# The role of atmospheric composition in Earth system modeling for numerical weather production



#### **Reasons to care about atmospheric chemistry**



#### Some big questions for tropospheric chemistry in next decade

#### **Changing methane**

#### Global Averages - Angrand - Angrand - Angrand 1775 CH4 (ppb) 1725 1675 global methane trend 1985 1990 1995 2000 2005 2010 Year

#### **Changing N cycle**

#### **Trends in oxidants**

Α

2005



#### **Biogenic organics**

# formaldehyde from space

#### **Ozone trends**



# AOD over Nigeria

Air quality in developing world

# **Emerging era of satellite observations**

Tropospheric chemistry has transitioned from data-poor to data-rich over past 15 years



This has provided impetus for development of chemical data assimilation tools

- Inverse analyses of emissions
- Chemical reanalyses
- Initialization of chemical forecasts
- Improvement of meteorological forecasts

### Improving meteorological forecasts through chemical information

#### **Ozone for stratospheric dynamics**

Ozone columns, profiles



#### Aerosols for radiation/precipitation

GOES aerosol optical depth



#### PBL heights CALIOP lidar aerosol profiles



#### **Chemical tracers of winds**

Free tropospheric carbon monoxide (CO)



# Public demand for chemical forecasts

#### Transport of pollution from major point releases (fires, volcanoes, accidents)

Smoke from agricultural fires in Sumatra



83

100

ppbv

#### Air quality management





#### **Ozone hole drift**

GOME-2/METOP-A Ozone 2011-03-23 http://atmos.caf.dlr.de/gome2



|           | т   | O <sub>3</sub> [Dobson Units] |     |     |     |     |     | 1   |
|-----------|-----|-------------------------------|-----|-----|-----|-----|-----|-----|
|           |     |                               |     |     |     |     | . 🗲 | ф,  |
| - O3M SAF | 150 | 200                           | 250 | 300 | 350 | 400 | 450 | DLR |

# Monitoring emissions in near-real-time from satellite data

GOSAT methane: methane emissions

OMI formaldehyde: hydrocarbon emissions





#### Surface emission footprint

#### **Computational cost of chemical models**

Solve *n* coupled PDEs for species mixing ratio  $\mathbf{C} = (C_1, ..., C_i, ..., C_n)^T$ 



For a typical mechanism with ~100 coupled species, chemical module is expensive! **But:** 

- There are fast implicit solvers available for such stiff systems
- The chemical module has 100% scaling in massively parallel environments
- Chemistry may use coarser time steps and grid resolution than dynamics
- As grid resolution increases, cost of chemistry vs. transport decreases
- Mechanism may be reduced in clean regions

# **On-line and off-line approaches to chemical modeling**

#### **On-line: coupled to dynamics**

GCM conservation equations: air mass:  $\partial \rho_a / \partial t = ...$ momentum:  $\partial \mathbf{u} / \partial t = ...$ heat:  $\partial \theta / \partial t = ...$ water:  $\partial q / \partial t = ...$ chemicals:  $\partial C_i / \partial t = ...$ 

PROs of off-line vs on-line approach:

- computational cost
- simplicity
- stability (no chaos)
- compute sensitivities back in time CONs:
- no chemical-dynamics coupling
- need for meteorological archive
- transport errors

Chemical data assimilation best done on-line

#### **Off-line: decoupled from dynamics**



Chemical sensitivity studies may best be done off-line

## **GEOS-Chem Chemical Transport Model:**

off-line model using NASA GEOS operational meteorological archive



Developed and used by over 100 research groups worldwide

# **GEOS-Chem chemical module can be used off-line or on-line**

grid-independent modules connected by Earth System Modeling Framework (ESMF)



**GEOS-Chem chemical module in CTM and ESM is exactly the same code** 



### **GEOS-Chem chemistry in c720 (12 km) GEOS-5 ESM**

Tropospheric ozone at 500 hPa, ppb



Full-year simulation:

Mike Long, Lu Hu (Harvard), Christoph Keller (NASA)

Comparison to ozonesondes, June-Aug 2013 (observed, on-line, off-line 2°x2.5°)



# Nonlinear chemistry and grid resolution

GEOS-Chem with 0.25°x0.3125° resolution over North America during NASA SEAC<sup>4</sup>RS aircraft campaign over Southeast US (Aug-Sep 2013) 5-min transport time step, 10-min chemical time step (*h*)



#### Oxone in surface air - circles are aircraft data

Yu et al. [ACP 2016]

# Effect of grid resolution on nonlinear chemistry is small

Cunulative PDFs of observations and model (different resolutions) over Southeast US



Chemical averaging errors tend to elicit negative feedback (LeChatelier principle): a high-resolution dynamical model could use coarser resolution for chemistry

Yu et al. [ACP 2016]

# Long-lived chemical plumes in the free troposphere

CO and ozone Asian pollution over Pacific Free tropospheric CO from AIRS 100 TRACE-P aircraft profiles Pressure (hPa) 500 128. 1000 300 100 200 300 CO [ppbv] 100 200 Fire plume at 4 km <sup>100</sup> O<sub>3</sub> [ppbv] over Amazonas

Much of pollution transport on global scale takes place in layers that retain their integrity for over a week, spreading/filamenting horizontally over 1000s of km and vertically over ~1 km

Think of them as "pancakes" or "magic carpets"



Andreae et al., 1988; Heald et al., 2003

#### **Difficulty of preserving free tropospheric layers in Eulerian models**

2-D pure advection  $\partial C / \partial t = -\mathbf{u}\nabla C$  of inert Asian plume in GEOS-Chem Advection scheme is 3<sup>rd</sup>-order piecewise parabolic method (PPM)



