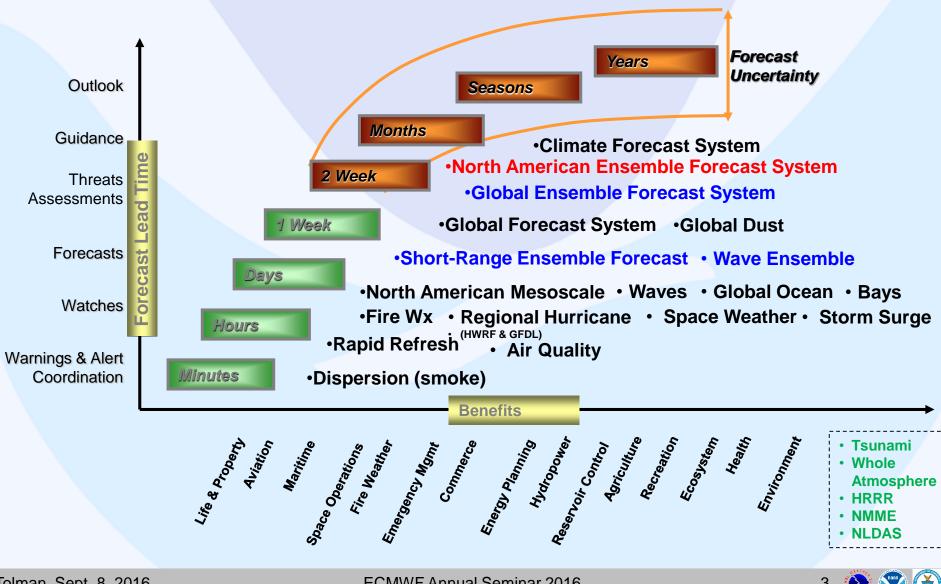


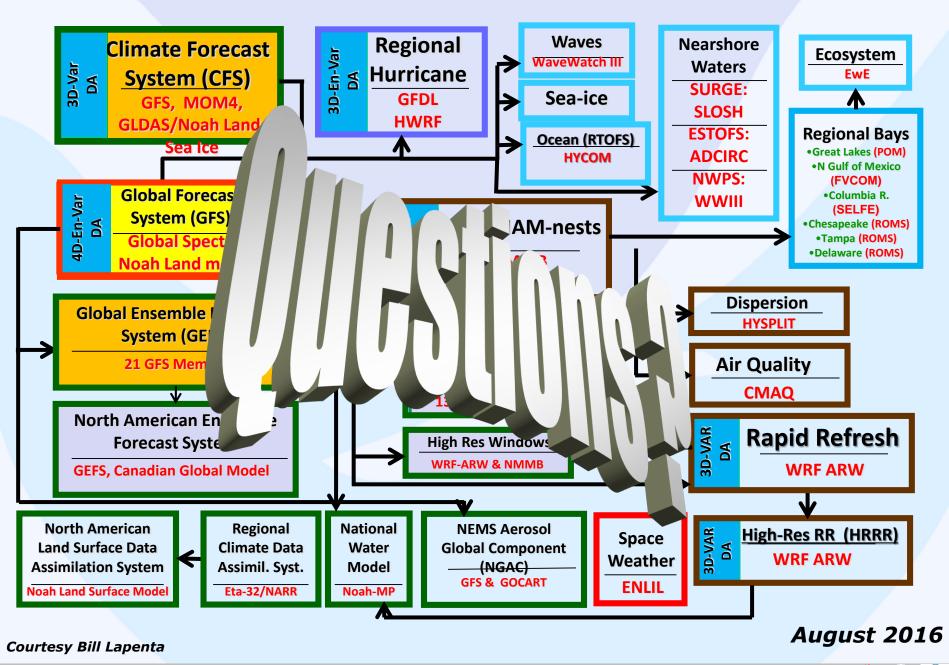
The NCEP experience in Earth System Modeling

NWS changing the way it is doing business.

Hendrik L. Tolman Senior Advisor for Advanced Modeling Systems Office of Science and Technology Integration, NWS / NOAA


Hendrik.Tolman@NOAA.gov

The Big Picture


The presentation in two slides

Seamless Suite, spanning weather and climate

ECMWF Annual Seminar 2016

Tolman, Sept. 8, 2016

4 🔇 🤍 👔

The Big Picture II

Operations and strategy rather than science

Outline

This will be a strategic presentation, without any slides with model results!

We are working toward a detailed strategic plan (Full draft Dec 2016), this is a preview subject to changes!

A little more about the present suite

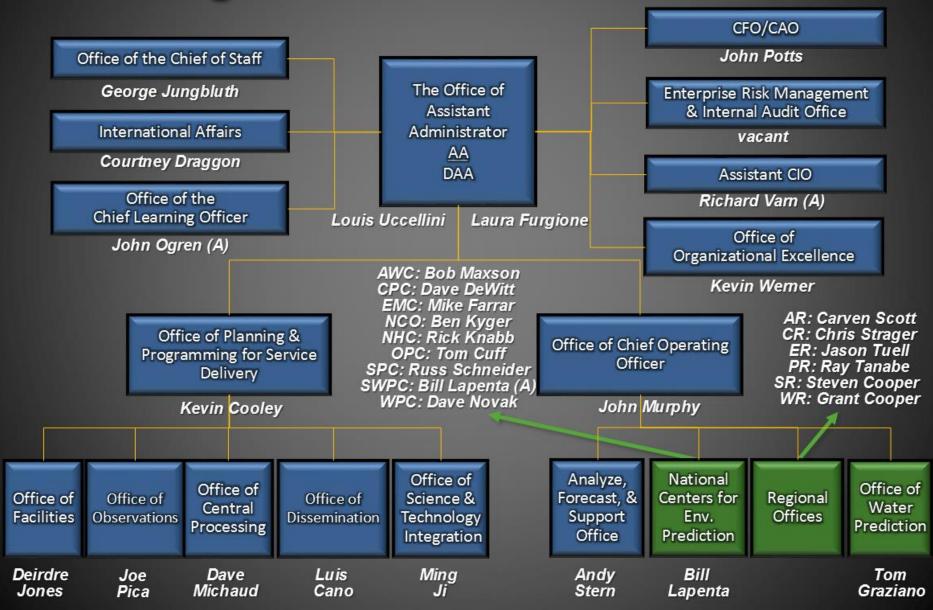
- NWS reorganization
- Emerging requirement

