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Seasonal forecast experiments: 
§  Stochphys_ON = System 4 CY36R4 T255L91 NEMO1°  7-month hindcasts from 1981-2010  51 ensemble 

members (Nov, May, Aug), SPPT and SPBS in atmosphere 
§  Stochphys_OFF: as above but without SPPT and SPBS    

Monthly forecast experiments: 
§  CY40R1  T399/T255L91  NEMO1°  32-day hindcasts from 1989-2008  11 ensemble members  4 start dates 

per year (Nov, Feb, May, Aug), SPPT and SPBS ON/OFF in atmosphere 



Systematic errors: SST during the first forecast month  
(initialised 1st August 1989-2008) 
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Systematic biases in seasonal forecasts 

OLR  total cloud cover precipitation (vs GPCP) zonal wind 850hPa 
bias Stochphys_OFF 

bias Stochphys_ON 

§  Reduction of overly active tropical convection 
§  Reduced precipitation and easterly wind biases over the tropical West Pacific 



Cliimatology of the Madden Julian Oscillation (seasonal forecasts) 

System 4 (Stochphys_ON) shows increased frequencies of MJO events  

Weisheimer et al. (Proc. Roy. Soc. A, 2014) 
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§  in all phases of the MJO §  for strong MJO events 
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System 4 has 
•  reduced mean of daily precip 
•  increased variance of daily precip 
•  increase in number of nearly dry days 

Example: grid point near Singapore 
  daily precipitation  
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4. Summary and key points

Low resolution atmospheric models generally have 
less tropical variability on time scales of several 
days than is observed (e.g. [1]). Stochastic physics 
(SP) may reduce this bias by increasing the 
variability in the simulated tropical convection. SP 
has already been shown to improve NWP skill and 
reduce some biases in the mean state [2,3]. Here 
we quantify the impact of SP on tropical variability 
in the ECMWF seasonal forecasting system 
(System 4). We also quantify the impact on 
simulating tropical precipitation extremes, which 
have large societal impacts [2].

2. Data
● We use seasonal hindcasts of daily-mean precipitation from System 4 and compare these with 

equivalent hindcasts with the SP schemes deactivated (DET). 
● These begin on May 1 and Nov 1 of each year between 1998–2010 and we use hindcast months 2-

7. 
● 10 ensemble members are used so that sampling variability is small. 
● System 4 uses two SP schemes: the Stochastically Perturbed Parametrization Tendencies Scheme 

(SPPT) and the Spectral Stochastic Backscatter Scheme (SPBS) [2]. Comparing with hindcasts with 
just one of SPPT or SPBS activated indicates that most of the effects of SP are due to SPPT (not 
shown).

We also compare the model output with the observational GPCP 1DD and TRMM 3B42 V7 datasets. 
Note that these show considerable differences in the estimated precipitation amounts in individual 
heavy rainfall events, suggesting there is considerable uncertainty in the true variability, so 
comparisons with the model data should be made cautiously.

3. Impact on the standard deviation of precipitation
● Fig. 1a shows that SP increases the standard 

deviation of daily-mean tropical precipitation in 
System 4 relative to DET by up to 1–2mm/day, 
particularly in the west Pacific and in South America. 

● SP also causes substantial decreases in the 
extratropical standard deviation. 

● Fig. 1b shows that System 4 generally exhibits lower 
variability than GPCP in the tropics, so SP makes the 
variability in System 4 more consistent with GPCP, 
particularly over equatorial landmasses and the 
tropical Pacific. 

● SP increases the positive bias in standard deviation 
over the ocean around the Maritime Continent, 
however.

Figure 1: Differences in the standard deviation of daily mean precipitation between System 4 and 
DET in (a) and between System 4 and GPCP in (b).

4. Impact on the frequency of light and heavy rainfall
Fig. 2a shows the frequency 
distribution of daily-mean rain rates in 
System 4, DET, GPCP and TRMM 
between 10S–10N in 2.5°x2.5° grid 
boxes. For rates below 30mm/day, 
GPCP and TRMM agree closely on the 
frequency. 
● Both System 4 and DET have a 

higher frequency of rain rates below 
20mm/day and a lower frequency 
between 20–45mm/day than 
observed, shown more clearly in 
fig.2b. 

● The biases in this range are generally 
smaller in System 4 than in DET, 
indicating that SP is improving the 
frequency distribution. 

