

# **Joint Probabilities** of Storm Surges Waves and **River Discharges**

Thomas I. Petroliagkis Evangelos Voukouvalas Juliana Disperati Jean Bidlot

2016

EUR 27824 EN

Thomas I. Petroliagkis (JRC) Evangelos Voukouvalas (JRC) Juliana Disperati (JRC) Jean Bidlot (ECMWF) Paul Dando & Carsten Maass (Support)

Utilising statistical dependence methodologies & techniques



UEF2016, 6-9 June 2016, ECMWF, Reading, U.K.

Joint Research Center

### Global Security & Crisis Management Unit Institute for Protection & Security of Citizen (Joint Research Center)

#### **Open Source Monitoring for Media Analysis and Security Natural Disasters Monitoring and Analysis** Time=00:00 EDISYS GDACS Most Active Topics Warfare App Store **Conflict Prevention through the Kimberly Process European Emergency Mapping & International Reconstruction** (T) Statistical Counci Analysis 2 C .... Ar-Rago Political Idleb saraget **Integrated Analysis** Analysis Statistical Data Repository Network Analysi Geographical Populated place Analysis **EU** Data ollection a -Aggregatio Process • Dara

Going After Blood (War - Torn Areas) Diamonds...

### Natural Disasters Monitoring and Analysis Global Disaster Alert & Coordination System



Focusing on Wind – Precipitation & Storm Surge Impact(s)



#### IPCC, 2012: Compound Events

special category of weather / climate extremes, resulting from the combination of two or more events, i.e. extremes either from a statistical perspective (tails of distribution) or associated with a specific (critical) threshold(s) ...

# CoastAlRisk

Prototype of a first Global Integrated **Coast**al Impactbased of Flood **Al**ert and **Risk** Assessment Tool

The Exploratory Research Project Coastal-Alert-Risk

of the Joint Research Center has been an initial effort of developing the first global integrated coastal flood risk management system with emphasis on such compound events, by linking satellite monitoring, coupled wave, tide and surge forecasting, inundation modelling and impact analysis



# CoastAlRisk

Prototype of a first Global Integrated **Coast**al Impactbased of Flood **Al**ert and **Risk** Assessment Tool



Tide

Model

WW3

Sea level

Change

1.1

Delft3d

HvFlux2

#### Estimating joint probabilities by utilising statistical dependencies of component events



| Example of how<br>modula                                  | ) (<br>(<br>t                                     | <ul> <li>Utilizing matlab routines to fit GEV</li> <li>(General Extreme Value) Distributions</li> <li>to surge &amp; wave values</li> <li>both 100-year return period values</li> </ul> |                                                    |                                                                         |                                |        |  |  |
|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|--------|--|--|
| $T_{X,Y} = \sqrt{\frac{T_x \cdot T_y}{\chi^2}}$           | urn Period<br>iod (surge)<br>iod (wave)           | l l l l l l l l l l l l l l l l l l l                                                                                                                                                   | both 100<br>of total h<br>for HVH (s<br>were estii | )-year return period<br>indcast datasets<br>storm surge) / LIC<br>mated | d values<br>(significant wave) |        |  |  |
|                                                           | Surge / 100 RP                                    | Wave                                                                                                                                                                                    | / 100 RP                                           | JRP                                                                     |                                |        |  |  |
| Hind total                                                | 1.78                                              | 6                                                                                                                                                                                       | .05                                                |                                                                         | 0.5730                         | 174.53 |  |  |
| <b>Probability</b> of the comb<br>surge = 1.78 & wave her | oined event in total hindco<br>ight = 6.05 meters | ists mode                                                                                                                                                                               | Howev<br>JRP = .                                   | However, in case of chi = 0.57<br>JRP = 174.95 years                    |                                |        |  |  |
| to be exceeded in a ye                                    |                                                   | Then probability of exceeding                                                                                                                                                           |                                                    |                                                                         |                                |        |  |  |
| if considered independer                                  |                                                   | = 1 / Joint Return Period = 1/174.95 = 0.0057                                                                                                                                           |                                                    |                                                                         |                                |        |  |  |
| 1/100 x 1/100 = 1 / 10,0                                  | 000 = 0.0001%                                     |                                                                                                                                                                                         | (~57 times higher)                                 |                                                                         |                                |        |  |  |

Svensson & Jones, 2003. Dependence between extreme sea surge, river flow & precipitation: A study in south & west Britain. R&D Interim Technical Report FD2308/TR3 to Defra. CEH Wallingford, UK.



