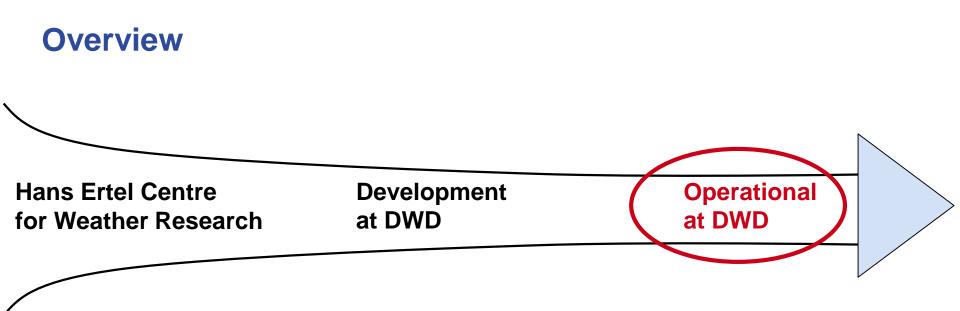


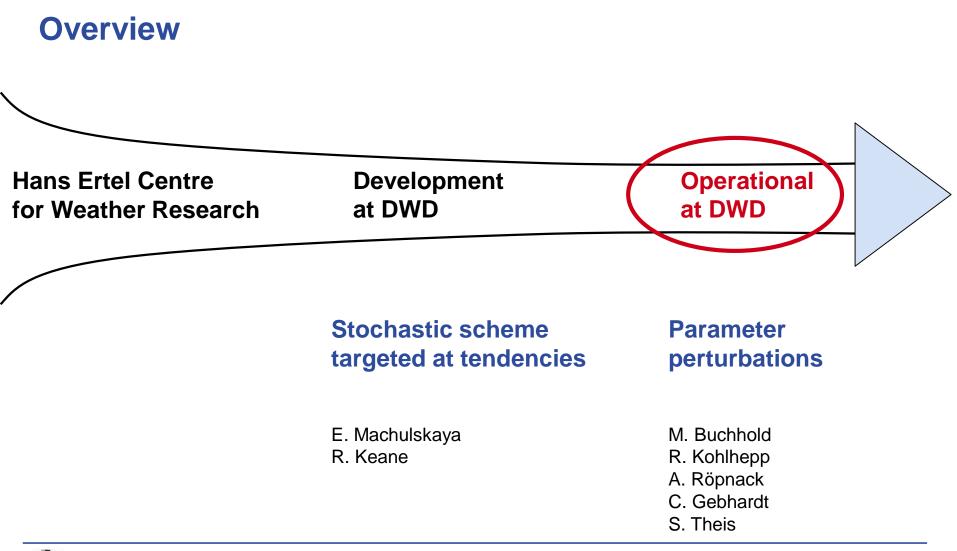
Representation of

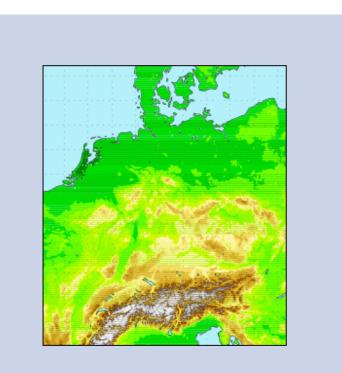
Model Uncertainties


in COSMO-DE-EPS

Susanne Theis

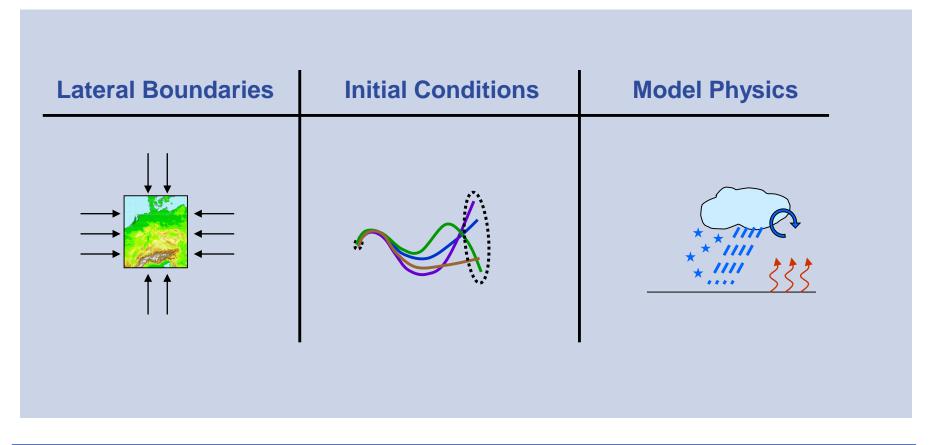
Deutscher Wetterdienst (DWD)




Operational at DWD

COSMO-DE-EPS

- → 20 members based on COSMO-DE
- In the size: 2.8 km / 50 vertical layers convection-permitting
- → forecast range: 0 27/45 hours,
 8 model runs per day (00, 03, 06, ... UTC)
- → EPS operational since May 2012



model domain:

Germany and neighbours

* * //// * * //// * * //// * * ////

Lateral Boundaries	Initial Conditions	Model Physics
"multi-model"	"multi-model"	
driven by different global models	different global models are used	
	to modify COSMO-DE initial conditions	***************************************
	+ soil moisture perturbations	
(future: ICON-EPS)	(future: EnKF)	

Lateral Boundaries	Initial Conditions	Model Physics
"multi-model"	"multi-model"	"parameter perturbations"