Outline – cont'ed

External reviews

Where to go with the NCEP Production Suite

- Layout of products
- Mapping present models
- Coupling
- Can we afford this
- Architecture considerations
- Implementation process
- Community Modeling


Final thoughts (from operations ...)

A little more about the present state

NWS Organizational Structure

Emerging requirements

- Weather Ready Nation.
 - Products.
 - Social science.
- High impact events.
- Weather to climate—seamless suite of guidance and products.
 - ► Week 3-4.
 - Systematic reforecast need.
 - Forecast uncertainty.
 - Calibration of outlook products.
 - Integrated Decision Support Services (IDSS)
- Range of products beyond weather:
 - Land, ice, ocean, waves, aerosols, (ecosystems, space weather).
 - Water cycle, Office of Water Prediction (OWP) (initially stood up as National Water Center (NWC))

External Reviews

External Reviews

Annual review of UCAR Community Advisory Committee for NCEP (UCAN)

- 2009 Deep dive
- Annual updates
- 2015: review NCEP Production Suite instead of new deep dive.
 - UCACN Model Advisory Committee (UMAC)
 - December 2015 final report

Frederick Carr (co-chair) Richard Rood (co-chair) Anke Kamrath Alan Blumberg **Chris Bretherton** Andy Brown Eric Chassignet **Brian Colle** James Doyle

Tom Hamill Jim Kinter Ben Kirtman Cliff Mass **Peter Neilley Christa Peters-Lidard**

12

UMAC main recommendations

- Reduce the complexity of the NCEP Production Suite.
- The NOAA environmental modeling community requires a rational, evidence-driven approach towards decision-making and modeling system development.
- A unified, collaborative strategy for model development across NOAA is needed.
- Essential to effective planning and execution is the creation of a Chief Scientist position for Numerical Environmental and Weather Prediction (NEWP). NOAA needs to better leverage the capabilities of the external community
- NOAA must continue to enhance High Performance Computing (HPC) capabilities
- NOAA must develop a comprehensive and detailed vision document and strategic plan that maps out future development of national environmental prediction capabilities.
- Execute strategic and implementation plans based on stakeholder requirements.
 https://www.earthsystemcog.org/projects/umac_model_advisory

Tolman, Sept. 8, 2016

Basic issues / UMAC

The findings of the UMAC pointed NCEP to the following observation:

The production suite has evolved as a set of solutions for (ill-defined) requirements, instead of a set of products serving well defined requirements.

Basic issues / UMAC

Moving away from implementing solutions:

- Need better NWS requirements process
- Map requirements to products (not models)
- Target model development to better serve requirements
 - Community involvement from start
- Business case is integral part of decisions:
 - Unified model with concentrated effort, versus
 - models tailored to selected requirements

Additional considerations

- Coupled modeling needs to be considered in this context
- Focus on predictability and outlook products requires systematic ensemble / reanalysis (retrospective) / reforecast approach
- Data assimilation

Where to go with the NCEP Production Suite

Basic approach : atmosphere

Start with weather side:

We are NWS !

Starting with products:

- What forecast time ranges
- which reasonably imply
 - Run cadences
 - Update cycle.
- Not so clear:
 - Resolutions
 - Data Assimilation

Possible Approach					
Range	Target	Cadence	Means		
year	Seasonal	?	9-15mo		
month S2S		6-24h	35-45d		
week	Actionable weather	6h	3-16d		
day	Convection resolving	1h	18-36h		
hour Warn On Forecast *		5-15 '	3-6h		

* FACETs

?

** Separating from DA for models

- Reforecast / reanalysis / retrospectives
- Need to map requirements to forecast ranges

Tentatively vetted at the Dec. 2015 NCEP Production Suite Review

Analyses

ECMWF Annual Seminar 2016

now

now

Models: atmosphere

Range	Year	Month	Week	Day	Hour	Now
Target	Seasonal outlook	S2S outlook	Actionable weather	Convection resolving	Warn On Forecast	Analyses / nowcast
Present models	CFS	CFS (GEFS extension)	GFS, GEFS, NAM, SREF, RAP, hurricane	HRRR, NAM nest, HiresW		RTMA, URMA, blend
Cadence	? (is 6h)	24h (is 6h)	6h	1h	5-15'	?
Range	9-15mo global	35-45d global	3-16d global (?)	18-36h regional (?)	3-6h ? regional	0 regional (?)
Updates	4y	2у	1y	1y	1y	6 mo
Reanal.	1979-now	20-25y	Зу	?	?	
Where	?	WCOSS	WCOSS	WCOSS	?	WCOSS

- Ensemble based DA for all ranges (day and hour TBD), except possibly for the now range
- All global applications from single unified modeling system.
- Global / regional unification ?

- Present NPS elements not fitting in this layout:
 - Space weather (WAM-IPE / Geospace).
 - Hurricane models (GFDL / HWRF).

