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Sub-seasonal prediction

« Bridges the gap between weather and climate forecasting.

« First attempts of sub-seasonal forecasting started in the 1980s (Miyakoda, Molteni..)

« A particularly difficult time range:

Is it an atmospheric initial condition problem as medium-range forecasting oris it a
boundary condition problem as seasonal forecasting? Is it a “Predictability Desert” ?




Sources of sub-seasonal predictability

» Madden-Julian Oscillation

» Extra-tropical modes (weather regimes: blockings, NAO, PNA, SAM..)
» Sudden Stratospheric Warming

» Quasi-Biennal Oscillation

» ENSO

» Slowing varying processes: Soil moisture/vegetation, snow, sea ice, ocean
SSTs/heat content

» Chemistry: Ozone, aeroroils...
» Others?

Sub-seasonal skill is strongly flow-dependent




1st Challenge: Predicting the predictors

Capability of MJO forecast
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Madden Julian Oscillation prediction at ECMWF

MJO Bivariate Correlation
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Madden Julian Oscillation prediction at ECMWF

MJO Bivariate Correlation
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Madden Julian Oscillation prediction at ECMWF

MJO Bivariate Correlation
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Improvements in MJO Prediction mostly due to changes in convective parameterization




2"d Challenge: Predict the impact of predictors

Z500 anomalies
10 days after an MJO in Phase 3
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MJO Teleconnections (S2S re-forecasts) gmse
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Adding complexity improves sub-seasonal skill scores?

= Could add new sources of predictability

= Could impact sources of predictability and/or their teleconnections
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Ocean Model
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Subseasonal-to-Seasonal

gs S Complexity in WWRP/WCRP S2S database models

Prediction Project
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Impact of ocean/atmosphere coupling

RPSS over NH MJO Bivariate Correlation
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Impact of ocean/atmosphere coupling

RPSS over NH MJO Bivariate Correlation
1
m U50
g‘" 0.9-
L g
: 5o,
@©
o
g 06
T850 "
§U.
= 0.4
;;? *a 5 10 15 0 25 0
Forecast Range (Days)
Coupled
Weekly periods Obs SSTS

WEEK1 WEEK2 WEEK3 WEEKA4

Obs SSTs I Coupled
80 case, starting on 15t Feb/May/Aug/Nov 1989-2008

Pers SSTs




Z500 Composites 3" pentad after an MJO in phase 3

Persisted SSTs Coupled
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Which ocean configuration is needed?

» 1D mixed layer model or 3D OGCM?

> Which ocean vertical resolution is needed?

> Which ocean horizontal resolution?
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Air-sea Interaction

Air-sea interaction and the MJO

upper level divergence

WEST EAST
increased shortwave flux
- reduced evaporation
A
ATMOSPHERE mean weslerly wind I
OCEAN COLD WARM
i} L

approx. 60 of longitude

Courtesy: Pete Inness
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Improvement of MJO Skill with Ocean Coupling
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= Stronger impact with KPP model (1 metre vertical resolution) than with OGCM (10m) because of stronger and
more realistic diurnal cycle of SSTs (Woolnough et al. 2007)

» The same experiment was repeated a few years later by E. De Boisseson. There was no significant difference
in MJO skill scores between the KPP and OGCM coupling




Mixed-layer model
(1-metre vert, ers)

Skin SST Scheme
(Zheng and Beljaars, 2005, modified Takaya et al. 2010)

» solves the one-dimensional heat transfer equation in the near-surface layer.
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Impact of increasing ocean horizontal resolution

Improved representation of stor‘m‘m__v__ B
tracks as Ax(SST) increases : / * Impact of storm track — Possible impact on
AGCM (50km, L19) forced at boundaries SSTsnapshéts s teleconnections
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« SST gradient: Ocean resolution of ¥4 degree
sufficient?
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Impact of increasing ocean horizontal and vertical resolution

Correlation
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Y4 degree no sea ice model — 1 degree no sea ice model (CY42R1)
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Performance of increase ocean resolution.
» Blue circles indicate positive impact

« Dark blue circles indicate significant impact

Results obtained show:

« Improved prediction of SSTs particularly in the N.

Extratropics medium-range forecasts
« Degradation of skill scores at 200 hPa in the Tropics

* No significant impact on N. Hemisphere tropospheric skill
scores.
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Sea Ice

L0
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Impact of Arctic relaxation (north of 70N) on sub-seasonal RMS error
Day 1-5 (a)

Reduction of Z500
RMS error
Wintertime

Jung et al., 2014
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Arctic-tropical relaxation




Sea Ice prediction at ECMWF

32-day ensemble re-forecast experiments (1989 to 2014)

RMS error of sea-ice concentration: Active seaice (LIM2) - Persistence/climatology
Verification against ERA Interim
Step 720

1st Feb start

TATE

[
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Impact of active sea-ice model on forecast skill scores

Sea ice model — No sea ice model

@ Pos sign. Pos. not sign. Mo sign. Meag. nol sEgn.

