

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Physically-based stochastic parameterisation

George C. Craig Kirstin Kober Tobias Selz Lotte Bierdel

Meteorologisches Institut Fakultät für Physik, LMU München

Types of model error / uncertainty

Classification

Stochastic physics example: Turbulent fluctuations

Convective boundary layer scaling

- All lengths proportional to depth of layer *H*
- Second order moments, including transport (covariances), proportional to buoyancy flux $\langle w'\theta' \rangle$
- e.g. (Mellor and Yamada 1982)

$$\langle \theta'^2 \rangle = \Lambda_2 t k e^{-1/2} \langle w' \theta' \rangle \partial_z \overline{\Theta}$$

Theory implies stochastic variability over a certain range of spatial scales

- Perturbations correlated over distance *H*
- Variability small if grid length *dx* large compared to *H*
- Magnitude increases as *dx* approaches *H* (then decreases as eddies start to be resolved)

Physically-based Stochastic Perturbations (PSP)

Implementation in COSMO model (2.8 km grid length)

- Add random increments to model variables
- Amplitude scaled using turbulence theory
- Rescaled to account for averaging over effective horizontal resolution
- Perturbations are coherent in height and over 10 min in time

$$\left(\frac{\partial \Phi}{\partial t}\right)_{sh}^{stoch} = \frac{\partial \Phi}{\partial t} + \alpha_{sh} \cdot \eta_{sh} \cdot \langle \Phi^2 \rangle^{1/2}$$

 $\frac{\partial \Phi}{\partial t}$: tendency of Φ of all physical parameterizations

 Φ : resolved variable (T, w, q)

 $\alpha_{\textit{sh}}$: scaling factor

- η_{sh} : Gaussian random perturbation
- $\left| \Phi^2 \right\rangle$: variances from turbulence parameterization

$$\alpha_{sh} = \alpha_{sh,\Phi} \cdot \frac{\ell_{\infty}}{5 \cdot dx} \cdot \frac{1}{dt}$$

dt : temporal resolution of model

- ℓ_∞ : asymptotic mixing length
- dx : horizontal resolution of model grid
- $\alpha_{\textit{sh},\Phi}$: scaling factor

(Kober and Craig 2016)

Example of a PSP-SH field

Smoothed Guassian random field

 $\langle \theta'^2 \rangle$ diagnosed from turbulence parameterization

 θ increment

(Kober and Craig 2016)

Impact of PSP-SH

2 m Temperature

- Spread ~ 0.5 1 K
- RMSE increase up to 0.3 K
 when convection is active
- Increments with constant amplitude (yellow) cause large errors early and late in the day

Domain-integrated precipitation

- Strength of diurnal cycle much improved in comparison to radar
- Increments with constant amplitude trigger convection at places and times where it should not occur

(Kober and Craig 2016)

Two questions

1. What about other sources of small-scale variability?

For example:

- orographic forcing
- cold pools
- surface-forced mesoscale circulations
- etc.

2. Wouldn't SPPT achieve the same effect?

Criteria for a stochastic parameterisation

- 1. Is the scheme stable and well-behaved in the full model? (e.g. resolution dependence)
- 2. Is the variability contributed by the scheme significant? (compared to initial condition uncertainty, etc.)
- 3. Is the forecast skill superior to that obtained with a deterministic scheme? (on some score!)

Criteria for a stochastic parameterisation

- 1. Is the scheme stable and well-behaved in the full model? (e.g. resolution dependence)
- 2. Is the variability contributed by the scheme significant? (compared to initial condition uncertainty, etc.)
- 3. Is the forecast skill superior to that obtained with a deterministic scheme? (on some score!)
- Are there nontrivial interactions with the resolved flow? (Could the same skill be obtained by postprocessing output of model with deterministic scheme?)
- 5. Could the same skill be achieved with an inexpensive *ad hoc* scheme?