Svensson & Jones, 2003. Dependence between extreme sea surge, river flow & precipitation: A study in south & west Britain. R&D Interim Technical Report FD2308/TR3 to Defra. CEH Wallingford, UK.



 $a = exp(-\lambda(1-p))$  ... For our estimations we adapt

~2.3 events / yearly to exceed that  $\rightarrow a = 0.1 \dots$ 

based on the number of the events being allowed to exceed yearly ~2.3 (max ~2.5)

we have the ability to define an **appropriate percentile threshold** 

POT example of skipping consecutive events falling inside 3-day block ...



| RIEN | River      | CHI    | Max | Туре  | Per | CHI (R) | Max (R) | Type (R) |
|------|------------|--------|-----|-------|-----|---------|---------|----------|
| 17   | Rhine (NL) | 0.5475 | *   | super | 0.0 | 0.5739  | *       | super    |

for this case selected threshold 95%

- Selecting optimal threshold besides stability
- has to be in harmony with ~2.3 2.5 events per year
- if NOT then: selection of another threshold to meet imposed criteria

most of the times (but not all) a higher value percentile leading to lower values of dependence \_



Study over 32 RIEN (River Ending) Points

Utilising Hindcasts of Storm Surge, Significant Wave Height & River Discharges

- Storm surge hindcasts were performed by utilising the hydrodynamic model **Delft3D-Flow** (resol. 0.2 x 0.2 deg) forced by wind and pressure terms from ECMWF ERA-Interim reanalysis
- → Wave hindcasts were generated by latest version of ECMWF ECWAM wave (stand-alone) model (resol. 0.25 x 0.25 deg), forced by neutral wind terms from ERA-Interim
- → For river discharge hindcasts the LISFLOOD model developed by the floods group of the Natural Hazards Project of the Joint Research Centre (JRC), was employed (resol. 5 x 5 km)
- → Validation of hindcasts was made over the **RIEN** (River Ending) point of river **Rhine** (**NL**) where coincident observations were available
- Considering the physical driver complexity behind interactions among surge, wave height and discharge variables hindcasts were found to perform quite well, not only simulating observation values over the common interval of interest,

but also in resolving the right type and strength of both correlation and statistical dependence













| Storm Surge | Surge Vs Wave in Obs / Hind Common / Hind Total Mode |             |     |           |         |        |             |       |       |          |  |  |  |  |
|-------------|------------------------------------------------------|-------------|-----|-----------|---------|--------|-------------|-------|-------|----------|--|--|--|--|
| Vs<br>Waves | R max                                                | R (taildep) | lag | max (mat) | mat_chi | max    | R (chiplot) | thres | lead  |          |  |  |  |  |
|             | 0.5925                                               | 0.5925      | 0   | 0.5739    | 0.5739  | 0.6276 | 0.6276      | 95%   | 5 / W | obs      |  |  |  |  |
|             | 0.5745                                               | 0.5745      | 0   | 0.5551    | 0.5551  | 0.5551 | 0.5551      | 95%   | 5 / W | hind_com |  |  |  |  |
| Pretty well | 0.5850                                               | 0.5850      | 0   | 0.5712    | 0.5712  | 0.5683 | 0.5683      | 95%   | 5/W   | hind_tot |  |  |  |  |