● SP also increases the frequency of 
higher rain rates, with the rates in 
System 4 lying between the 
observational estimates in GPCP and 
TRMM.

Figure 2: (a) shows the distribution of rain rates in the observational and model datasets, for daily-mean 
precipitation between 10S–10N in 2.5°x2.5° grid boxes. (b) shows the ratio of the frequencies in the model 
datasets to that in GPCP.

● Stochastic physics generally increases the standard deviation of tropical 
precipitation in System 4 and reduces biases with respect to 
observational datasets.

● Stochastic physics improves the frequency distribution of tropical rainfall 
rates, reducing the excess of light rainfall events and increasing the 
frequency of heavy rainfall events.

See also Peter Watson’s poster: 



       Why do we see a systematic impact on the model climate with SPPT? 
 

§  Product of two random variables? 
§  Product distribution depends crucially on input distributions (tendencies) 
§  Product of two normally distributed variables with µ=0 is “well behaved” distributed (e.g. symmetric) 
§  This is not generally the case, especially not for µ ≠ 0 

§  Nonlinear thresholds (e.g. trigger for convection)? 

§  Asymmetric nature of q and precipitation? 

§  Tuning of the model for deterministic formulation versus stochastic model? 

§  Tapering of the boundary layer and related inconsistencies? 



X ~ N (µ,σ2) 

X * r ~ ? (µ,σ2) 

N (0,22) 

N (1,22) N (3,22) N (10,22) 
effect of threshold 

N (1,22) N (3,22) N (10,22) 

effect of mean ≠ 0 

Multiplicative noise 

… initial distribution of X product distribution 

r ~ U (0.5,1,5) … distribution of random noise r 
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Impact on monthly forecast skill 
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Climate SPHINX – Stochastic Physics High Resolution Experiments 
 

Climate simulations of the EC-Earth v3.1 climate model (atmosphere: IFS ~CY36R4   
ocean: NEMO 3.3.1) with and without stochastic physics in the atmosphere for a range of 

 horizontal resolutions from T159 to T1279 with 91 levels 
 

Rather large radiative imbalances for TOA and surface fluxes with SPPT: 
10 times larger P – E imbalance: -0.160 mm/day versus -0.015 mm/day  
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Non-conservation of humidity in SPPT 



Global average change in humidity/ tendency before and after call of SPPT 

Global constraint for the (instantaneous) spatial averages 
of p0 and p1 to be the same 

Modified version of SPPT 

§  Ensures that the average change in humidity and temperature 
tendencies due to SPPT is 0 

§  Computes global average of tendency change introduced by SPPT 
(p0 before SPPT, p1 after SPPT) 

§  Redistributes the bias p1 – p0 so that net change is zero using as 
weights the normalized absolute value of the change 

p0 p1SPPT 

p1(x, z)+w(x, z) ⋅ p0 − p1( ) px … global average 

w(x, z) =
p1(x, z)− p0 (x, z)

p1 − p0
… local weights 
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Temperature anomaly  
summer 2003 §  Land surface is key component in  

seasonal prediction 

§  Implicated in development of heat waves 

§  Unquantified uncertainties exist: 

o  what is their impact? 
o  by explicitly representing these, can we 

improve forecasts?  

Mean and standard deviation 
 of saturated hydraulic conductivity  

from observations 

Carsel & Parrish (1998) 



Example: seasonal hindcasts of the hot European summer 2003 

MacLeod, D. et al. ( Q.J. 2015) 

Control: IFS CY36R4 T255, 4 month forecast initialised on 1st May 
1981-2012, 25 members (perturbed IC plus atm. stochastic physics) 

PP: static parameter perturbations {0,+/-40,+/-80}% of two key 
hydrological parameters: Van-Genuchten α (water retention curve) 
and saturated hydraulic conductivity 

ST: stochastic tendency perturbations for soil moisture and soil 
temperature using SPPT-like spectral pattern generator (SPG) 

ST-1: default SPG 
ST-2: equal scales of the SPG  
ST-3: mirrored scales of the default SPG 

small/short 
 scale 

medium 
scale 

Large/slow 
scale 

default 0.52 0.18 0.06 

equal 0.32 0.32 0.32 

mirror 0.06 0.18 0.52 

Forecasts of temperature anomalies 
for JJA 2003 

ERA-I 

climatology 
forecast 



Static versus stochastic parameter perturbations 

static perturbed parameters (PP) 

param
eter perturbation [%

] 