18

Year:

Tentative layout:

 50km resolution, 9-15 month forecasts, full ensemble, updating weekly. Assuming DA mostly from week range, coupled

Present status:

Corresponds to present CFS, but will only include longest runs

Key science questions

- Predictability; what to focus on for products
- Advanced coupling
- Physics suitable for severe weather outlook

Implementation issues:

 Dropping 45 day runs of present CFS requires "month" solution to be in place, otherwise "trivial".

Month:

Tentative layout:

- Extend present weather scale ensembles out to week 3-4.
- 35km resolution (constant for forecast), coupling (ocean, ice, ?), increased ensemble size, DA from week range ?

Present status:

- Extend range of GEFS without stepping down resolution
- Could be uncoupled baseline IOC, but coupling preferred

Key science questions:

- Predictability, target products
- Need / payback for coupling
- Physics improvements (severe weather outlook)

Implementation issues:

Slot can be filled by natural extension of GEFS

Week:

Tentative layout:

- Global 10-13km resolution full ensemble (21-26 members?), 5-7 day forecast at 6h cadence.
- Focal point for global DA.
- At least 1-way coupling for other component products

Present status:

- GFS, GEFS, NAM, SREF, RAP, hurricane all have element to be merged in this (single) product
- Wave, ocean, ice, aerosol all have "downstream" products in this range

Week (cont'ed):

Key science questions:

- Develop suitable single-core ensembles at this scale
- Develop scale aware and stochastic "unified" physics
- DA development, in general,
 - higher cadence for DA to support full suite?
- How and where to merge space weather and hurricanes
- Move this eventually into "grey zone" resolutions?

Implementation issues:

- Consolidating of models in a single set of products will be tricky
 - Products for users (availability, quality)
 - Transition downstream dependencies (regional models)
 - Develop incremental plan
- Larger relative resources needed compared to longer forecast ranges (due to regional → global ensembles)

22 🧯

Day:

Tentative layout:

- 3km resolution full regional (US+) ensemble
 - Hourly cycling model for short term forecast (18h, ensemble version of HRRR)
 - 2x or 4x per day, extend the forecast to 30h (for FAA, small craft advisory and other requirements)
 - 2x or 4x per day, extend the forecast to 60h to cover present NAM (nest) product usages.

Present status:

- Presently, the HRRR with hourly cadence, NAM nest and HighRes Window with 6 and 12h cadences and longer forecast ranges.
- No ensemble yet
- DA less mature (expensive) than for global models

Day (cont'ed):

Key science questions:

- Development of suitable ensemble
 - Single core, stochastic scale-aware physics
- DA development to bring up to par with global models
 - General approach
 - Hybrid ensemble based DA development
 - Ensemble size?

Implementation issues:

- Resources
 - At least 20x of HRRR, even without much more expensive DA
- Core unification
 - Presently simplifying to WRF-ARW and NMMB only approach
 - How to go to single core AND NGGPS
 - Need focus on model agnostic short-term development!

Hour:

Tentative layout:

 1km resolution, 5-15 min cadence short forecast (3-6h ?) for same domain as "day" range products, with DA and ensemble approach

Present status:

• N/A

Key science questions:

- All of "day" range and then some, focusing on general DA and ensemble design
- Cost: on-demand and local as with hurricanes?

Implementation issues:

- Too expensive for tentative layout
- Will need some serious work on designing a manageable system
- Decision point around 2020, imlementation 2015?

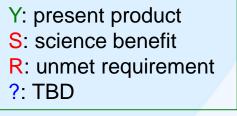
Basic approach : coupling

This is not just a science problem

- Requirements for additional, traditionally downstream products
- "One-way" model coupling versus downstream model:
 - Increases forcing resolution of downstream models while reducing I/O needed to force models
 - Creates a better integrated test environment for holistic evaluation of model upgrades
 - Less implementations
 - Creates environment for investigating benefits of two-way coupling. Enables two-way coupling if science proves benefit

Negative aspects of coupling:

- More complex implementations
- Less flexibility to tailor products
- Produce "too much" compared to tailored products (forecast range, cadence)



Basic approach : coupling

Many potentially coupled model components already have products in the production suite :

- Where no products exists, science suggests benefit of coupling
- For the hourly forecast range, all still TBD
- DA is also moving (internationally) to coupling
- Space weather making its way into operations
- Ecosystems (marine) being considered (not in table)

Subsystem	Year	Month	Week	Day	Hour
Land / hydro	Y	Y	Y	S	?
Ocean / coast	Y	Y	Y	S/R	?
Ice	Y	Y	S	?	?
Waves	S	Y	Y	Υ	?
Aerosols	S	S	Y	Y	?
Space weather	?	?	Y	?	?

Basic approach : coupling "now"

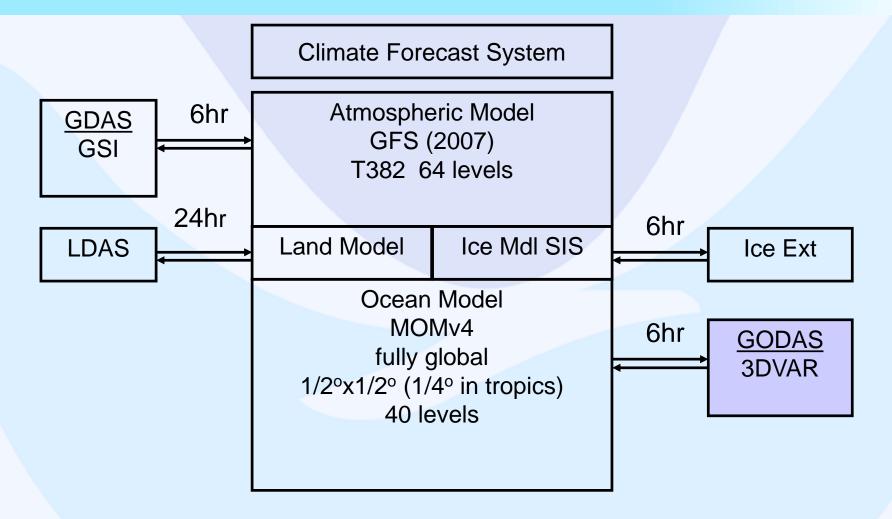
	Influencing						
	Atmos.	Land / hydro	Ocean / coast	ice	waves	Aerosols	Space W.
Atmos.		yes	yes	yes	yes	yes	yes
Land/hydro	yes		inflow	yes	inundation		
Ocean/coast	yes	inundation		yes	WCI	climate	
Ice	yes		yes		yes		
Waves	fluxes		WCI	yes			
Aerosols	climate						yes
Space W.	yes					yes	