#### How well Hindcasts resolve Dependencies (cont.)

#### Storm Surge & River Discharge in all Modes

|       | lead | thres | R (chiplot) | max    | mat_chi | max (mat) | lag | R (taildep) | R max  |
|-------|------|-------|-------------|--------|---------|-----------|-----|-------------|--------|
| obs   | s/d  | 92%   | 0.1798      | 0.2939 | 0.1430  | 0.2571    | 6   | 0.2020      | 0.3161 |
| hind  | s/d  | 92%   | 0.0815      | 0.2444 | 0.0874  | 0.2503    | 6   | 0.1571      | 0.3200 |
| total | s/d  | 92%   | 0.0897      | 0.2272 | 0.0754  | 0.2129    | 6   | 0.1468      | 0.2843 |

Storm surge and river discharge hindcasts exhibit almost identical (max-lag) values of statistical dependence with observations

#### Significant Wave & River Discharge in all Modes

|       | lead | thres | R (chiplot) | max    | mat_chi | max (mat) | lag | R (taildep) | R max  |
|-------|------|-------|-------------|--------|---------|-----------|-----|-------------|--------|
| obs   | w/d  | 90%   | 0.0996      | 0.2145 | 0.0427  | 0.1576    | 6   | 0.1346      | 0.2495 |
| hind  | w/d  | 90%   | 0.1001      | 0.2972 | 0.0310  | 0.2281    | 8   | 0.1346      | 0.3317 |
| total | w/d  | 90%   | 0.0900      | 0.2544 | 0.0823  | 0.2467    | 7   | 0.1704      | 0.3348 |

Significant wave and river discharge hindcasts exhibit similar (maxlag) values of statistical dependence with observations



#### **Results: Dependencies in Zero LAG Mode**

| RIEN | River             | _ | Ocean / Sea     |   | 5/W12     | 5 / W24   |   | 5 <del>/ R2</del> 4 | W / R24 |
|------|-------------------|---|-----------------|---|-----------|-----------|---|---------------------|---------|
| 01   | Po (IT)           | 7 | Adriatic Sea    |   | mod       | mod       | / | low                 | low     |
| 02   | Metauro (IT)      | Γ | Adriatic Sea    |   | mod       | mod       |   | well                | mod     |
| 03   | Vibrata (IT)      | Γ | Adriatic Sea    |   | mod       | mod       |   | mod                 | rnod    |
| 08   | Rhone (FR)        | Γ | Gulf of Lion    |   | mod       | mod       |   | mod                 | mod     |
| 04   | Foix (ES)         | Γ | Balearic Sea    |   | mod       | low       |   | mod                 | mod     |
| 05   | Ebro (ES)         | Γ | Balearic Sea    |   | mod       | mod       |   | mod                 | mod     |
| 06   | Velez (ES)        |   | Alboran Sea     |   | low       | low       |   | mod                 | mod     |
| 07   | Sella (ES)        | 1 | Bay of Biscay   |   | mod       | mod       |   | mod                 | mod     |
| 10   | Moros (FR)        | Γ | Bay of Biscay   |   | mod       | well      |   | mdd                 | strong  |
| 11   | Aven (FR)         | Γ | Bay of Biscay   |   | well      | well      |   | mot                 | well    |
| 12   | Blavet (FR)       | C | Bay of Biscay   | J | well      | well      |   | mpd                 | well    |
| 13   | Owenavorragh (IE) | ſ | Irish Sea       |   | strong    | strong    |   | mod                 | mod     |
| 21   | Mersey (UK)       | Γ | Irish Sea       |   | well      | well      |   | mod                 | mod     |
| 20   | Severn (UK)       | L | Bristol Channel |   | mod       | mod       |   | mod                 | well    |
| 15   | Orkla (NO)        | C | Norwegian Sea   |   | well      | well      |   | low                 | low     |
| 16   | Vantaa (FI)       | C | Baltic Sea      |   | strong    | strong    |   | mod                 | low     |
| 22   | Tyne (UK)         | 1 | North Sea       |   | mod       | mod       |   | mod                 | mod     |
| 27   | Humber (UK)       | Γ | North Sea       |   | well      | well      |   | mod                 | mod     |
| 14   | Goeta Aelv (SE)   | Γ | North Sea       |   | v. strong | strong    |   | mod                 | low     |
| 17   | Rhine (NL)        | Γ | North Sea       |   | v. strong | v. strong |   | mod                 | mod     |
| 18   | Weser (DE)        | Γ | North Sea       |   | v. strong | v. strong |   | mod                 | mod     |
| 19   | Schelde (BE)      | Γ | North Sea       |   | strong    | strong    |   | mod                 | ~well   |
| 25   | Thames (UK)       | 5 | North Sea       |   | mod       | mod       |   | low                 | mod     |
| 09   | Bethune (FR)      | ſ | English Channel |   | v. strong | v. strong |   | mod                 | mod     |
| 24   | Avon (UK)         |   | English Channel |   | strong    | strong    |   | well                | well    |
| 26   | Exe (UK)          |   | English channel |   | ~strong   | strong    |   | well                | well    |
| 23   | Tamar (UK)        |   | English Channel | J | well      | well      |   | well                | well    |
| 28   | Danube (RO)       |   | Black Sea       |   | strong    | well      |   | low                 | low     |
| 31   | Douro (PT)        |   | Atlantic Ocean  | 1 | well      | well      |   | well                | strong  |
| 29   | Tagus (PT)        |   | Atlantic Ocean  |   | mod       | mod       |   | mod                 | well    |
| 30   | Sado (PT)         |   | Atlantic Ocean  |   | mod       | mod       |   | mod                 | well    |
| 32   | Guadianna (ES)    |   | Atlantic Ocean  | J | well      | well      |   | mod                 | well    |