driven by different global models	different global models are used to modify COSMO-DE initial conditions + soil moisture perturbations	different parameter values in the COSMO-DE model
(future: ICON-EPS)	(future: EnKF)	

Lateral Boundaries	Initial Conditions	Model Physics
"multi-model"	"multi-model"	"parameter perturbations"
driven by different global models	different global models are used to modify COSMO-DE initial conditions + soil moisture perturbations	different parameter values in the COSMO-DE model
(future: ICON-EPS)	(future: EnKF)	

Parameter Perturbations

- → alternative values for selected parameters
- based on expert knowledge

- alternative values for selected parameters
- based on expert knowledge

space and time:

- constant during lead time (27h / 45h)
- constant within domain (~1300 x 1200 km²)

- alternative values for selected parameters
- based on expert knowledge

space and time:

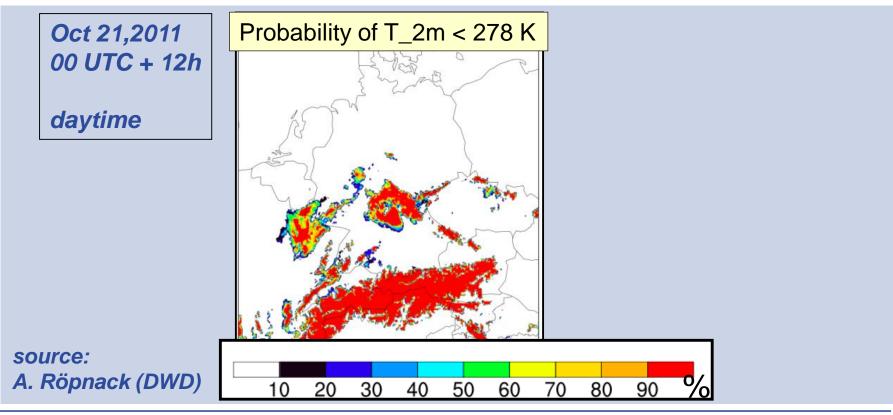
- constant during lead time (27h / 45h)
- constant within domain (~1300 x 1200 km²)
- → "similar" forecast bias in every member