Green boxes:	light: tradition 1-way downstream coupling dark: two-way coupling in selected operations.			
Grey boxes:	fixed data, not dynamic coupling			
Black text:	presently in place.			
Red text:	science has shown impact			

Basic approach : DA

Unifying on GSI and ensemble hybrid 4DVAR. Global focus:

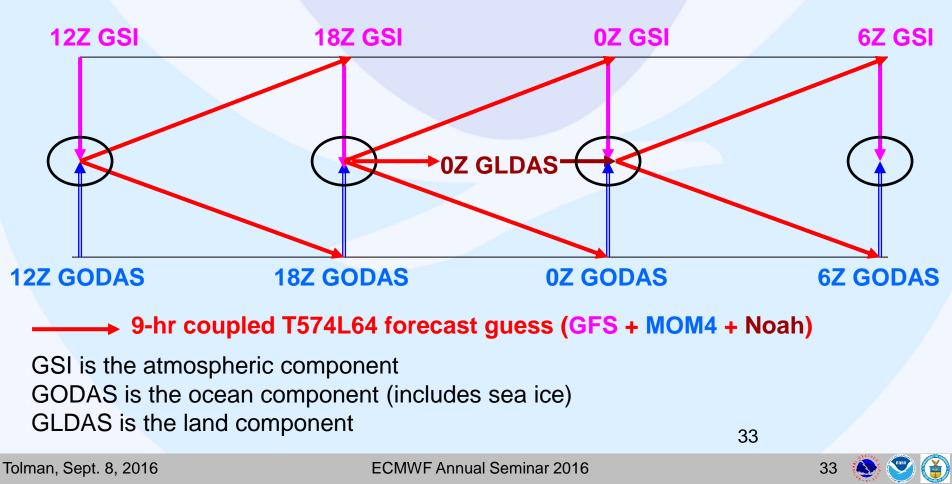
- Is a single DA system for all global models feasible?
 - Freeze or update DA for climate applications
- Where do we go with coupling
- Issues:
 - Scaling of GSI
 - Resolution of underlying ensemble


Regional focus:

- We do want to unify, but how feasible is this?
- Great progress with convection resolving, but
- not yet at the science level achieved at global scales
 - Ensemble based convection resolving DA
 - Hourly WoF, many efforts, no real link to production suite yet

CFS at NCEP

(RR – v2)

