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Abstract 

Numerical weather prediction has seen, in the past 25 years, a shift from a ‘deterministic’ approach, 

based on single numerical integrations, to a probabilistic one, with ensembles of numerical 

integrations used to estimate the probability distribution function of forecast states. This shift to a 

probabilistic approach enabled a better extraction of predictive signals at longer lead times and 

provided a meaningful framework for extending the forecast length beyond 10 days. In this work, 

the limit of predictive skill is assessed for ECMWF monthly ensemble forecasts at different spatial 

and temporal scales. The forecast skill horizon is defined as the lead time when the ensemble ceases 

to be more skilful than a climatological distribution, using a continuous ranked probability score as 

metric. Results based on 32-day ensemble forecasts indicate that the forecast skill horizon is 

sensitive to the spatial and temporal scale of the predicted phenomena, to the variable considered 

and the area analysed. On average over 1 year of forecast, the forecast skill horizon for instantaneous, 

grid-point fields is between 16‒23 days, while it is considerably longer for time- and spatial-average 

fields. Forecast skill horizons longer than the 2 weeks that were thought to be the limit are now 

achievable thanks to major advances in numerical weather prediction. More specifically, they are 

possible because forecasts are now framed in probabilistic terms, with a probability distribution 

estimated using ensembles generated using forecast models that include more components (e.g. a 

dynamical ocean and ocean waves) and more faithfully represent processes. Moreover, the forecasts   

start from more accurate initial conditions constructed using better data-assimilation methods and 

more observational data.   

 

1 Introduction 

Two key aspects of operational weather prediction have changed substantially in the last 25 years, the 

adoption of a probabilistic approach and the extension of the forecast length beyond two weeks. These 

two aspects are linked: in fact, the shift from a ‘deterministic’ approach, based on single numerical 

integrations, to a probabilistic approach, with ensembles of numerical integrations used to estimate the 

probability distribution function of forecast states, contributed to the extension of the forecast length. 

More precisely, it has made it possible to extract predictive signals in the extended forecast range.  

The forecast length extension to beyond two weeks may seem to contradict early results of the 1960s-

1980s that suggested that the range of predictive skill is limited to about 2 weeks. It is thus relevant to 

ask whether it is still correct to think of two weeks as the predictive skill limit of numerical weather 

prediction, or whether advances in modelling and data assimilation, and the adoption of ensemble-based 

probabilistic approaches to numerical weather prediction have led to predictive skill beyond 2 weeks. 

This work addresses this question by determining the forecast lead time at which the probabilistic skill 

of an ensemble forecast ceases to be higher than that of the climatological distribution. This forecast 

lead time will be referred to as the forecast skill horizon here. It will be quantified for ensemble forecasts 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). In the forthcoming sub-

sections of this Introduction, early estimates of the range of predictive skill and the reason why the 

forecast skill horizon should be estimated using ensembles are discussed. Then, some of the most recent 

estimates of the predictive skill limit are briefly reviewed, and the concept of the forecast skill horizon 

is introduced.  
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1.1 Early estimates of the range of predictive skill  

Lorenz (1982) concisely summarizes early predictability studies that aimed to determine the range of 

predictive skill. The studies reported by Charney et al (1966) and subsequently Smagorinsky (1969) 

estimated error doubling times of 5 days and 3 days, respectively. With estimates of the magnitude of 

initial error at the time, this implied a limit of predictability of about two weeks. One might have 

concluded that further reduction of the initial error would allow extending the range of skilful forecasts 

further and further — at least in principle. However, the model estimates did not include all scales of 

motion and neglected the fact that errors grow the faster the smaller the spatial scale. This aspect was 

investigated quantitatively for the first time by Lorenz (1969a) using a two-dimensional vorticity 

equation. He showed that ‘… there may be some systems where a reduction of the initial error will not 

increase the range of predictability at all.’ Whether this happens depends on the steepness of the 

spectrum of kinetic energy in the flow. For spectra shallower than K−3 with K being the total 

wavenumber, the predictability is limited to a finite time as long as there is some initial error regardless 

how small (Rotunno and Snyder 2008). For one of the configurations he studied, Lorenz estimated that 

this finite range of predictability was about two weeks, more precisely 16.8 days.  