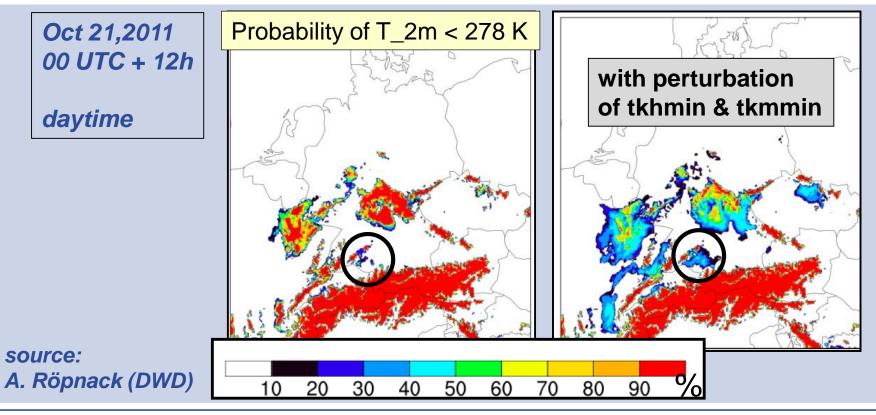
parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	

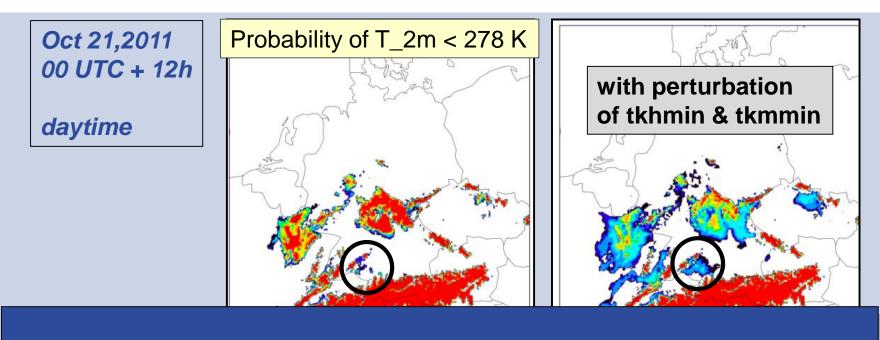
parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014
thick_sc	250 hPa	100, 300 hPa	low level clouds, radiation	now in
radqi_fact, radqc_fact	0.5	0.9	low level clouds, radiation	test phase
a_stab	0	1	low level jet, 100m wind	¥
c_diff	0.2	0.1, 2 (10)	low level jet, 100m wind	

einer Hand


Criteria for the Selection





1. Ensemble Spread / Sensitivity

capture events that are missed otherwise

1. Ensemble Spread / Sensitivity:

convective precipitation

1. Ensemble Spread / Sensitivity:

convective precipitation

→ regime-dependent:

high sensitivity for weak synoptic forcing (Keil and Craig, Meteorol. Z., 2011)

1. Ensemble Spread / Sensitivity:

convective precipitation

regime-dependent:

high sensitivity for weak synoptic forcing (Keil and Craig, Meteorol. Z., 2011)

useful to look at

spread in amplitude and location

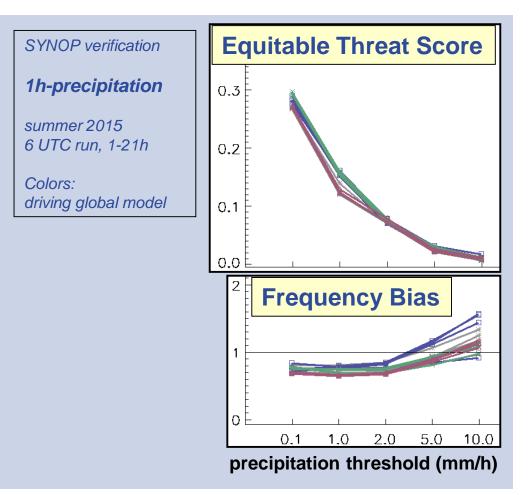
(e.g. "correspondence ratio") (Gebhardt et al., Atmos. Res., 2011)

2. Quality check

2. Quality check

➔ for each member:

