The carbon cycle in the C-IFS model for atmospheric composition and weather prediction Anna Agusti-Panareda

Sebastien Massart, Mark Parrington, Miha Ratzinger, Luke Jones, Michail Diamantakis Gianpaolo Balsamo, Souhail Boussetta **Emanuel Dutra, Joaquin Munoz-Sabater,** Alessio Bozzo, Robin Hogan, Richard Forbes (ECMWF)

Frederic Chevallier, Phillippe Peylin, Natasha MacBean, Fabienne Maignan (LSCE) OPERPICUS Europe's eyes on Earth

The carbon cycle

Interaction between all the Earth

system components

- Carbon reservoirs and their interactions with the atmosphere (focusing on CO₂ primarily).
- Can carbon cycle climate feedbacks improve atmospheric predictive skill?

Vegetation, radiative transfer, atmospheric chemistry

 Atmospheric CO₂ and CH4 analysis and forecast (Copernicus Service)

The 'spheres' of influence on the climate system. Source from <u>Institute for Computational Earth System Science(ICESS)</u>

The atmospheric reservoir in the fast carbon cycle (annual time-scale)

Movement of carbon between land, atmosphere, and oceans:

Yellow numbers are natural (balanced fluxes)

Red are human contributions (perturbing balance)

[Units: in Gigatons of carbon per year]

White numbers: stored carbon [Gigatons of carbon].

Source: http://earthobservatory.nasa.gov/Features/CarbonCycle/ (Diagram adapted from U.S. DOE, Biological and Environmental Research Information System.)

The atmospheric reservoir:

surface observations

THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI).

CO₂ growth rate in the atmospheric reservoir

CARBON

PROJECT

GLOBAL

Source: NOAA-ESRL; Global Carbon Budget 2015, LeQuere et al., 2015

Global carbon budget

GLOBAL

EDGAR v4.2 inventory of anthropogenic emissions (excluding land-use change) Source: EDGAR database

CO₂ emissions: land-use change

Source : Climate Change Information MI, UNEP IUC, 1967.

CO₂ emissions: land-use change by burning biomass

Sept-Oct 2015 daily mean CO₂ emissions

GFAS daily fire product available 1 day behind real time

GFAS CO2 emissions over Indonesia (Sep-Oct 2015):

Fires contribute to el Nino signal in the atmospheric CO_2 growth rate

The ocean reservoir in the carbon cycle

Solubility pump (inorganic carbon)

Ocean circulation (long timescales)

Biological pump (organic carbon)

Biological and physical pumps of carbon dioxide

Wikipedia: Hannes Grobe 21:52, 12 August 2006 (UTC), Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

The CO₂ ocean-atmosphere fluxes

Climatology of monthly mean ocean fluxes from Takahashi et al. (2009) used in C-IFS

Observations of pCO₂ at the surface of the ocean and in the atmosphere with transfer coefficients based on turbulent exchange.

Regions of sources and sinks associated with **upwelling** and **downwelling** regions

Fig. 13. Climatological mean annual sea-air CO_2 flux (g-C m⁻² yr⁻¹) for the reference year 2000 (non-El Niño conditions). The map is based on 3.0 million surface water pCO₂ measurements obtained since 1970. Wind speed data from the 1979–2005 NCEP-DOE AMIP-II Reanalysis (R-2) and the gas transfer coefficient with a scaling factor of 0.26 (Eq. (8)) are used. This yields a net global air-to-sea flux of 1.42 Pg-C y⁻¹.

Takahashi et al. (2009)

The terrestrial CO₂ fluxes

• Strong link with water and energy fluxes

Figure 3. Mean annual (1982–2008) (a) GPP, (b) LE, (c) TER, and (d) H derived from global empirical upscaling of FLUXNET data. Jung et al. (2011)

Terrestrial carbon flux : Exchange between the biosphere and the atmosphere

Atmospheric CO₂ sink (Gross Primary Production):

Photosynthesis (plants)

```
CO_2 + H_2O + energy \longrightarrow CH_2O + O_2
```


Atmospheric CO₂ source (Ecosystem Respiration):

Respiration (plants, animals)

 $\begin{array}{c} \mathsf{CH}_2\mathsf{O} + \mathsf{O}_2 \longrightarrow \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} + \texttt{energy} \\ \mathsf{CH}_2\mathsf{O} \longrightarrow \mathsf{CH}_4 + \texttt{energy} \quad \underline{\textit{in anoxic conditions}} \end{array}$