| Results are presented by                        |  |
|-------------------------------------------------|--|
| means of analytical tables                      |  |
| and detailed maps                               |  |
| referring to both                               |  |
| correlation and                                 |  |
| dependence ( $\chi$ ) values being              |  |
| estimated over RIEN points                      |  |
|                                                 |  |
| It is then straightforward                      |  |
| to estimate                                     |  |
| the joint probability value                     |  |
| as the inverse of                               |  |
| the joint return period                         |  |
| $\mathbf{\downarrow}$                           |  |
| $T_{X,Y} = \sqrt{\frac{T_x \cdot T_y}{\chi^2}}$ |  |

#### Results: Dependencies in Max LAG Mode

| RIEN | River             | Ocean / Sea     | L   | 5/W12     | L | 5 / W24   | L  | 5/ <del>R24</del> | L  | W / R24 |
|------|-------------------|-----------------|-----|-----------|---|-----------|----|-------------------|----|---------|
| 01   | Po (IT)           | Adriatic Sea    | 0   | mod       | 0 | mod       | 4  | mod               | 3  | mod     |
| 02   | Metauro (IT)      | Adriatic Sea    | 0   | mod       | 0 | mod       | 0  | well              | 0  | mod     |
| 03   | Vibrata (IT)      | Adriatic Sea    | 0   | mod       | 0 | mod       | 2  | well              | 1  | mod     |
| 08   | Rhone (FR)        | Gulf of Lion    | 0.5 | mod       | 0 | mod       | 4  | well              | 2  | mod     |
| 04   | Foix (ES)         | Balearic Sea    | 0   | mod       | 0 | low       | 1  | mod               | 0  | mod     |
| 05   | Ebro (ES)         | Balearic Sea    | 0   | mod       | 0 | mod       | 3  | mod               | >7 | well    |
| 06   | Velez (ES)        | Alboran Sea     | 0   | low       | 0 | low       | 0  | mod               | 0  | mod     |
| 07   | Sella (ES)        | Bay of Biscay   | 0.5 | mod       | 0 | mod       | 1  | mod               | 2  | bern    |
| 10   | Moros (FR)        | Bay of Biscay   | 0   | mod       | 0 | well      | 0  | md                | 0  | strong  |
| 11   | Aven (FR)         | Bay of Biscay   | 0   | well      | 0 | well      | 0  | mpit              | 3  | strong  |
| 12   | Blavet (FR)       | Bay of Biscay   | 0   | well      | 0 | well      | 0  | mac               | 1  | strong  |
| 13   | Owenavorragh (IE) | lrish Sea       | 0   | strong    | 0 | strong    | 2  | mod               | 3  | mod     |
| 21   | Mersey (UK)       | lrish Sea       | 0   | well      | 0 | well      | 2  | mod               | 1  | mod     |
| 20   | Severn (UK)       | Bristol Channel | 0   | mod       | 0 | mod       | 3  | well              | 3  | well    |
| 15   | Orkla (NO)        | Norwegian Sea   | 0   | well      | 0 | well      | 2  | low               | 0  | low     |
| 16   | Vantaa (FI)       | Baltic Sea      | 0   | strong    | 0 | strong    | 0  | mod               | 2  | mod     |