- "similar" quality
- "similar" bias

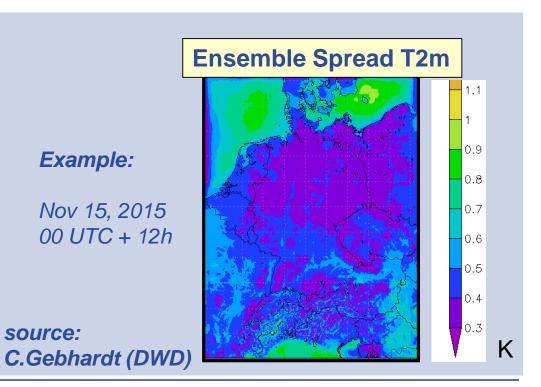

DWD 6

Criteria for the Selection of Perturbations

2. Quality check

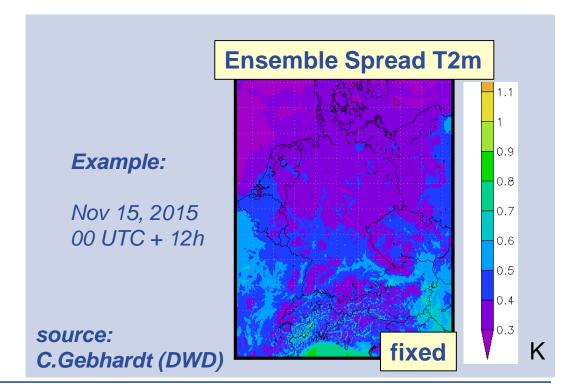
\rightarrow for each member:

- "similar" quality •
- "similar" bias •


- 2. Quality check
 - ➔ "plausible" fields
 - individual members
 - spread
 - etc

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- 2. Quality check
 - ➔ "plausible" fields
 - individual members
 - spread
 - etc



Deutscher Wetterdienst Wetter und Klima aus einer Hand

- 2. Quality check
 - ➔ "plausible" fields
 - individual members
 - spread
 - etc

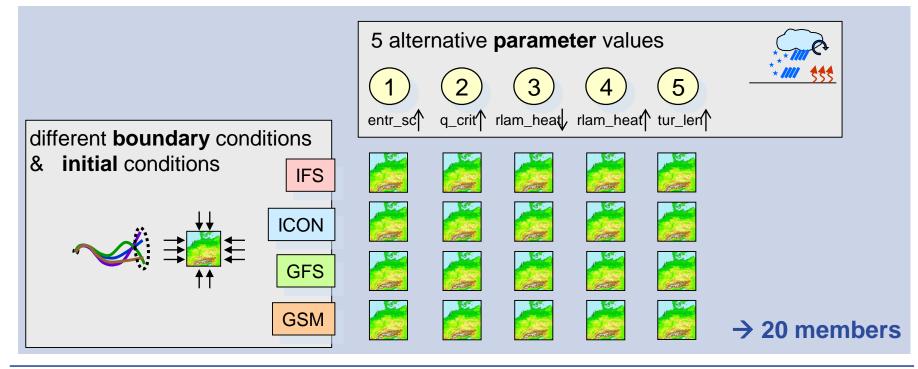
- 2. Quality check
 - → RMSE of ensemble mean
 - → CRPS
 - ➔ Brier score
 - Reliability
 - Resolution

Combining the Perturbations

Combining the Perturbations

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	

\rightarrow 5 alternative values



DWD

Combining the Perturbations

\rightarrow in 2012: applying the alternative values in isolation,

combining each alternative with each driving model

(Gebhardt et al., 2011) (Peralta et al., 2012)