+ decomposition of organic carbon in soil by microbes

earthobservatory.nasa.gov/Features/CarbonCycle. Illustration adapted from Sellers et al., 1992

Credit: © Raphael Gabriel

Modelling CO₂ uptake by plants (GPP) in C-IFS

Environmental factors:

- Temperature
- PAR (solar radiation)
- Soil moisture
- Atm. wv deficit
- Atm. CO2

Biological factors:

- Mesophyll conductance

CTESSEL parameterisation

Jacobs (1994), Calvet et al., 1998,2000, Lafont et al. 2012,

based on ISBA-Ags

Boussetta et al. (2013)

Modelling CO₂ uptake by plants (GPP) in C-IFS

LEAF STOMATA

CANOPY

Upscaling to canopy with **LAI** climatology from MODIS

Upscaling to model grid point with vegetation dominant type/cover

Modelling soil respiration

Boussetta et al. (2013)

Evaluation of CO₂ ecosystem fluxes from CTESSEL in IFS

Example of NEE (micro moles /m²/s) predicted over the site Fi-Hyy (FINLAND) by **CTESSEL (black line)** and CASA-GFED3 (green-line) compared to FLUXNET observations

Boussetta et al. (2013)

Modelling atmospheric CO₂ in C-IFS

Synoptic variability of NEE is important for the CO2 synoptic variability in the BL

In the warm sectors of low pressure systems:

synergy between advection and CO_2 ecosystem fluxes:

cloudyreduction of CO2 uptakeMore CO2warmincrease in respiration

Enhanced atmospheric CO₂ anomaly

Modelling atmospheric CO₂ in C-IFS

CO₂ surface fluxes & column-averaged dry-air mole fraction of CO₂ [ppm]

Symbol size reflects the relative flux intensity (Note that fires have been re-scaled by a factor of 10)

Agusti-Panareda et al. ACP 2014

GOSAT analysis (28 November 2014 – 14 December 2014)

Correcting atmospheric CO₂ biases with Biogenic Flux Adjustment Scheme (BFAS)

ARCHIVED DATA

Agusti-Panareda et al et al. ACP 2016

Biogenic Flux Adjustment Scheme: Improving the total column CO₂

Biogenic Flux Adjustment Scheme: Improving CO₂ synoptic variability

March 2010

NOAA/ESRL tall tower Observations Atmospheric CO2 simulations with optimized fluxes climatology of optimized fluxes Modelled NEE Modelled NEE + BFAS

CO₂ Ecosystem Flux Adjustment factors: what can we learn to improve the model?

- Re-tune the reference respiration for crops
- Distinction between C3 and C4 crops necessary
- Revision of vegetation types: A new subtype of interrupted forest for BFAS (tropical savanna)

opernicus

19

21

Interrupted forest

Tropical savanna (new type)

Remaining land points without veg

Month Agusti-Panareda et al et al. ACP 2016 Feedbacks of carbon cycle to NWP:

- Improvement in representation of vegetation: photosynthesis, phenology, albedo

Jarvis Vs photosynthesis-based evapotranspiration (offline run)

Surface laten heat flux (W/m²) compared with flux-tower observations over Fr-LBr for HTESSEL (left panel) and CTESSEL (right panel).

• CTESSEL improves the LE/H simulations (Photosynthesis-based vs Jarvis approach).

LE/H: When "good" is not enough? (Interaction with the atmosphere)

2m T Error differences from the CTL

T925 mean_abs[CY37R1_CTESSEL(ficd)+36-AN(ficd)]-mean_abs[CY37R1(fhrd)+36-AN(fhrd)]

2m Rh Error differences from the CTL

RH mean_abs[CY37R1_CTESSEL(ficd)+36-AN(ficd)]-mean_abs[CY37R1(fhrd)+36-AN(fhrd)]

Having better LE/H heat flux from the surface does not always lead to a better atmospheric prediction \rightarrow interaction with other processes and compensating errors?

S. Boussetta

Modelling stomatal conductance (empirical vs mechanistic approaches):

$$E = \frac{\beta}{r_c + r_a} (q_a - q_{sat})$$

The Jarvis (statistical) approach CHTESSEL in IFS (operational)

$$r_{\rm c} = \frac{r_{\rm S,min}}{LAI} f_1(R_{\rm s}) f_2(\bar{\theta}) f_3(D_{\rm a})$$