Lorenz (1969a) mentions what will later be known as the butterfly effect, although the paper talks about 

sea gulls: ‘.. if the theory of atmospheric instability were correct, one flap of a sea gull’s wings would 

forever change the future course of the weather’. Rotunno and Snyder (2008) and Durran and Gingrich 

(2014) further pursued the error growth model that Lorenz (1969a) introduced (see discussion in Section 

4). In another work published the same year as an MIT technical report, Lorenz (1969c) discussed the 

possible implications of these predictability studies for numerical weather prediction, and stated that ‘.. 

Certainly they offer little hope for those who would extend the two-week goal to one month or more. 

They are not especially reassuring even for two-week forecasting … ‘. Later, Lorenz (1982) examined 

the predictability using ECMWF forecasts in a 100 day period. He estimated error doubling times of 

about 2 days for small errors and concluded that ‘better-than-guesswork forecasts of instantaneous 

weather patterns nearly two weeks in advance seem possible’.  

Dalcher and Kalnay (1987) extended Lorenz (1982) model for error growth, and estimated the 

theoretical limit of dynamical predictability for different scales, identified by their total wave number. 

Looking at 10-day forecasts from the ECMWF model, they concluded that the limit is longer in winter 

than in summer, and that in winter for the longer waves it is longer than 10 days, while in summer it is 

about 10 days. Later on, Simmons and Hollingsworth (2002) also revisited the error growth model of 

Lorenz (1982) and estimated error doubling times as low as 1.5 d for 500 hPa geopotential in the 

Northern Hemisphere extra-tropics in boreal winter. Despite the even shorter doubling times they found 

evidence for predictive skill up to about 3 weeks after correcting for the forecast model bias. Thus, what 

was deemed impossible about 30 years earlier, now seemed achievable, and indeed the new century 

(2000s) saw the beginning of operational monthly weather prediction. 

 

1.2 The range of predictive skill in the context of ensemble forecasts 

As one approaches the limit of predictability, the error of single forecasts increases and reaches 

eventually twice the variance of the climatology — assuming that the model has no bias in the first and 



The Forecast Skill Horizon   

 

  

Technical Memorandum No.754 3 

 

second moments. The error of the single forecast will on average exceed the error of the climatological 

mean in magnitude before this happens. The ability to make decisions based on such a single forecast 

that are better than climatologically-based ones, is limited especially as the limit of predictability is 

approached. In contrast, an ensemble can still carry more useful information also close to the limit of 

predictability. Therefore, we propose to base the forecast skill horizon on the accuracy of ensemble 

forecasts. They provide a more complete estimate of the future forecast states, since this estimate 

includes not only the most likely scenario but also a confidence interval, expressed in terms of a range 

of possible scenarios, or probabilities of occurrence of events of interest (Palmer et al 2007, Buizza 

2008).  

To date, ensembles provide the only feasible way to provide a dynamical, and thus flow-dependent, 

estimate of the initial-time and forecast probability distribution of the atmospheric state. This has been 

possible since November and December 1992, when operational, global, medium-range ensemble 

prediction started at the National Centers for Environmental Prediction (NCEP, Toth & Kalnay 1993 

and 1997) and the European Centre for Medium-Range Weather Forecast (ECMWF, Palmer et al 1993, 

Buizza & Palmer 1995, Molteni et al 1996). ECMWF and NCEP were followed in 1995 by the 

Meteorological Service of Canada (MSC, Houtekamer et al 1996). Following these three examples, six 

other centres started producing global ensemble forecasts in the following years. Today, eight 

meteorological centres issue daily medium-range global ensemble forecasts and share their data as part 

of the TIGGE project (see Buizza 2014 for a recent review of the TIGGE medium-range global 

ensembles). 