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014

\rightarrow 7 alternative values

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014

\rightarrow 7 alternative values

new perturbations combined with existing

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014
thick_sc	250 hPa	100, 300 hPa	low level clouds, radiation	now in
radqi_fact, radqc_fact	0.5	0.9	low level clouds, radiation	test phase
a_stab	0	1	low level jet, 100m wind	¥
c_diff	0.2	0.1, 2 (10)	low level jet, 100m wind	

parameter	default	alternative value(s)	target	
entr_sc	0.0003 m ⁻¹	0.002 m ⁻¹	precipitation	since 2012
q_crit	1.6	4.0	precipitation	
rlam_heat	1.0	0.1, 10.0	precipitation	¥
tur_len	150.0 m	500.0 m	precipitation	
tkhmin, tkmmin	0.4	0.2, 0.7	low level clouds, T2m	added 2014
thick_sc	250 hPa	100, 300 hPa	low level clouds, radiation	now in
radqi_fact, radqc_fact	0.5	0.9	low level clouds, radiation	test phase
search for an optimum combination?				

→ Idea:

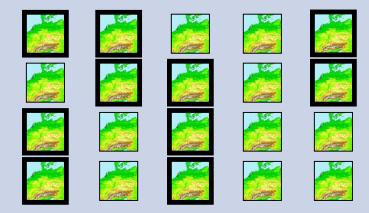
randomize the combinations

(M. Buchhold, DWD)

Combining the Perturbations

→ Idea:

randomize the combinations


(M. Buchhold, DWD)

→ Method (in test phase):

Random number generator assigns a perturbation to members

For each forecast start,

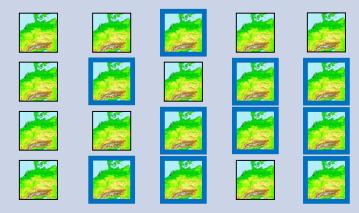
then fixed during forecast

qcrit = 4.0

Combining the Perturbations

→ Idea:

randomize the combinations


(M. Buchhold, DWD)

→ Method (in test phase):

Random number generator assigns a perturbation to members

For each forecast start,

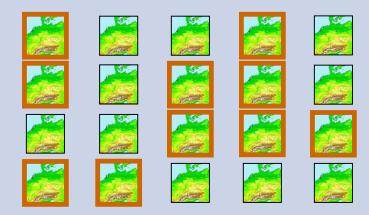
then fixed during forecast

entr_sc=0.002 m⁻¹

Combining the Perturbations

→ Idea:

randomize the combinations


(M. Buchhold, DWD)

→ Method (in test phase):

Random number generator assigns a perturbation to members

For each forecast start,

then fixed during forecast

tur_len= 500.0 m

→ Idea:

randomize the combinations

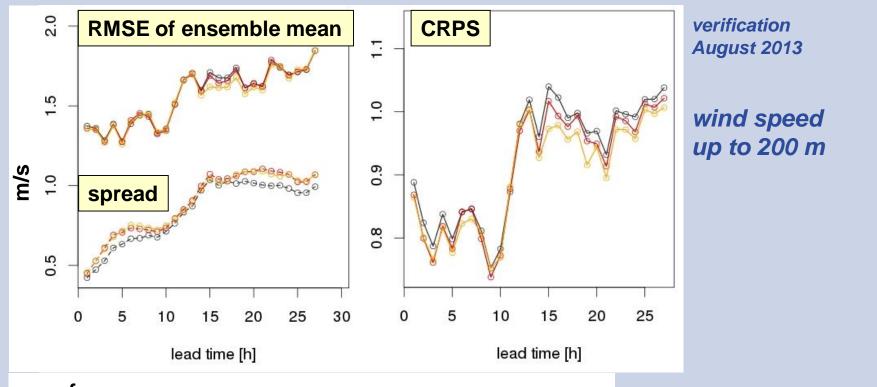
(M. Buchhold, DWD)

→ Method (in test phase):

Random number generator assigns a perturbation to members

For each forecast start,

then fixed during forecast



similar procedure in COSMO-LEPS (A.Montani, pers.comm., 2016)

Indication that all sorts of combinations are OK

- reference
- with new perturbations and fixed combination
- with new perturbations and randomized combination

source: R.Kohlhepp (DWD)

Maintenance

Maintenance of Parameter Perturbations

Selection of perturbed parameters depends on...

→ the specific model configuration

model version, grid size, domain, lead time, default values of parameters,...