M. Hemisphere Tropics

w1l w2 w3 w4d wl w2 w3 w4d

tp

sst
mslp
50
us0
w50
sf200
vp200
200
u200
v200
z500
t500
us00o
v500
850
uds0
vB850

Blue/cyan (red/orange) circles indicate positive (negative) impact
Blue/red circles indicate significant impact

Z500 RPSS
Seaice—-no seaice
Rank probability skill score Weekly periods

ggré-gh7m Northern Extratropics
Z500 87.5:30.0:-180.0:180.0

day 5- 11 day 12- 18 day 18- 25 day 28- 32
Weekly periads

28




Land Surface

L0
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Soil Initial Conditions

GLACEZ2 experiments (Koster et al., 2011) Snow |nitia| Conditions

T2M Anomaly Forecast Skill R?

AR,
Series1 minus Series?

— 0" A — Q"2 -0 —0" 4 o2 o e O N

JUJA tZ2m RZ2 | 65— 30days conf.levs

Van Den Hurk at al. (2012) Orsolini et al. (2014)

GLACE experiments: strong perturbations in initial conditions




Importance of land-surface initial conditions for heat waves prediction

2010 summer heat wave
(a) tZm: ERAint (b) 2m: CLIM (c) Zm: INIT

Prodhomme et al, 2015

See also Ferranti and Viterbo, 2006 for the 2003 European Heat wave
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Land Surface for sub-seasonal prediction

» Land surface temperature/numidity: difficult to beat persistence for sub-
seasonal time range. Complexity in land surface models still gives predictability
thanks mostly to improved initial conditions.

* Importance of good quality initial conditions for extreme events

= Snow: Important to predict snow accumulation/melting
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Stratosphere

L0
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Sudden Stratospheric Warming
Stratospheric influence on the troposphere?

Composite of 18 Weak Vortex Events

km
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-90 -60 -30

Weather from above. A weakening stratospheric vortex (red) can alter circulation down to the
surface, bringing storms and cold weather farther south than usual.

Baldwin and Dunkerton, 2001
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Prediction of Sudden Stratospheric Warming Index
SSW Correlation
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SSW index: Difference of temperature at 50hPa between 90N and 60N averaged over all the longitudes
Improvements in SSW Prediction mostly due to changes in stratospheric resolution
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Impact of SSWs on skill scores

CSS for 2-m temperature
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Sudden Stratospheric Warming

SSW: Downward propagation Zonal Wind Anomaly at 60N
too weak in the model? over Europe (15 Dec 2012-15 Feb 2013)
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Amplitude MJO Teleconnections 3" pentad after an MJO in Phase 3
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Impact of the QBO?

MJO OLR Variance (DJF ) from reconstruction onto RMM

East waves 1-5 periods 30-80 days
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2 proposed mechanisms for impact on tropical convection
1) Changes in static stability at tropopause: more stable and lower tropopause in west phase> convection lower (and
maybe less top heavy heating profile based on Nie and Sobel 2015)
2) Changes in vertical shear of zonal wind at tropopause: less shear at tropopause over equatorial IO/West Pac in
easterly phase, favors increased convection in easterly phase?




Impact of the QBO? ;. prediction for [RMM]|>1.0
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Aerosols
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(opernicus CAMS aerosol forecasts

Built on the ECMWF NWP system with additional
prognostic aerosol variables (sea salt, desert dust,
organic matter, black carbon, sulphates)

Aerosol data used as input in the aerosol analysis:

- NASA/MODIS Terra and Aqua Aerosol Optical
Depth at 550 nm

- NASA/CALIOP CALIPSO Aerosol Backscatter
(experimental)

- AATSR, PMAP, SEVIRI, VIIRS (experimental)

Verification based on AERONET Aerosol Optical
Depth (and now also Angstrom exponent)

Part of multi-model ensemble efforts such as the
International Cooperative for Aerosol Prediction
(ICAP) and the WMO Sand and Dust Storm
Warning and Assessment System (SDS-WAS)
North-African-Middle-East-Europe and Asian -
nodes. |y

Source: http://sds-was.aemet.es




Monthly EPS coupled runs

Control run for the period 2003-2015 uses standard Tegen et al 1997 climatology

Interactive aerosol run covers the same period and uses fully prognostic aerosols in the
radiation scheme

Ensemble size is 11 members

5 different start dates around May 1 (65 cases in total)

< ECMWF
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Aerosol impacts on monthly forecasts (l)

* Preliminary results confirm the positive impact (reduction in bias) of the interactive aerosols on
meteorological fields (winds and precipitation)