 

1.3 The start of monthly prediction and evidence of long-range predictive skill 

ECMWF has been at the forefront of dynamical extended range forecasting since the mid 1980’s, when 

experimentation on ensemble forecasting for the monthly time scale started (Molteni et al 1986, 

Brankovic et al 1990). In 2002, ECMWF was one of the first operational centres to run an experimental 

monthly ensemble, based on coupled ocean-atmosphere integrations (Vitart 2004), a system that became 

operational in October 2004. Today, several meteorological centres produce operational sub-seasonal 

forecasts. In some cases (e.g. at the Japanese Meteorological Agency, JMA), a stand-alone forecasting 

system is used to produce monthly forecasts. Other centres use their seasonal forecasting system to 

produce sub-seasonal forecasts by increasing the frequency of seasonal forecast integrations (e.g. at the 

Centre for Australian Weather and Climate research, CAWCR) or the number of ensemble members 

(e.g. at the UK Meteorological Office). At ECMWF, following Tracton and Kalnay (1993), since March 

2008 monthly forecasts are produced using a variable resolution approach (Buizza et al 2007) an 

extension of the medium-range ensemble, thus producing ‘seamless’ probabilistic forecasts from day 1 

to week 4 using the same coupled ocean-atmosphere model.  

Looking at the ECMWF monthly forecasts, the skill has improved significantly since operational 

production started in 2004, in particular for the prediction of large-scale, low-frequency events (Vitart 

et al 2014). Considering for example the Madden-Julian Oscillation (MJO, Madden and Julian 1971), 

an important source of predictability on the sub-seasonal time scale, Vitart et al (2014) show that the 

2013 version of the ECMWF monthly ensemble predicted it skilfully up to about 27 days (see their Fig. 

4). This is a skill gain of an impressive 1-day per year since 2004. Looking at another large-scale pattern 
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that influences the weather over the Euro-Atlantic sector, the North Atlantic Oscillation (NAO, Hurrell 

et al 2003), Vitart et al (2014) report that the ECMWF ensemble also showed clear improvements, with 

skill in 2013 up to about forecast day 13, compared to about day 9 ten years earlier (see their Fig. 7). 

Similar, although slightly smaller, improvements were reported for the prediction of sudden-

stratospheric warming events (see their Fig. 10). These results provide statistically significant evidence 

that some phenomena can be predicted up to a few weeks ahead. 

Although this paper focuses on the sub-seasonal time scale, it is also worth to briefly review evidence 

of seasonal forecast skill for large-scale, low-frequency phenomena. Research on predictability on 

seasonal time scale in the early 1990’s (e.g. Palmer and Anderson 1994) led to the implementation of 

the first ECMWF seasonal forecast system based on a global ocean-atmosphere coupled model in 1997 

(referred to as System-1). This seasonal System-1 gave a successful 6-month forecast of the 1997-98 El 

Niño (Stockdale et al 1998). This first coupled system was followed by System-2 in 2001, System-3 in 

March 2007, and the currently operational System-4 in 2011 (Molteni et al 2011). Considering this most 

recent ECMWF System-4, Molteni et al (2011) documented that large-scale phenomena such as 

monthly-average sea-surface-temperature anomalies linked to El Nino, or monthly-average ocean-basin 

tropical storm activities can be skilfully predicted months ahead. 

These achievements in the monthly (sub-seasonal) and seasonal forecast range provide evidence of the 

range of predictability of some phenomena with different spatial and temporal scales. Therefore, it seems 

timely to examine systematically the range of predictive skill of forecasts of the atmosphere and refine 

the earlier estimates of the 2 week range of predictive skill. 

 

1.4 The rationale for this work and the concept of the forecast skill horizon  

What has been missing so far has been a unified, consistent approach to the estimation of the range of 

predictive skill for different spatial and temporal scales. To date, the skill of these different phenomena 

(such as the MJO, NAO, El Nino related patterns) has been assessed in different ways, using different 

fields, averages, and accuracy metrics. This hinders to some extent the quantitative comparison of the 

skill of numerical weather prediction for local, instantaneous values with the skill of spatial and temporal 

averages used in extended-range numerical weather prediction. 

