ready 

jsouthern@r2i2n0: $ mpiexec_mpt ./test | sort -k 7 

MPI rank 0 runs on host r2i0n0 

MPI rank 1 runs on host r2i0n1 

MPI rank 2 runs on host r2i0n5 

MPI rank 3 runs on host r2i0n6 

MPI rank 4 runs on host r2i0n18 

MPI rank 5 runs on host r2i0n19 

jsouthern@r2i2n0: $ mpiexec_mpt MPInside ./test > /dev/null 

MPInside 3.6.1 standard: 

MPInside... Writing Reports. Please wait 

jsouthern@r2i2n0: $ mpiexec_mpt ${PWD}/mpiplace_compute -n pbs.nodefile  

-p MPINSIDE_MAT_DIR/ -o mpiplace.out -v 

This job will use 6 hosts and 3 switches 

jsouthern@r2i2n0: $ export MPI_WORLD_MAP="mpiplace.out" 

jsouthern@r2i2n0: $ mpiexec_mpt ./test | sort -k 7 

MPI rank 0 runs on host r2i0n0 

MPI rank 4 runs on host r2i0n1 

MPI rank 2 runs on host r2i0n5 

MPI rank 1 runs on host r2i0n6 

MPI rank 5 runs on host r2i0n18 

MPI rank 3 runs on host r2i0n19 

jsouthern@r2i7n0: $ 

 

Three Node Example 

1. Run with default placement to get baseline. 

2. Generate profiling data with MPInside. 

3. Calculate optimal process 

placement with MPIplace. 

4. Run with optimal placement. 
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• MPAS Atmosphere (MPAS-A): 
– Atmospheric component of the MPAS (Model for 

Prediction Across Scales) Earth system modelling 
package. 

– Flat MPI. Chose a problem size such that there 
was a reasonable amount of MPI time. 

• IFS: 
– RAPS14 benchmark cases. 

– Hybrid MPI+OpenMP. 

– Chose benchmark case and number of MPI ranks 
so that there was a reasonable amount of MPI 
time when run on the benchmark system. 

Real Weather Applications 
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• SGI ICE XA. 
– 288 dual-socket compute nodes. 

• 2 x Intel E5-2690 v4 CPU  
(14 core, 2.6 GHz). 

• 128 GB memory. 

– 5D enhanced hypercube  
interconnect. 

• 4-4-4-4-4 topology. 

• EDR InfiniBand. 

• Dual plane. 

• Premium switch blades. 

– SUSE Linux Enterprise Server 11.3. 
• Intel compilers (version 16.0.3) 

• SGI MPT (version 2.14). 

• SGI Performance Suite. 

15 

Benchmark System 
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• Atmospheric component at 30 km. 

• Exhibits good scalability – approximately 86% parallel 
efficiency at 6912 cores relative 1152 cores. 

• 30 km resolution chosen so that we would see a 
noticeable amount of MPI time on the system we were 
using (8064 Broadwell cores). Experiments were 
performed using 6912 cores. 

• Only the time integration is considered.  
– The simulation was for 3 hours and required 720 

timesteps.  

– Typically a first timestep will take longer as pages of 
memory are allocated – we used a large enough number 
of timesteps to reduce that impact. 

MPAS-A From NCAR 
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MPAS-A MPI Instrumentation: 

Default Task Layout  
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Performance of MPAS-A 
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Task Layout 
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MPAS-A MPI Instrumentation: 

Random Shuffle of the Tasks 
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• Ran the TCo639 dataset. 
– Scales relatively well to 200 nodes, but MPI time 

is beginning to grow. 

– Run with 28 MPI processes per node. 

– Hyper-threading is enabled, so two OpenMP 
threads per task. 

• Use the “short” version of the benchmark. 
– Simulates two days forecast modelling. 

– Runs for approximately 210 seconds. 

– As for MPAS-A, first time step takes longer, we 
ran for long enough to reduce that impact. 

IFS Benchmark 
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IFS Instrumentation:  

Default Task Layout 
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Performance of IFS 
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Task Layout 
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• SGI provide tools (MPInside, MPIplace) to assist with 
optimal placement over relatively sparse topologies. 

• Both MPAS-A and IFS showed around a 1% 
improvement in run-time when running the selected 
test cases. 
– In the case of MPAS-A (~15% MPI time) this improvement 

is clearly more than simply random fluctuations. Reduced 
MPI time by more than 5%. 

– IFS (~35% MPI time for this test case) shows limited 
sensitivity to process placement overall: a completely 
random process placement is <5% slower than optimal. 

• On larger systems, with more MPI processes and 
more latency optimal process placement would be 
expected to become more important. 

Conclusions 
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