 More prominent (positive) impact over the Indian Ocean and to a lesser extent in other areas
» Aerosol fields will be evaluated too by comparing with the MACC/CAMS reanalysis
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Aerosol impacts on monthly forecasts (ll) rerormance o interactive aerosol

experiment with respectto a
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Are the improvements due to aerosol climatology or variability?
Work in progress to better understand the impact of aerosols on sub-seasonal forecasts




Improvements to sub-seasonal skill scores
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Improvements to sub-seasonal skill scores

Active aerosols
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Sub-seasonal variability of aerosols
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INDONESIAN FIRES (Aug-OCT 2015)

2m-tm anomaly Oct 2015 - Forecast starting 15t May
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Fire radiative power Aug-Oct 2015

Biomass burning AOD anomaly: up to 2000%

N
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Benedetti et al, to appear in State of Climate 2016, BAMS.
Credits: Antje Inness, Mark Parrington (ECMWEF), Gerry
Ziemke (NASA)

Need for fire prediction! (under development)
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More complexity for sub-seasonal forecasting?
Pros:

= Can improve skill scores (ocean, sea-ice, aerosols..)
= Can lead to new products:
- Active aerosols: prediction of dust storm useful for Meningitis prediction

- Sea-ice model: Extended-range sea-ice forecasts for ship routing in the Arctic in Summer.

cons:

= Can be very expensive (e.g. active aerosols = 50% increase in cost)

Resources could be allocated to improve tropospheric models, through, for instance,
Increased resolution, more frequent call to radiative transfer, increased ensemble size,
more frequent forecasts (daily instead of twice weekly)

= Makes system more complex to understand and maintain

= Can increase systematic errors particularly in short/medium-range forecasts and
possibly affect teleconnections

S
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Impact of atmospheric resolution

L0
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Impact of Resolution - Tropical cyclone PAM - 9-15 March 2015
Probability of a TC strike within 300 km
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Impact of Increased resolution
MJO in SP-CAM T2I

SP-CAM
Precip rate, w200,
ms'

Randall, Khairoutdinov, Arakawa, Grabowski 2003

Ongoing work by A. Subramanian (Oxford U.) to assess impact of Super-parameterization on sub-
seasonal forecasts at ECMWF




Conclusions for a coupled ocean-atmosphere system

= Qver the past decade, extended-range forecasts at ECMWF have significantly improved thanks
mostly to improvements in the convective parameterization and possibly initial conditions (not
discussed in this talk). It is likely to continue to be the case in the next years.

» There is room for improvement in many of the earth-system components which would produce
incremental improvements in skill and also allow new sub-seasonal forecast products

= Of all the earth system components evaluated, the introduction of active aerosols seems particularly

promising for sub-seasonal prediction.

» Resolution vs more complex systems: Not clear that resolution is the only way to go.
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Scorecard Weekly means - RPSS
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Improvement of MJO Skill with Ocean Coupling
MJO scores: 1992-1993 case

Correlation with PC1 Correlation with PC2
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Impact of the QBO?
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Yoo et al. 2015

2 proposed mechanisms for impact on tropical convection

1) Changes in static stability at tropopause: more stable and lower tropopause in west phase> convection lower (and
maybe less top heavy heating profile based on Nie and Sobel 2015)

2) Changes in vertical shear of zonal wind at tropopause: less shear at tropopause over equatorial IO/West Pac in
easterly phase, favors increased convection in easterly phase?



INDONESIAN FIRES
(AUG-OCT 2015)

OPEMICUS

theguardian =au

Deforestation Tndonesia forest fires: how the year's
worst environmental disaster unfolded -
interactive

As world leaders gather in Paris to discuss the global response to climate change,
we assess the impact of the widespread forest fires in Indonesia. Set to clearland
for paper and palm oil production, the fires have not only destroyed forest and

peatland, but also severely affected public health and released massive amounts
of catbon

Tuesday 1 December 2015 14.05 GMT

Fire Radiative Power (W/m2) accumulated
over Indonesia during the 2015 fire season
(Aug-Oct). Credits: Francesca Di Giuseppe

(opernicus




Towards cloud-resolving models
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Z500 Composites 3" pentad after an MJO in phase 3

Persisted SSTs Coupled
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Impact of Active Ozone

Scorecard Weekly means - RPSS
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850hPa Zonal Wind Bias
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From medium-range to seasonal to extended range

Medium-range

ENS Meteogram

s o 15Jan 12 UTC

Hong Kong, Hong Kong 22.75°N 114.19°E (EPS land point)
Extended Range Forecast based on ENS distribution Friday 15 January 2016 12 UTC
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M-Climate: this stands for Model Climate. It is a

function of lead time, date (+/-15days), and model

version. It is derived by rerunning a 11 member

1m ensemble over the last 20 years twice a week (1980
realisations). M-Climate is always from the same
model version as the displayed ENS data.
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Extended-range

ECMWF EPS-Monthly Forecasting System
Day5-11
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