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Many physical processes, such as boundary layer tur-
bulence or cloud microphysics, are represented in numeri-
cal weather prediction (NWP) models by physical param-
eterization schemes. These schemes contain closure pa-
rameters to express some unresolved variables by prede-
fined parameters rather than by explicit modelling. The
increasing complexity of NWP models makes it very de-
manding to optimally specify parameters values by man-
ual techniques using limited samples of test forecasts.
This may partly explain the increasing difficulties en-
countered in integration of new physical parametrizations
schemes into model dynamics. Development of algorith-
mic tools to make statistical inference about the closure
parameters would be helpful to facilitate and speed-up
NWP model development. The same question of parame-
ter optimization and uncertainty quantification is equally
crucial for climate models. Additionally, the situation
is complicated here by the challenge of unpredictability:
due to chaoticity there is no unique solution for the long
time model integrations, even with fixed model parame-
ters, see, e.g., Ref.1 for more discussion. Here we present
recent methods for parameter estimation of chaotic sys-
tems, both for short-time and long-time situations.

Several approaches have been proposed for joint esti-
mation of static parameters and dynamic state variables.
It is relatively straightforward to augment the state vec-
tor in filtering applications with the static model parame-
ters and treat them as artificial model states. A drawback
is that parameter values tend to change from one filtering
step to the next, in accordance with the changing atmo-
sphere and observing network, although they are static
or quasi-static. Moreover, filtering requires additional
tuning parameters which may lead to bias for the model
parameters Ref.2. Another way of employing the filter-
ing approach is to construct a filter-based likelihood to
be optimized with respect to the parameters Ref.3. For
large systems such iterative optimization is prohibitively
CPU demanding, however. For the same reason other ap-
proaches such as particle filtering are excluded in state
estimation of large systems.

The idea of the EPPES concept Ref.4, Ref.5 is to cre-
ate a ’CPU-free’ NWP model parameter estimation by
slightly modifying an existing EPS system: an opera-
tional ensemble prediction system is added with a func-
tionality to perturb model parameters and to learn which
ones tend to perform well. So the massive amount of
model simulations of ensemble prediction would be uti-
lized for on-line model optimization, practically without
any additional CPU demand. The original EPPES con-
cept is based on the steps, repeated for each assimilation
window, of (i) sampling candidate parameter values from

a Gaussian proposal distribution, (ii) launching each en-
semble member of the prediction model with different
candidate parameter values, (iii) evaluating the perfor-
mance of the parameters against a cost function, and (iv)
adapting the proposal distribution according to the pa-
rameter performance. The adaptation is done in a Monte
Carlo way, based on the importance weights of the cost
function values.

The approach was successfully applied to improve the
performance of the already highly tuned IFS system in
Ref.6, Ref.7. The selection of the cost function, however,
reveals a problem: while the performance of the model
can be improved according to the criteria selected as part
of the cost function, some other aspects of the predic-
tion may deteriorate. This calls for a multicriteria opti-
mization approach, where no relevant part of the model
performance is allowed to converge towards unacceptable
values. In Ref.8 we apply an evolutionary optimization
approach, the Differential Evolution (DE), for this pur-
pose. Each assimilation window may be interpreted as
a generation and the ensemble as the respective popu-
lation. With slight modifications (due to the stochas-
tic nature of the cost functions) the DE algorithm may
then be employed to optimize the model parameters. The
special requirements of various optimization criteria may
be taken into account by, e.g., the desirability function
method. Otherwise the implementation is similar to that
with EPPES, in the sense that an existing EPS system is
used, without any essential new CPU demand. As an op-
timization approach the DE version typically gives faster
convergence, while the sampling-type original EPPES al-
gorithm provides an uncertainty quantification for the
parameter identification.

The closure parameters of a large scale climate model,
ECHAM5, were studied in Ref.9 using several summary
statistics, such as temporal and spatial averages of the
key balance factors of the climate, as the cost function.
While parameter estimation was technically possible to
perform, see Ref.10 for the methods, the results remained
inconclusive. The reason was the difficulty of selecting
the cost function terms that would be sensitive enough
with respect to the closure parameters. The standard
way of estimating parameters of dynamical systems is
based on the residuals between the data and the model
responses, both given at the time points of the measure-
ments. Supposing the statistics of the measurement er-
ror is known, a well defined likelihood function can be
written. The maximum likelihood point is typically con-
sidered as the best point estimator, and it coincides with
the usual least squares fit in the case of Gaussian noise.
The full posterior distribution of parameters can be sam-
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pled by Markov chain Monte Carlo (MCMC) methods.
The approach has become routine for the parameter es-
timation of deterministic models in Bayesian inference,
see Refs.11,13 for further references. The estimation of
the parameters of chaotic models can not be performed
in this way. After an initial time period where the sys-
tem is predictable, the model responses, even with just
slightly varying initial condition or some settings of a nu-
merical solver employed, diverge so that the concept of
a given model response at a given time point loses the
meaning. The same effect can be seen when some in-
finitesimal changes to the model parameters are made.
In this sense, there is no unique model trajectory corre-
sponding to a fixed model parameter vector. But while
all such trajectories are different, they approximate the
same underlying attractor and should be considered in
this sense equivalent. Here we discuss a statistical ap-
proach presented in Ref.14 to quantify such “sameness” of
trajectories, and to distinguish trajectories that are sig-
nificantly different. The basic idea is to create a summary
statistics that takes into account the geometry of the at-
tractor, rather than using direct averages or other (linear)
projections such as used in Ref.9. Various formulations
of fractal dimensions have been developed to characterise
the internal geometry of such attractors. Here we mod-
ify one of these, the so-called correlation dimension15, to
develop a way to quantify the variability of samples of
an attractor by mapping the respective phase space tra-
jectories onto vectors, whose statistical distribution can
be empirically estimated. The distributions turn out to
be Gaussian, which provides us a well defined statistical
tool to compare the trajectories. We use the approach
for the task of parameter estimation of chaotic systems.
Other applications are pointed out as well.
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