Control: IFS CY41R1 T255, 4 month forecast initialised on 1st May 
1981-2013, 25 members (perturbed IC plus atm. stochastic physics) 

PP: static parameter perturbations {0,+/-40,+/-80}% of two key 
hydrological parameters: Van-Genuchten α (water retention curve) 
and saturated hydraulic conductivity 

SP: stochastic parameter perturbations using  
       SPPT-like SPG 

SP-default: default SPG 
SP-equal: equal scales of the SPG  
SP-mirror: mirrored scales of the default SPG 
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reference: ERA Land 

Anomaly correlation Ratio spread/RMSE 

Forecast quality of perturbed land surface schemes 
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Reliability of Soil moisture @level 1  over global land areas           reference: ERA Land 
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Perturbation of HTESSEL hydrology parameters !
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INTRODUCTION

Methods to explicitly represent uncertainties in weather and climate models have 
reduced model biases and improved forecast skill when implemented for the 
atmosphere. However, these methods have not yet been applied to the land surface.

At certain times and in certain places the land surface is strongly coupled to the 
atmosphere, such as during the 2003 heatwave over Europe when dry soil led to 
extreme summertime temperatures. Improvements in the representation of uncertainty 
in the land surface may then lead to improvements in forecast for the atmosphere in 
cases like this.

We analyze seasonal experiments performed with the ECMWF weather and seasonal 
climate forecasting model, the Integrated Forecasting System (IFS), with different 
kinds of perturbation made to the land surface, in order to investigate the effect of 
explicitly incorporating uncertainty in this domain.

CONCLUSIONS

Previous work with CY36R4 showed that by perturbing land surface parameters with a constant 
perturbation, forecasts of the hot 2003 European summer are improved (MacLeod et al 2015). Building 
on this work, we show here that perturbing parameters in CY41R1 gives large improvements in terms 
of soil moisture reliability, particularly for less frequent events (quintiles).

Experiments with stochastic parameters and tendencies have also been carried out, but these do not 
show the improvement in reliability seen for the static perturbed parameter experiment. Of these, the 
experiment which uses the “slowest” scale most closely replicates the PP result, however the 
improvement is not as great.

The model spread/error ratio is increased with perturbation. For soil moisture the SP experiments give 
the largest improvement, however the PP experiment gives an unusually large increase in spread of soil 
temperature despite only perturbing soil hydrology parameters.

Future work at ECMWF is now looking at perturbations to the land-atmosphere coupling parameter.

EXPERIMENTS

The control experiment setup is as follows:

•  Four month forecast initialised at the start of every May for 1981-2013
•  25 member ensemble, with initial condition perturbations. 
•  Atmosphere: IFS Cycle 41R1, T255 resolution, 91 vertical levels. Atmospheric 

stochastic schemes SPPT & SKEB switched on.
•  Ocean: NEMO 1 degree, 42 vertical levels
•  Land surface: Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL), 

with revised land surface hydrology (H-TESSEL), using 4 vertical levels.

Six experiments were carried out with perturbations to the land surface, detailed in the 
table below. The first experiment uses a static perturbation of key soil parameters α 
and γsat (van-Genuchten alpha and saturated hydraulic conductivity, both related to soil 
moisture transport). Perturbations are taken from the set {-80%, -40%, 0, 40%, 80%}, 
where the perturbation percentage applies to the default parameter for the soil type at 
a particular gridpoint.















The remaining four experiments use different kinds of stochastic perturbation applied 
to either the hydrology parameters or the tendencies of soil moisture, using different 
patterns. The method of generating stochastic perturbations is detailed below.

GENERATING STOCHASTIC PERTURBATIONS

The method for generating perturbations follows that used for the atmospheric 
stochastic scheme in IFS, SPPT. This method add a stochastic perturbation to 
variable’s tendency, X, via multiplicative noise, i.e.:

where Xp is the perturbed tendency, r is a random number and µ � [0, 1] is a factor 
used for reducing the perturbation amplitude close to the surface and in the 
stratosphere.