- Advection equation should conserve mixing ratio
- 3<sup>rd</sup>-order advection scheme fails in divergent/shear flow
- Increasing resolution yields only marginal improvement

Rastigejev et al. [2010]

150

200

250

50

100

hour

### Why this difficulty? Numerical diffusion as plume shears



A high-order advection scheme decays to 1<sup>st</sup>-order when it cannot resolve gradients (plume width ~ grid scale)



#### Further investigation with 0.25°x0.3125° version of GEOS-Chem

2-D model grid at 0.25°x0.3125°, initial plume is 12°x15°



Color measures volume mixing ratio (VMR)

#### Sebastian Eastham, Harvard

#### Mapping out the problem with 2-D plumes initialized worldwide





# Grid resolution dependence of plume dissipation

How does the plume decay rate constant  $\alpha$  depend on the grid resolution  $\Delta x$ ?



Numerical diffusion limited by intrinsic numerical accuracy has  $\alpha \sim \Delta x^3$ 

• Numerical diffusion limited by shear/stretching has  $\alpha \sim \Delta x^{0.25-0.5}$ 

Sebastian Eastham, Harvard

# Vertical grid resolution is even more limiting at present



- ESMs prioritize vertical resolution in the boundary layer rather than free troposphere (0.6 km thick in GEOS-5 and ERA-Interim at 4-8 km)
  - A typical free tropospheric plume is resolved by only 1-2 vertical layers → large numerical diffusion



# Brasseur and Jacob, *Modeling of Atmospheric Chemistry,* Cambridge University Press, 2017



Soon available in all good bookstores! Email me if you want pre-publication on-line access

# **Some take-aways**

- Chemical data assimilation has strong clientele for air quality, climate forcing
  - Need to develop new approaches for optimizing surface fluxes
  - Assimilation of aerosol lidar data for mixing depths, CO for winds?
- Chemistry is not that expensive in ESMs
  - It becomes relatively cheaper as model resolution increases
  - It has full scalability in massively parallel architecture
  - It can be done at coarser spatial resolution and time step than dynamics
- Off-line chemical modeling using archived meteorology can be of great value
  - Inverse analyses, sensitivity studies
  - Need to better characterize off-line transport errors as resolution increases
- Transporting intercontinental plumes is a difficult problem for Eulerian models
  - Adding vertical levels to free troposphere is needed



# Monitoring emissions from satellite data is emerging priority



#### Assimilation of chemical observations to infer emissions



- "Top-down" monitoring of emissions is important for air quality and climate policy
- It is also important for chemical forecasting of air quality
- Near-real-time application allows monitoring of changing emissions

#### Why are chemical sensitivity studies so important? Target biases in emissions, chemical parameters

$$\partial C / \partial t = -\mathbf{u}\nabla C + \nabla K\nabla C + P - L + E - D$$

Biases in:

- emissions
- chemical rate constants
- missing/incorrect reactions
- surface uptake
- wet scavenging

Chemical data assimilation ideally requires an unbiased model... ... but chemical errors tend to be systematic

# **GEOS-Chem as chemical module for Earth System Models:**

off-line and on-line simulations use identical code



#### **HEMCO: an ESMF-compliant emission module for Earth System Models**



Keller et al. [2014]

# Assimilation of OMI+MLS satellite ozone data in the GEOS DAS with GEOS-Chem chemistry module



Large model errors in upper troposphere: this is a difficult problem!

- Stratosphere-troposphere exchange
- Lightning NO<sub>x</sub>
- Deep convection

Christoph Keller and Kris Wargan, NASA

# **Emerging era of satellite observations**

Tropospheric chemistry has transitioned from data-poor to data-rich over past 15 years



Thermal IR emission: ozone, CO, methane, ammonia,...

Lidar: aerosol. (methane, CO<sub>2</sub>, ozone)

# **Transport errors in off-line models**

1. Temporal averaging in meteorological archive loses correlation in transient motions:

transient eddies



could be cured by archiving eddy accumulation

Convective cells resolved by grid-scale advection



not clear how to solve that one

2. Regridding, grid coarsening lead to additional errors

# Atmospheric chemistry models solve continuity equations

Eulerian:

$$\partial C / \partial t = -\mathbf{u}\nabla C + \nabla K\nabla C + P - L + E - D$$

change in grid-resolved mxing ratio with time

transport (advection)

subgrid transport (eddies, convection)

chemical production and loss

emission, deposition

Lagrangian:

# dC/dt = P - L + E - D

PROS of Lagrangian over Eulerian models:

- stable for any wind speed
- no numerical diffusion
- easily track air parcel histories (receptor-oriented problems)
- easy to parallelize

CONS:

- need very large # points for statistics
- inhomogeneous representation of domain
- individual trajectories do not mix
- nonlinear chemistry is problematic ٠
- no on-line coupling with Eulerian meteorological model

# Lagrangian receptor-oriented modeling

Run Lagrangian model backward from receptor location, with points released at receptor location only



# Atmospheric chemistry models solve continuity equations

Eulerian:

$$\partial C / \partial t = -\mathbf{u}\nabla C + \nabla K\nabla C + P - L + E - D$$

change in grid-resolved mxing ratio with time

transport (advection)

subgrid transport (eddies, convection)

chemical production and loss

emission, deposition

Lagrangian:

# dC/dt = P - L + E - D

PROS of Lagrangian over Eulerian models:

- stable for any wind speed
- no numerical diffusion
- easily track air parcel histories (receptor-oriented problems)
- easy to parallelize

CONS:

- need very large # points for statistics
- inhomogeneous representation of domain
- individual trajectories do not mix
- nonlinear chemistry is problematic ٠
- no on-line coupling with Eulerian meteorological model