| 22   | Tyne (UK)         | North Sea       | 0.5 | mod       | 0 | mod       | 0  | mod               | 0  | mod     |
| 27   | Humber (UK)       | North Sea       | 0   | well      | 0 | well      | 0  | mod               | 1  | mod     |
| 14   | Goeta Aelv (SE)   | North Sea       | 0.5 | v. strong | 1 | strong    | 1  | mod               | 2  | mod     |
| 17   | Rhine (NL)        | North Sea       | 0   | v. strong | 0 | v. strong | 4  | well              | 5  | well    |
| 18   | Weser (DE)        | North Sea       | 0   | v. strong | 0 | v. strong | 6  | well              | 6  | well    |
| 19   | Schelde (BE)      | North Sea       | 0   | strong    | 0 | strong    | 1  | mod               | 2  | well    |
| 25   | Thames (UK)       | North Sea       | 1   | well      | 1 | mod       | 0  | low               | 1  | mod     |
| 09   | Bethune (FR)      | English Channel | 0   | v. strong | 0 | v. strong | 4  | well              | 3  | well    |
| 24   | Avon (UK)         | English Channel | 0   | strong    | 0 | strong    | 2  | well              | 3  | well    |
| 26   | Exe (UK)          | English channel | 0   | ~strong   | 0 | strong    | 0  | well              | 1  | well    |
| 23   | Tamar (UK)        | English Channel | 0   | well      | 0 | well      | 0  | well              | 0  | well    |
| 28   | Danube (RO)       | Black Sea       | 0.5 | strong    | 0 | well      | >7 | mod               | 0  | low     |
| 31   | Douro (PT)        | Atlantic Ocean  | 0   | well      | 0 | well      | 1  | well              | 1  | strong  |
| 29   | Tagus (PT)        | Atlantic Ocean  | 0.5 | mod       | 0 | mod       | >7 | well              | 4  | well    |
| 30   | Sado (PT)         | Atlantic Ocean  | 0   | mod       | 0 | mod       | 3  | well              | 4  | strong  |
| 32   | Guadianna (ES)    | Atlantic Ocean  | 0   | well      | 0 | well      | 3  | well              | 3  | ~strong |

# **Going After High-Impact**



## **Compound Events ...**

Overall, besides the demonstration of how to apply statistical dependence methodologies & techniques

- The highest values of (strong / very strong) correlations and dependencies were found between surges and waves mainly over North Sea and English Channel taking place on the same day (zero-lag mode)
- → Moderate to well category dependencies were found for most sea areas, also on a zero-lag mode
- In the case of surge and river discharge, moderate to well category values were found in most cases but NOT in a zero-lag mode as in surge & wave case
- It became clear that in order to achieve such (relatively high) values,
   considerable lag time interval of a few days was required with surge clearly leading discharge values
- For the case of wave and river discharge, well to strong category values were found but once more mostly in NON-zero lag mode indicating the necessity of a considerable lag time interval for dependence to reach such (well / strong) values with wave distinctly leading discharge values

Joint Research Center

## **Going After High-Impact**



## **Compound Events** ...

Commission



Joint Research Center

thomas.petroliagkis@jrc.ec.europa.eu