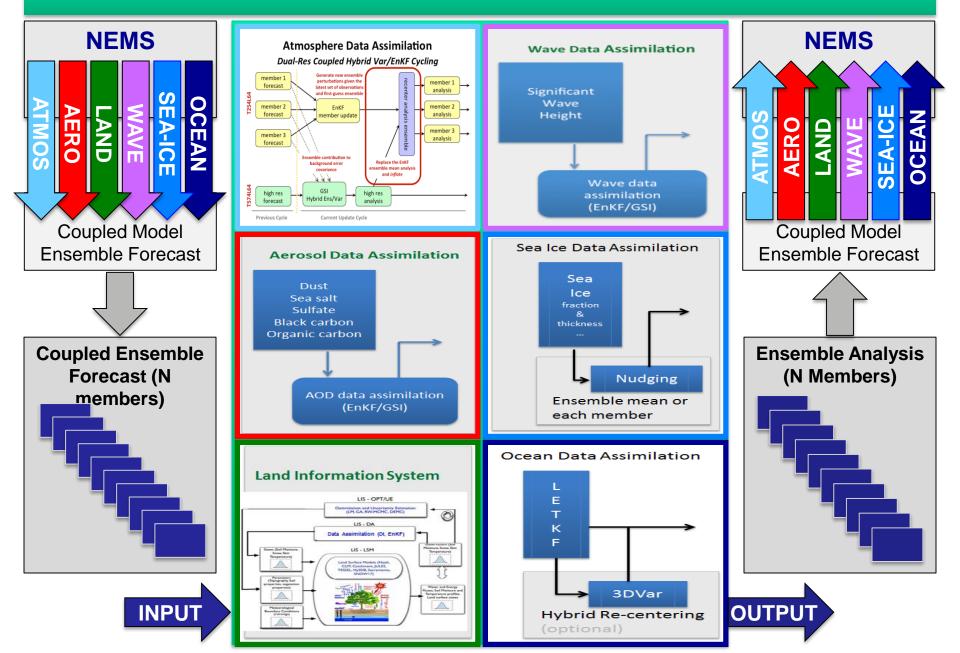


http://cfs.ncep.noaa.gov/cfsr

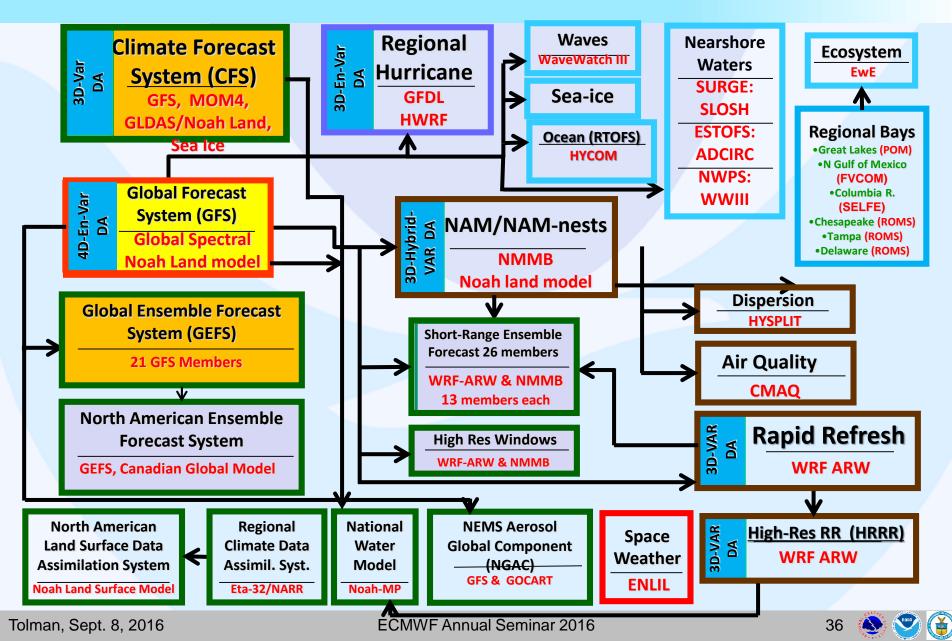
32

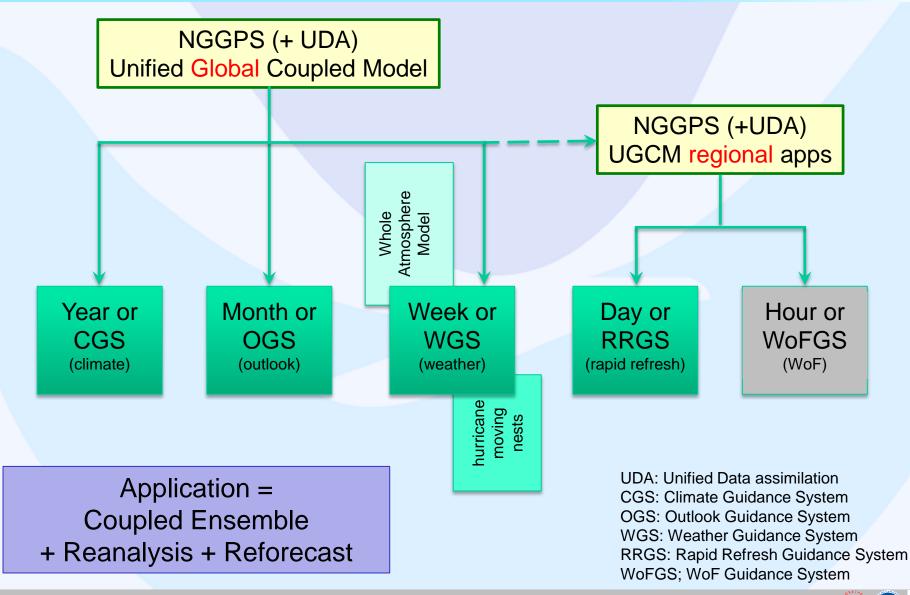
Data Assimilation (CDASv2)

CFSv2 is the dynamical model used in the CFS Reanalysis The CFSR is an ocean, land, atmosphere, and sea-ice analysis, which covers the period from 1979 to present.


COUPLED DA PROOF OF CONCEPT

We are building a prototype stronger coupled DA system


- Atmosphere: Hybrid 4D-EnVAR approach using a 80-member coupled forecast and analysis ensemble, with Semi-lagrangian dynamics, and 128 levels in the vertical hybrid sigma/pressure coordinates.
- Ocean/Seaice: GFDL MOM5.1/MOM6-SIS and/or HYCOM-CICE for the ocean and sea-ice coupling, using the NEMS coupler.
- Aerosols: Inline GOCART for aerosol coupling.
- Waves: Inline WAVEWATCH III for wave coupling.
- Land: Inline Noah Land Model for land coupling.


NCEP Coupled Hybrid Data Assimilation and Forecast System

What we have

What we want

37 🌔

Can we afford this ?

Ť

Factors driving costs

Start from existing models, compute impact of X factor increase in relevant model features.

Factor impacting costs	Scaling	Comments
Horizontal resolution	$X^2 - X^3$	Quadratic in number of grid points + up to linear in associated time step (CFL criterion)
Vertical resolution (including	$X^1 - X^2$	Linear in number of grids points, + up to linear in
extent)		associated time step (CFL criterion)
Cadence (runs per day)	Х	
Forecast range	X	
Ensemble size	Х	
Physics / numerics	TBD	Unknown, potentially important.
Output rate	TBD	Ignored here, but can be potentially important, needs to be considered in computer design.