The mechanistic approach CTESSEL in IFS

$$r_c = f(r_{cc})$$

$$r_{cc} = \frac{\alpha}{A_n} (C_s - C_i)$$

Copernicus atmospheric CO₂ forecast/analysis

Aspects	Jarvis model	CTESSEL model
Simplicity/robustness	Yes	No
Coupling with carbon cycle & ecosystem CO ₂ flux	No	Yes
Feedbacks on vegetation	No	Yes
Use carbon observations	LAI	LAI, SIF, GPP, atmospheric CO ₂ for mass balance

Feedbacks from vegetation: Impact of assimilating LAI on 2m temperature

NRT_LAI_ALB – FCLIM:

November 2010

Severe drought in the Horn of Africa

S. Boussetta

Feedbacks from vegetation: Impact of assimilating LAI on albedo

Reduction of cold/moist bias in 3-day FC over northern Europe in March 2015

Impact of dynamic vegetation on monthly forecast in semi-arid regions

Improved skill of monthly forecast 2m-T with soil moisture and dynamic phenology compared to fc with climatologies

Hot-spots of NEE and GPP variability NEE (DGVM)

GPP (DGVM)

Jung et al. JGR 2011

Koster and Walker (2015)

Using carbon observations to improve carbon and NWP: Fluorescence as a proxy for GPP

During photosynthesis a plant absorbs Photosynthetically Active Radiation (PAR) through its chlorophyll:

- % for ecosystem GPP
- % lost as heat
- % re-emitted as chlorophyll fluorescence (SIF)

How light energy falling on a leaf is partitioned. About 78% of the incident radiation is absorbed, while the rest is either transmitted or reflected at the leaf's surface. About 20% is dissipated through heat and only 2% emitted as fluorescence, as a by-product of photosynthetic reactions occurring within the leaf itself.

Mapping Photosynthesis from Space - a new vegetation-fluorescence technique ESA bulletin. Bulletin ASE. European Space Agency. 11/2003; 116:34-37.

A simpler approach with a statistical model

a & b coefficients function of PFTs

Guanter et al. (2014)

Mac Bean et al. in prep.

Transpiration of water vapour from plants is correlated with CO2 uptake (GPP)

Figure 36-3 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Improving GPP and WUE in models should lead to a better ET

Tang et al. Nature 2014

Feedbacks of carbon cycle to NWP:

- Thermal infrared radiative transfer in model and data assimilation

Radiative forcing of greenhouse gases

Shortwave: atmosphere is mostly transparent Longwave: atmosphere is mostly opaque

R.

Myhre, Shindell et al. (2015) IPCC report AR5, Chapter 8

Using variable CO_2 for the assimilation of the thermal IR

Reduction of bias correction in varBC: IASI channel ~ 700 hPa

(a) VarBC correction with fixed CO_2

(b) VarBC correcction with variable CO_2 from MACC

Atmospheric CH₄ in the ECMWF model (IFS)

CH₄ synoptic variability: 25 to 29th of March 2010

Average total column CH₄ [ppb]

Mid-tropospheric CH₄ [ppb] at 400 hPa

Chemical production of water vapour : CH₄ oxidation

Parameterization in IFS:

 $\Delta[H_2O] = 2k_1[CH_4]$ $\Delta[H_2O] = k_1(6.8 - [H_2O])$

> Simmons, Randel et al. 1998, Brasseur and Solomon 1984 Monge-Sanz et al. 2013

- Change of CH₄ associated with transport and global CH₄ increase no considered.
- Assumption breaks in polar regions (removal of H₂O by condensation).

$2[CH_4] + [H_2O] \sim 6.8 \text{ ppmv}$

Zonal-mean 2CH4+H2O (ppmv) UARS annual-mean climate

Randel et al. 1998

http://www.ecmwf.int/sites/default/files/elibrary/2015/9211-part-iv-physical-processes.pdf

Summary

J.

• Carbon cycle is at the heart of climate change (long time scales > 1year)

Climatologies of atmospheric composition in NWP

• Processes on shorter time-scales relevant for NWP (1-day to 1-year):

Dynamic vegetation model to link water, energy and carbon cycles. Explore impact on skill for long (**monthly, seasonal**) and **high resolution** forecasts?

- Copernicus Atmosphere Monitoring Service future work on carbon cycle could benefit NWP:
 - Explore use of chlorophyll fluorescence retrievals from satellites to evaluate/constrain photosynthesis in the model (impact on carbon, water and energy fluxes).
 - Score carbon, water and energy fluxes using eddy covariance observations in near-real time

-
392.813
392.213
391.613
391.013
390.413
389.813
389.213
388.613
388.013
387.413
385.88
385.28
384.68
384.08
383.48
382.88
382.28

381.68

381.08

380.48

Thank you

S. Massart