→ the target

precipitation, T2m, low level clouds, low level jet,...

Maintenance of Parameter Perturbations

Selection of perturbed parameters depends on...

→ the specific model configuration

model version, grid size, domain, lead time, default values of parameters,...

→ the target

precipitation, T2m, low level clouds, low level jet,...

need to revisit the perturbations from time to time

s einer Hand

Summary

(Operational Method)

Summary: Parameter Perturbations in COSMO-DE-EPS

- → manual selection, using expert knowledge
- depends on target variable and model configuration

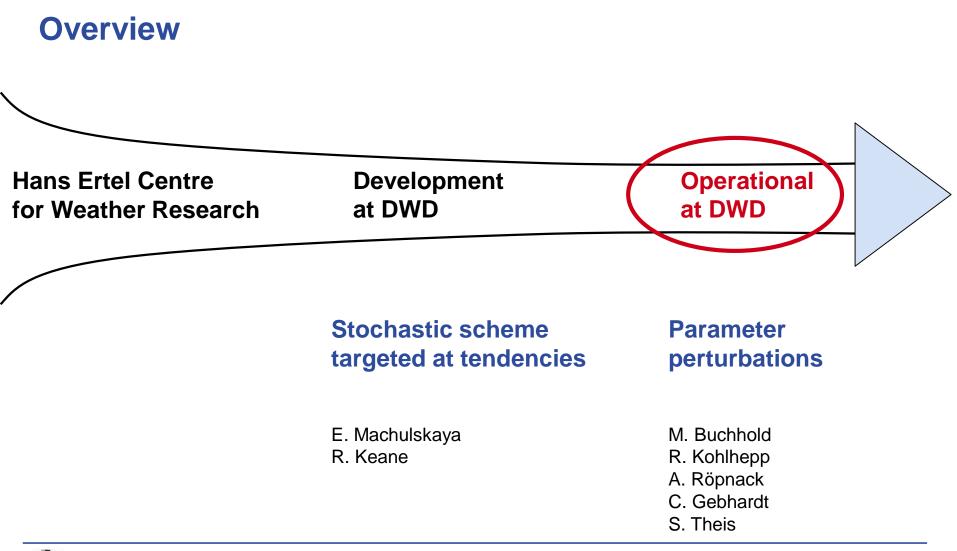
Summary: Parameter Perturbations in COSMO-DE-EPS

→ manual selection, using expert knowledge

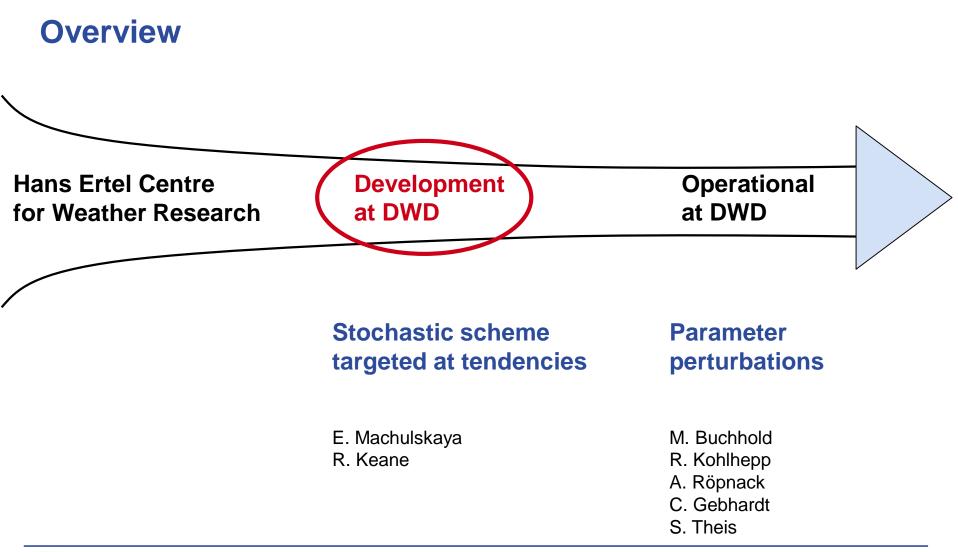
depends on target variable and model configuration