Estimating element costs

	resolution	levels	length	cadence	members	phys / num	coupling	DA	cost
	km	-	h	per day	-	X	Х	X	Pflops
Year ("CFS")	100	64	6480	4	1	A		~	0.009
low		128	6480	0.14	28	1.3	1.1	1	0.126
med	50	128	8640	0.14	28	1.5	1.1	1	0.194
high		128	10800	0.14	56	1.7	1.1	1	0.550
high (res)		128	10800	0.14	56	1.7	1.1	1	1.604
Month ("GEFS")	35	64	277	4	21			_	0.020
wave ensemble	55	1440	240	4	21				0.006
low		64	840	4	21	1.3	1.5	1	0.119
med	35	90	960	4	31	1.5	1.5	1	0.326
high		128	1080	4	41	1.7	1.5	1	0.782
high (res)		128	1080	4	21	1.7	1.5	1	2.944
Week ("GFS")	13	64	256	4	1				0.028
SREF	16	40	84	4	26				0.029
RAP	13	50	18	4	1				0.004
wave multi 1/2	54-18-7	1440	180	4	1				0.005
RTOFS Global	13	64	192	1	1				0.003
low	11	128	144	4	15	1.3	1.3	2	2.644
med	11	128	168	4	21	1.5	1.3	2	4.982
high	11	128	192	4	26	1.7	1.3	2	7.990
high (res)	9	128	192	4	31	1.7	1.3	2	17.393
Day ("HRRR")	3	64	15	24	1				0.025
NAM parent and nest	4	60	60	4					0.014
HiResWin	3	45	48	2					0.010
low	3	64	18	24	21	1	1.3	3	5.063
med	3	90	21	24	26	1	1.3	3	9.173
high	3	128	24	24	31	1	1.3	3	16.160
high (res)	2	128	24	24	31	1	1.3	3	54.541
Hour (WoF from HRRR)			da	ta taken direo	tly from prev	vious "day" blo	ock		
low	1	64	4	96	26	1	1	3	56.300
med	1	90	3	144	26	1	1	3	89.068
high		128	2	288	26	1	1	3	168.900
high (res)	0.5	128	2	288	26	1	1	3	1351.200

Resulting compute needs (ops)

		year	month	week	day	hour	total
	low	0.32	0.30	6.6	12.7	141	161
ost in PFlop	med	0.49	0.81	12.5	22.9	223	259
	high	1.38	1.95	20.0	40.4	422	486
	high-2	4.01	7.36	43.5	136.4	3378	3569

Overall costs per element uncertain, but clearly different with respect to NPS element:

Hour / WoF very expensive

Co

Other elements feasible in next 5-10 years at "med" level

Moving from equal split between global (year-week) and meso (day-hour) modeling to compute focus on meso.

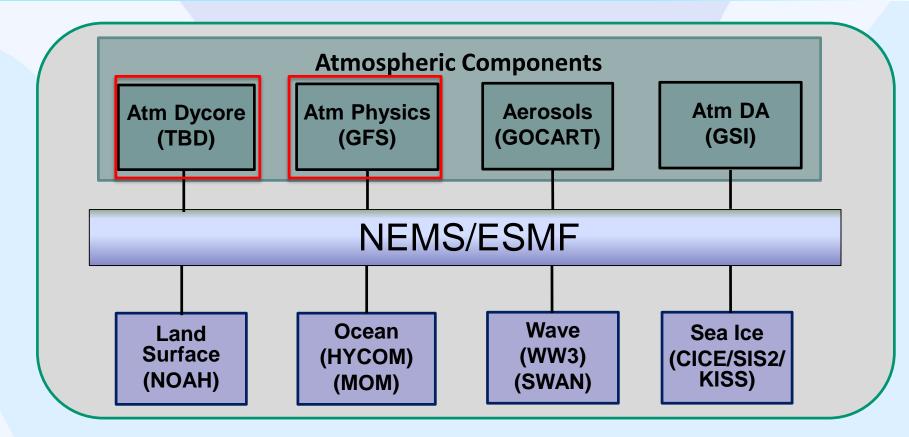
Percentage of NPS without hour element

	year	month	week	day
low	1.6%	1.5%	33.2%	63.7%
med	1.3%	2.2%	34.0%	62.5%
high	2.2%	3.1%	31.4%	63.4%
high-2	2.1%	3.8%	22.7%	71.3%

Compute needs beyond operations

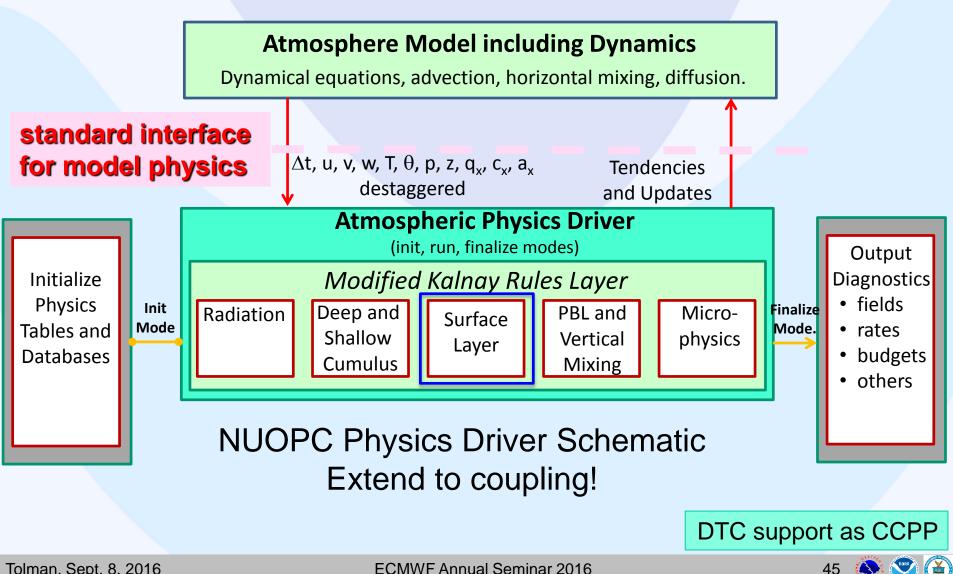
More elements that operational machine only