A physically based stochastic convection scheme

Deterministic: bulk plume represents mean of convective ensemble **Stochastic:** plumes with different mass flux drawn randomly from equilibrium PDF

(Plant and Craig 2008)

The Plant-Craig stochastic convection scheme

Reflectivity examples (COSMO 7 km)

strongly forced: 25 June 2008 13 UTC

weakly forced: 1 July 2009 12 UTC

⁽Kober et al. 2015)

Summary of evaluation results

- 1. Resolution-dependence in aquaplanet simulations *(Keane et al. 2014)*
 - Realistic precipitation variability? Not unrealistic
 - Variability scales correctly? Yes
- 2. Spread in a regional ensemble prediction system (Groenemeijer et al. 2012)
 - Spread comparable to other sources? When synoptic forcing weak
- 3. Skill in a regional ensemble prediction system (Kober et al. 2015)
 - Forecast skill improved? For some scores and weather regimes
- 4. Upscale error growth at different resolutions (Selz and Craig 2015)
 - Realistic impact on large scale dynamics? Yes
 - Impact scales correctly with resolution? Yes

Set-up of error growth experiment

• Weather maps will show the first perturbation experiment

(Selz and Craig 2014)

Multi-scale error growth

+3 hours

+12 hours

Color: Difference total energy

Contour: large-scale 500hPa geopotential perturbation

1. Initial growth in regions of precipitation, rapid saturation

- 2. Spreading of perturbations in space to radius of deformation over inertial time f^{-1}
- 3. Exponential growth of synoptic scale perturbation
- 4. Further growth to planetary scales(?)

+36 hours

Quantitive results on poster of Tobias Selz

Upscale perturbation growth

- Difference Total Energy on medium (dashed) and large (solid) scales after 60 hours perturbation growth
- No parameterization (black)

 growth damped at low resolution
- Default Tiedtke scheme (green) – too little growth
- Plant-Craig stochastic (red)

 realistic growth

(Selz and Craig 2015)

Geostrophic adjustment after convection

- 1. Perturb convective mass flux M
- 2. Changes upper-level divergence
- 3. Changes geostrophically balanced wind

A temperature perturbation of 1 K over a 100 km region will produce a balanced wind perturbation of about $v_g \approx 1 \text{ ms}^{-1}$ over 600 km after 6 hours

Scalings from theory

1. Transients propagate with gravity wave speed

 $c = N/m \approx 30 m s^{-1}$

2. Half-width of balanced response is Rossby radius

 $R_d \sim N/f_o m \approx 300 \ km$

3. Adjustment time

 $T \sim c/R_d = f_o^{-1} \approx 6 \ hr$

4. Balanced vortex strength

 $v_g \sim Q_o f_0 m/N^2$

- $f_o =$ Coriolis parameter
- N = Brunt-Vaiasala frequency
- m = vertical wavenumber
- Q_o = buoyancy source strength

(Bierdel et al. in prep.)

Law of large numbers

- *M* total mass flux over region
- M divided into N clouds of mass flux m
- Overbar is ensemble average

 $\sigma_{M} = \overline{M} / \overline{N}^{-1/2} = \overline{M}^{1/2} \overline{m}^{1/2}$

 Perturbations accumulate like random walk

Scaling of IFS temperature tendencies

- T159 forecasts coarse-grained (250 km, 12 hr) $\rightarrow \overline{M}$
- T1279 forecasts coarse-grained $\rightarrow \sigma_M$ as function of \overline{M}

(Shutts and Callado Pallarès 2015)

- Types of model error
 - Errors associated with limited model complexity can be parameterized (stochastically)
 - But these are not the only errors

Empirical estimates of error may not distinguish among types

- Types of model error
 - Errors associated with limited model complexity can be parameterized (stochastically)
 - But these are not the only errors

Empirical estimates of error may not distinguish among types

• Several criteria for the success of stochastic parameterizations

- Types of model error
 - Errors associated with limited model complexity can be parameterized (stochastically)
 - But these are not the only errors

Empirical estimates of error may not distinguish among types

- Several criteria for the success of stochastic parameterizations
- Examples of stochastic parameterizations useful at current resolutions
 - Turbulent fluctuations in convection-permitting models
 - Cumulus convection in global models

Significant impact, but not enough to account for all model error

- Types of model error
 - Errors associated with limited model complexity can be parameterized (stochastically)
 - But these are not the only errors

Empirical estimates of error may not distinguish among types

- Several criteria for the success of stochastic parameterizations
- Examples of stochastic parameterizations useful at current resolutions
 - Turbulent fluctuations in convection-permitting models
 - Cumulus convection in global models

Significant impact, but not enough to account for all model error

- Impact of small-scale perturbations
 - Multiscale process (not cascade)
 - Variability does not average out on synoptic scale
 Which aspects of model error influence forecast error?