→ selection criteria:

- ➔ ensemble spread
- ➔ quality check
 - individual members (quality & bias)
 - plausible fields
 - standard scores



Development at DWD



→ perturb physics tendencies using additive noise

noise amplitude & space-time correlation: "flow-dependent"

→ perturb physics tendencies using additive noise

noise amplitude & space-time correlation: "flow-dependent"

 \rightarrow proxy for model uncertainty:

"forecast – analysis" as frequent as possible

→ detect dependencies, e.g.

amplitude of model uncertainty $\leftarrow | dT/dt |$

correlation of model uncertainty $\leftarrow | dT/dt |$

→ perturb physics tendencies using additive noise

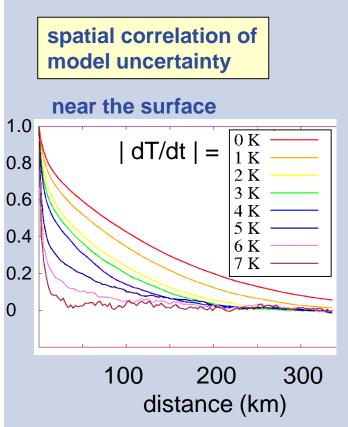
noise amplitude & space-time correlation: "flow-dependent"

 \rightarrow proxy for model uncertainty:

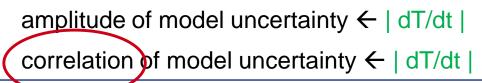
"forecast – analysis" as frequent as possible

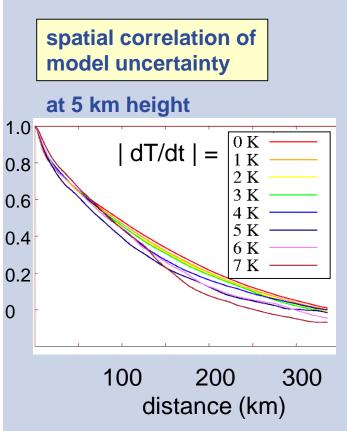
→ detect dependencies, e.g.

amplitude of model uncertainty $\leftarrow | dT/dt |$

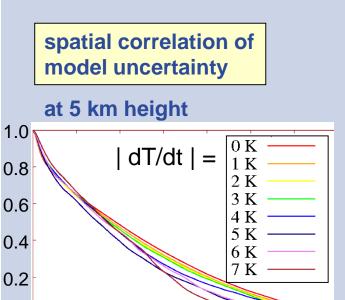

correlation of model uncertainty ← | dT/dt |

- perturb physics tendencies using additive noise
- → noise amplitude & space-time correlation: "flow-dependent"
- \rightarrow proxy for model uncertainty:
 - "forecast analysis" as frequent as possible
- → detect dependencies, e.g.