- Backup machine of same size
- T2O needs for NCEP and partners to fully support ops
- R&D needs "higher up in the funnel" (tentative)
 - Outside NPS represents balanced one-NOAA HPC approach
- Separate resources for Reforecast / Reanalysis (RR)


PFlop with hour element,		ops	backup	T2O	R&D	RR	total
feasible ?	low	161	161	321	1071	120	1834
	med	259	259	519	1729	195	2961
	high	486	486	972	3240	364	5548
	high-2	3569	3569	7138	23795	2677	40748
PFlop without hour element,		ops	backup	T2O	R&D	RR	total
feasible !	low	20	20	40	133	15	227
	med	37	37	73	245	28	419
	high	64	64	127	425	48	727
	high-2	191	191	382	1275	143	2183

2 💫

Architecture



NGGPS/UGCM and **NEMS / ESMF**

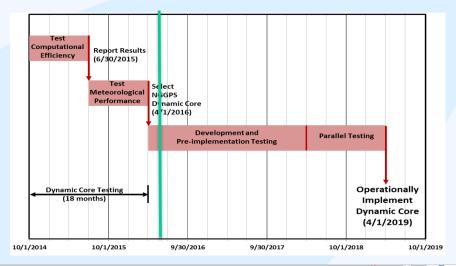
Modular modeling, using ESMF to modularize elements in fully coupled unified global model (+ NWM, ionosphere, ecosystems,)

NGGPS physics

Tolman, Sept. 8, 2016

ECMWF Annual Seminar 2016

NGGPS

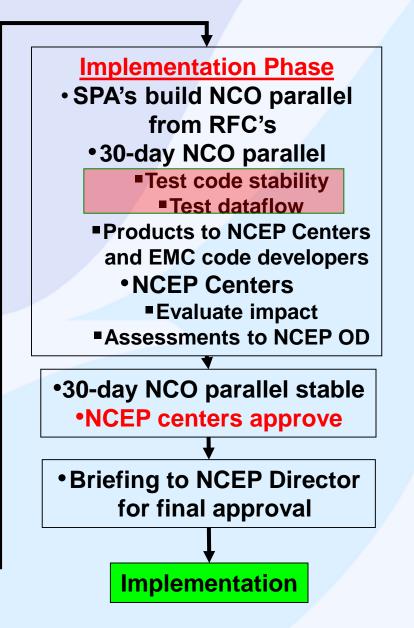

NWS R2O funding and NGGPS projects.

- For first time NWS is funding agency.
 - Fund gaps in operations.
 - Project based funding for strategic development.
 - Within US government.
 - Academia, with NWS partners / champions.
 - ► Test beds for R2O.
- Key element: Next Generation Global Prediction System.
 - Next generation Dycore Selection.
 - Unified physics interface, focus on physics.
 - ► 11 more NGGPS teams
 - Model Coupling
 - Started with Climate Forecast System
 - Arctic modeling

NGGPS dycore

- Selecting a new dynamic core for global model to serve the NWS for the coming decades.
 - Architecture suitable for future compute environments.
 - Non-hydrostatic to allow for future convection-resolving global models.
- 18 month process to down-select candidate cores.
- 5 year plan to replace operations.
- Core \rightarrow NEMS \rightarrow applications.
 - ► GSM-NH (EMC)
 - ► MPAS (NCAR)
 - ► FV3 (GFDL)
 - NIM (ESRL)
 - NEPTUNE (NRL)
 - NMMB-UJ (EMC)

