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Abstract

Outputs from a data assimilation system may be used to diag-
nose observation and background error statistics, as has been
demonstrated by previous researchers. In this study, that tech-
nique is extended to diagnose model-error statistics using a
weak-constraint data assimilation. It deals with a set of obser-
vations over a time window and uses the temporal distribution
to separate model errors from errors in the background forecast.
In idealised tests this method is shown to be able to successfully
distinguish between model, background and observation errors.
The success of this method depends on the prior assumptions
included in the weak-constraint data assimilation and how well
these describe the true nature of the system being modelled.

1 Introduction

It has long been recognised that computer models of complex
physical processes are imperfect. What has been less clear is
how to estimate the magnitude and structure of these imper-
fections. In particular, how does one differentiate errors in the
numerical model from those in the observations and from any
chaotic growth of small errors intrinsic to the system being
modelled?

Recently Todling (2015) introduced a method to diagnose the
model-error covariance from a pair of data assimilations — one
of which is a filter and the other a smoother (able to use future
observations). This system is described as sequential, since it is
devised for a set of observations which are available at discrete
times, rather than being spread over a given time window.

2 Weak-constraint data assimilation

To find the analysis in a system which is affected by model
error one can use weak-constraint data assimilation. At a set
of times we allow the analysis trajectory to depart from the
solution given by the nonlinear model according to

xi = Mi(xi−1) + ηi (1)

where xi is the model state at time i and Mi is the nonlinear
model propagator from time i − 1 to time i. At each time we
are permitting a modification of the model state of ηi.

If we use this perturbed model to define a four-dimensional
state x, then we can write the weak-constraint cost function as
(Trémolet, 2006)
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where Qi is the model-error covariance for time i and n is the
total number of times at which a modification is allowed. If we
assume that the modification at each time is the same, then we
may write the total effect of the modifications on the trajectory
as
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where Mj←i is the linear propagator of the numerical model
from time i to time j. The final term in equation (2) then
becomes
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where da
b is the increment applied to the initial condition. From

this we can derive an expression for the model forcing term as

η = Kqdo
b (5)

where

Kq = QNTHT
(

HMBMTHT + R + HNQNTHT
)

−1

(6)

and do
b is the innovation (the difference between the observa-

tions and the background trajectory).

2.1 Diagnosis using weak-constraint DA

Desroziers et al. (2005) introduced a method to diagnose the
observation-, background- and analysis-error covariance matri-
ces from data assimilation statistics. To extend this technique
to model errors, we first need to calculate the covariance of the
innovations. Following the assumption we made earlier we take
the model errors to be constant during the DA window, but
uncorrelated with background and observation errors. In this
case the innovation covariance is

E((do
b) (do

b)T) = Ro + HMBoMTHT + HNQoNTHT (7)

where Qo is the observed model-error covariance. For observa-
tions at the end of the window the last term is proportional to
the number of time-steps squared, n2, since each N contains a
summation of n terms.

Thus, the cross-covariance between the model forcing term
and the innovation will be

E(HNη(do
b)T) = HNKqE(do

b(do
b)T)

= HNQNTHT∆Kw (8)
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where ∆Kw is given by
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To simplify the estimating procedure we use only observations
from the first time in the data assimilation window, since the
above expression will not then include the tangent linear model.

3 Experimental setup

To investigate the behaviour of the diagnostics tests were com-
pleted using the model of Lorenz (1995) which is based on the
idea of waves propagating around a latitude circle. This cir-
cle is divided into 40 grid-points, and at each time step the
grid-points are updated according to

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F (10)

where the variables xi, i = 1, 2, ..., N , are defined on a cyclic
chain such that x−1 = xN−1, x0 = xN and x1 = xN+1. These
experiments use a forcing term F = 8 which is within the
chaotic regime. The Runge-Kutta 4th order method was used
to perform the time stepping, for intervals of δt = 0.05.

To create a model which is affected by model error, we follow
an approach similar to that of Todling (2015). For each time-
step in the truth run a random term is added to equation (10)
of the following form

δr = G1/2δp (11)

where G1/2 is the symmetric square-root of the covariance ma-
trix G. For the first half of the domain G takes values given by
a Gaussian function of the distance between the points, using a
length-scale of 5 grid-points. For the second half of the domain
all the elements are zero, meaning that only the first half of the
model is perturbed.

The data assimilation was run using weak-constraint 4DVar.
This was given observations every time-step, and the data-
assimilation window used observations from three times. Obser-
vations were produced by perturbing the truth run with errors
sampled from N(0, 0.12). By choosing small observation errors
we ensure that the analysis errors are small, and the tangent-
linear approximation used by 4DVar is valid.

4 Results

Figure 1 shows the estimates of the single-step model-error co-
variance matrix for the Lorenz ’95 system. The initial input to
the data assimilation (top-left) is an homogenous and nearly-
diagonal covariance matrix. This is taken from the background-
error covariance matrix estimated from an experiment using the
Lorenz ’95 model without model error and scaled to give rea-
sonable results. As an approximation to the true model-error
covariance matrix (top-right) it is quite poor.

The diagnostic estimate of the model-error covariance is
shown in the bottom-left. The second half of the domain does
not experience model error, and the estimated model error co-
variance is much reduced in this region. There is still an imprint
of the initial model-error covariance in the estimated matrix,
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Figure 1: Single-step model error covariance matrix for the
Lorenz ’95 model. In these graphs the top-left graph shows the
scaled input provided to the data assimilation, the top-right
shows the true covariance matrix which is the target for the
estimation. The bottom-left graph shows the estimate from
the first run of the DA, and the bottom-right graph shows the
estimate from the tenth run.

but the magnitude is much reduced. The diagonal elements in
the first part of the domain are also reduced. However the off-
diagonal elements are increased, reflecting the correlations in
the true error covariance matrices. This is iterated by placing
the diagnosed B, Q and R matrices as input in the next run
of the data assimilation. After 10 iterations the diagnosed Q

matrix (bottom right) is very close to the true Q matrix (top
right).
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