The random number comes from an evolving 2D field, correlated in space and time, 
produced by a spectral pattern generator (SPG). The SPG is a three-scale two-
dimensional AR1, designed to mimic the typical scales present in the atmosphere. The 
field at any instant is a summation of three independent AR1 processes, each with a 
different decorrelation length and time scale. 

A visual representation of the total field used for SPPT is shown below. By default the 
standard deviations of the amplitudes of the perturbations for the small, medium and 
large scales are 0.52, 0.18 and 0.06, resulting in a total pattern in which the small 
scales are perturbed more strongly. These scales have been chosen as representative 
of the characteristic length and time scales of the atmosphere.



   









For the land surface, the ST experiment perturbs soil moisture tendencies at every 
timestep, for all four levels equally. For the SP experiments, the hydrology parameters 
modified in PP are perturbed with the SPG, with 3 different experiments, each using a 
different scale weighting of the SPG. The default SPPT pattern and examples of 
alternative SPG weightings are shown in figure 1.

Xp = (1+ rµ)X

Experiment ID  Description

PP Perturbed parameters α and γsat

ST Stochastic tendencies, all SPG scales weighted equally (0.32/0.32/0.32)

SP-equal Stochastic parameters, all SPG scales weighted equally (0.32/0.32/0.32) 

ST-mirror Stochastic parameters, mirrored SPPT SPG scales (0.06/0.18/0.52)

ST-5th Stochastic parameters, using jjust the 5th SPG scale (1 year decorrelation time)

RESULTS

Fig 2 Spread/error for JJA soil temperature (left) and soil moisture (right) for all experiments. 


Perturbation experiments tend to increase the spread/error, with greater impact when larger time/
space scales are used to generate the perturbations. We also observe that the PP experiment has an 

unusually large impact on the spread of the soil temperature (considering that we only perturb 
parameters related to hydrology).

Impact on spread

Improved reliability of soil moisture quintiles in PP

See also: MacLeod et al. (2015) Improved seasonal prediction of the 2003 European heatwave
through better uncertainty representation in the land surface, QJRMS 142:694 pp 79-90


Weisheimer & Palmer 2014, On the reliability of seasonal climate forecasts J Roy Soc Interface 11: 20131162. 

Table 1: List of land surface perturbation experiments carried out	

	500	km	
6	h	

	1000	km	
3	d	

	2000	km	
30	d	

σ=0.06	σ=0.18	σ=0.52	

Fig 1 Left: 3-scale stochastic perturbation (with SPPT scale weighting). Right: example parameter 
perturbations over 10 days from 3 different SP experiments	

Fig 3 Reliability categories 
for top level JJA soil 
moisture upper (top) and 
lower (bottom) quintiles, for 
the control (left) and PP 
(right) experiments. 
Reliability categories 
following Weisheimer & 
Palmer 2014. 

Most regions show large 
improvements in reliability 
with the PP experiments, 
these are not replicated 
with ST or SP-equal, and 
only partially replicated 
with SP-mirror (not shown).

Fig 4 Reliability diagrams 
for upper quintile top level 
JJA soil moisture for the 
control (left) and PP (right) 
experiments. Similar 
improvement is seen for 
lower quintile moisture, and 
other regions.

See also David MacLeod’s poster: 



Summary 
 
1.  Atmospheric stochastic physics and model bias in the coupled ECMWF model 

§  Reduction of tropical biases in convective areas 

2.  Impact of atmospheric stochastic physics on climate forecast quality 

§  Improvements in the tropics 

3.  Non-conservation of humidity with SPPT 

§  (Temporary) fix to SPPT to ensure conservation of humidity (and temperature) tendencies 

4.  Model uncertainty of the land surface  

§  Impact varies across regions and perhaps most noticeable for extreme events 



Climate SPHINX 
Climate	SPHINX	(Stochas6c	Physics	High	Resolu6on	Experiments)	is	
a	PRACE	EU	project	which	aims	to	invesGgate	the	sensiGvity	of	
climate	simulaGons	to	model	resoluGon	and	stochasGc	
parameterizaGons,	and	to	determine	if	very	high	resolu6on	is	truly	
necessary	to	facilitate	the	simula6on	of	the	main	features	of	
climate	variability.	

SPHINX	is	a	project	by	ISAC-CNR,	lead	by	Jost	von	Hardenberg,	in	collabora;on	
with	Oxford	University	(Tim	Palmer	and	Antje	Weisheimer	group).	

Outlook 