ECMWF Annual Seminar 2016


Implementation

Ť

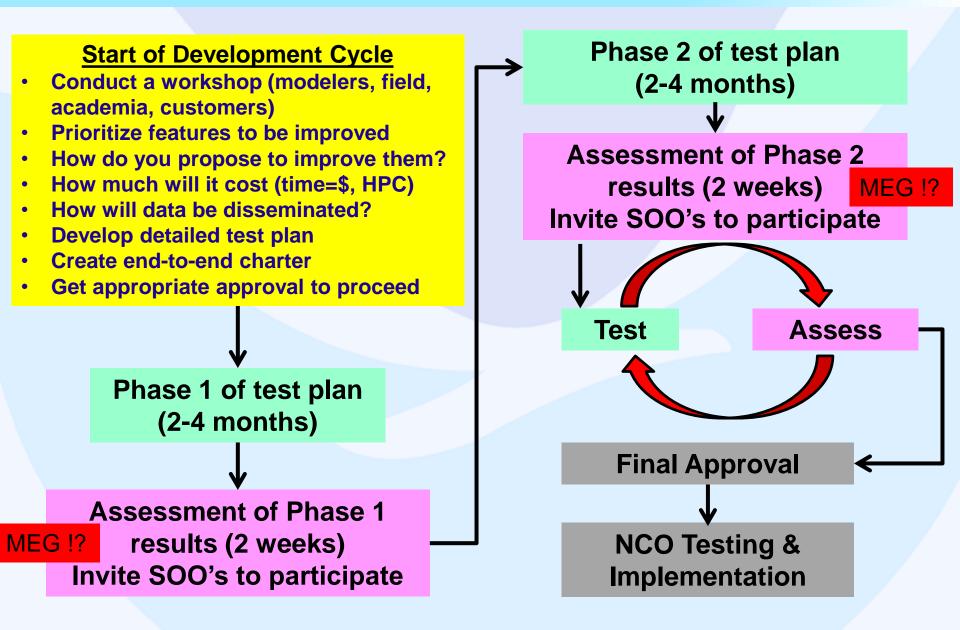
The old (present) process

	Description	Comments	Platform/# of cases
		Pre-Baseline Transing Ints	
TDRP	FY12 HWRF + One- Way Hybrid GSI	Run in real-time anng 2012 purricane season (Stream 2.0 Demő). Also included real-time TDR data for 19 cases.	CCS, All 2012 ATL and EP 821 cases
HDFL	FY12 HWRF + Flux truncation into POM	25% reduction of heat, momentum an tradiative fluxes in the operational coupled with P.C.M	Jet, All 2012 ATL and EP 821 cases
P160	FY12 HWRF + Initialization Chang	Improved size correction, much otions to filter domain and use GFS very very initial storm ntensity less than 16 per	t, All 2012 ATL and EP cases
HNPI	FY12 HWRF + nest-parent interpolations	Revised nest-parent inter olations and improved treatment of variants a nest boundaries	All 2012 ATL and EF a 6 others from 2010 11 88 cases
HNTT	HNPI+ New movement algor	and T are tracter. Choice of 8 form the nad difficult, are king the nest protection	Selected storms 168 cases
ННРС	FY12 HWRF + Frequency P Calls	cr ised Physics calling its year of from 180 sec. to used. Third nest size inclused by about 20% rom .5x5 to 7x6.5	Jet, A few selected storms from 2012; 100 cases
		eli Pxperiment	
H130	All modifications from pre-baseline experiments	2013 HWRF by etime is based on positive outcome from the pre-balline experiments described above. Run on three different platforms.	Jet/Zeus/WCOSS, AI 2010-2011-2012 ATL and EP 1870 cases each
		Physics Upgrades	
H131 (Final)	H130 + PBL changes	HWA (GFS based scheme) is up to d to include the critical Richards of the for improved then of PBL height on weather conditions.	Jet/Zeus/WCOSS, All 2011-2012 and August October 2010 ATL and EP 1870 cases
	EMC	Change Control Boa	ard
	EMC	 Scientific Integrity 	ard
	EMC		ard
		 Scientific Integrity 	ard
		 Scientific Integrity Product Quality 	<u>ard</u>
		 Scientific Integrity Product Quality 	<u>ard</u>

Stakeholder input

Requirements definition

- Identified as a weakness by NCEP stakeholders and UMAC
- incomplete requirements may create false expectations
- NWS needs an improved process—is portfolio management the answer?


Stakeholders--- need earlier access to information

- What changes are being made?
- What's the rational?
- What characteristics of the tool will change?
- Stakeholder calibration methods need time and access to preimplementation data in order to adapt (i.e., GEFS FY15 Upgrade)
- 30-day NCO parallel insufficient for customer assessment

IMPROVE COMMUNICATION BETWEEN MODEL DEVELOPERS AND STAKEHOLDERS

Process suggested recently to AA

Community Aproach

Public-private partnership

The US is unique in that weather forecasting is treated as a public-private partnership with close interactions between

- National Weather Service.
- Other government entities.
 - ► In NOAA, NASA, DoD,
- Commercial weather companies.
- Including and integrated in the media.

- 2003 report from Committee on Partnerships in Weather and Climate Services, Committee on Geophysical and Environmental Data, National Research Council:
 - Fair Weather: Effective Partnerships in Weather and Climate Services.

Google: Fair weather report

Fair Weather report

Impact on operations:

- From Fair Weather report and last NCEP strategic plan:
 - Emphasis on timeliness and reliability.
 - Accuracy only at the third place.
- NOAA / NWS / NCEP does this better than any other organization in the world.
 - ► 99.9% on time delivery of products.
 - Products go to the public as soon as we produce them.
 - ► Example HRRR transition from ESRL to NCEP.
 - Immediate 99.9% reliability.
 - 45 min faster delivery of products.

Business model

Traditionally two types of implementations:

- Forklift upgrades (brand new model) :
 - Historically 5+ year process with need for maintaining old and new models side-by-side.
 - Examples: first WW3 model, GFDL-HWRF transition,
- Incremental improvement of existing systems:
 - Typically one significant upgrade per year (target).
 - Can be done with existing support for model, no second effort needed.
 - Up to order of magnitude cheaper than forklift upgrade.
- For price of forklift upgrade we can do 5 to 10 incremental upgrades
 - More efficient for majority of upgrades!

New business model

Moving to community modeling:

- Operations and research work on the same codes:
 - Open-source style environment, but …
 - operations needs to retain some control over codes to assure continued robustness and reliability of codes.
 - R2O and O2R are tightly joined in this concept, focus of NCEP of making ALL operational codes available with the proper support to make community modeling possible.
 - Concept proven within NWS particularly with the CRTM, WAVEWATCH III and HWRF.
 - ◆ WRF, GSI, GOCART, Noah, MOM, HYCOM,
 - Large part of our codes are community codes, but needs work for flagship models (NEMS, GFS, NMMB).

New business model

This does not mean we will take any community model ...

- Small number of models for each application, with a well defined business model, strategic plan:
 - ► NMMB and WRF-ARW,
 - ► WAVEWATCH III and SWAN,
 - ► MOM and HYCOM,
 - Similar approach at NOS for coastal ocean models.
- Focus first on incremental upgrades with the community of accepted operational community models.
- Strategic planning essential for address if and when community models need to be added, replaced or retired.
 - This will still be a much more expensive business model and therefore needs to be addressed carefully and strategically.

Final thoughts

(from operations ...)

Operations vs research

NWS mission, saving life and property:

- The right answer for the wrong reason does save lafe and property, but
- Any answer for the right reason is required for real progress.
- Better than doing "nothing" (persistence) helps my mission

Don't let perfect stop good enough.

- There is a business model associated with this:
 - ► Is the improvement worth the cost.
- WRN: Hurricanes, severe weather, rip currents,

Another look at coupling / complexity:

Signal versus noise, application dependent.

TORR