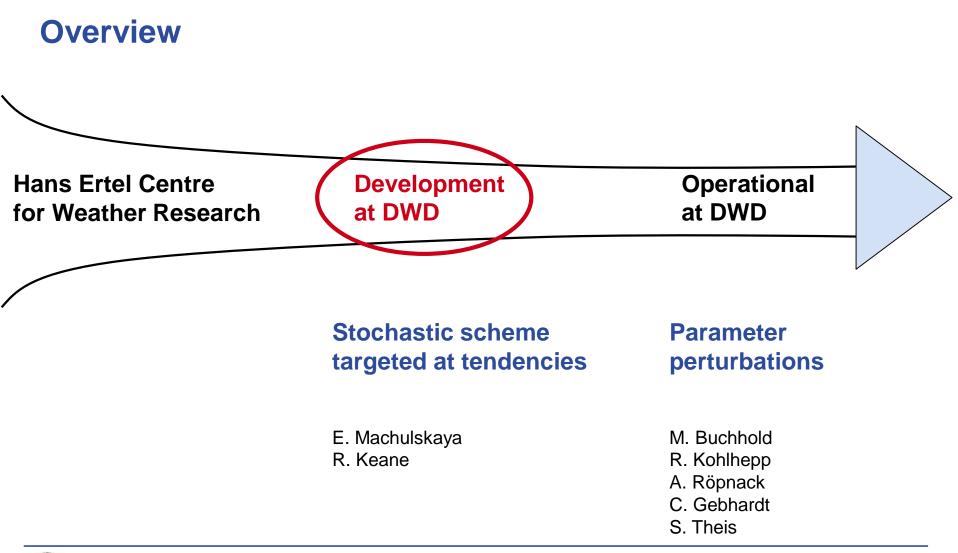



source: E. Machulskaya (DWD)

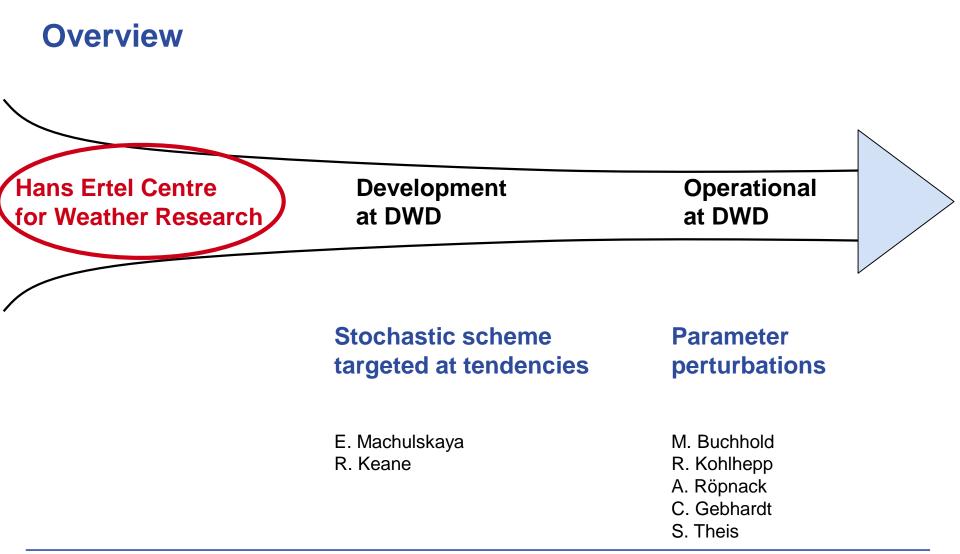
- perturb physics tendencies using additive noise
- → noise amplitude & space-time correlation: "flow-dependent"
- \rightarrow proxy for model uncertainty:
 - "forecast analysis" as frequent as possible
- → detect dependencies, e.g.



source: E. Machulskaya (DWD)


- → perturb physics tendencies using additive noise
- noise amplitude & space-time correlation: "flow-dependent"
- proxy for model uncertainty:
 - "forecast analysis" as frequent as possible

use | dT/dt | and other quantities


as "predictors" for noise amplitude & correlation

Hans Ertel Centre for Weather Research

- → Examples:
 - Ensemble based convective scale data assimilation and the use of remote sensing observation (LMU Munich)

Hans Ertel Centre for Weather Research

- → Examples:
 - Ensemble based convective scale data assimilation and the use of remote sensing observation (LMU Munich)
 - Advancing the representation of convection across scales (MPI Hamburg, Univ Hamburg)

Hans Ertel Centre for Weather Research

- → Examples:
 - Ensemble based convective scale data assimilation and the use of remote sensing observation (LMU Munich)
 - Advancing the representation of convection across scales (MPI Hamburg, Univ Hamburg)

Mirjana Sakradžija, 2015:

A stochastic parametrization of shallow cumulus convection for high-resolution numerical weather prediction and climate models, *Reports on Earth System Science*, Max-Planck-Institute for Meteorology, Hamburg, 144 pp.

Thank you for your attention