When the forecast model is perfect, the predictability is limited due to the uncertainties in the initial 

conditions only (e.g. due to observation errors). In this context, it is appropriate to define the 

predictability limit as the time when the forecast distribution is no longer different from the 

climatological distribution. It is possible to define general metrics based on information theory, such as 

relative entropy, to quantify the difference between the two distributions. DelSole and Tippet (2007) 

reviewed the range of approaches in this area. For instance, Kleeman (2008) estimated that the forecast 

distribution converges to the climatological distribution after about 45 days in the mid-latitudes using 

relative entropy. The estimates exclude the possibility that predictable signals originate in the ocean as 

the SSTs were prescribed. In addition, a fairly low-resolution T42 atmospheric model was employed. 

However, this configuration enabled integrations of large ensembles with about 103‒104 members, 

which are required to compute the entropy-based estimates. 
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Here, we are interested in the actual predictability with an imperfect yet state-of-the art coupled 

atmosphere-ocean model. Due to the higher computational cost of the integrations, we are limited to a 

moderate ensemble size and the general information theoretical tools are deemed to be impractical to 

use. We select the continuous ranked probability score (CRPS, Brown 1974, Hersbach 2000) as metric 

to decide when the forecast distribution ceases to be more skilful than the climatological distribution. 

Thus, we quantify actual predictability rather than a theoretical value based on a perfect model 

assumption. Figure 1 illustrates the concept of a skilful PDF forecast. The climatological (reference) 

PDF (top panel, black dashed line) has a small overlap with the observation (top panel, solid black line), 

and its cumulative distribution function (CDF; bottom panel, black dashed line) is far from the observed 

CDF (bottom panel, solid black line). By contrast, the forecast PDFs are closer to the observation, and 

they get closer as the forecast time shortens (top panel). Consistently, the forecast CDFs gets closer to 

the observed CDF (bottom panel). The CRPS is equal to the mean squared error of the CDF (see Section 

2.3 for more details). The forecast skill horizon is then defined as the forecast lead time when the forecast 

ceases to be more skilful than the climatological distribution. The decision is based on a statistical 

significance test applied to the differences of the CRPS with the 99th-percentile level as threshold.  

If one considers the case of a single scalar variable and a perfect model, the predictability limit defined 

with the CRPS should agree with information theoretical estimates as the CRPS is a strictly proper score 

(i.e. the skill cannot be increased by modifying the forecast probability) for distributions with finite first 

moments (Gneiting and Raftery 2007). However, the actual predictability in the full state space may be 

larger than that obtained by studying single scalar variables. In Kleeman (2008), it was found that 

predictability successively increases from uni-variate, then bi-variate to tri-variate marginal entropies. 

However, estimation of these relative entropies in higher-dimensional spaces necessitates a coarse 

partitioning of the state space. It is an advantage of using the CRPS that no partitioning of the state space 

is required. Furthermore, there is no need to use an a priori reduction of the state space with EOFs to 

reduce dimensionality. 

We are interested in the actual predictability with an imperfect forecast model. The predictability 

estimated from direct model output will underestimate the true predictability that users could exploit by 

correcting for known errors in the forecasts that can be diagnosed from the joint distribution of forecasts 

and verification data. DelSole (2005) introduces the general concept of a “regression forecast” to 

examine the predictability in the context of imperfect models. This correction can be seen as a calibration 

step, which should yield a distribution of calibrated forecasts that is more consistent with the verification 

data than the distribution obtained from direct model output. Depending on the volume of training data 

that is available to inform the calibration step, different levels of sophistication are possible. Given the 

moderate sample size of the training data, we decided to opt for a basic correction only. It consists of a 

bias correction that depends on the seasonal cycle, location and forecast lead time. Details are described 

in the next section. Here, an ensemble forecast will be considered skilful if the bias-corrected forecast 

distribution has a statistically significantly (say at the 99th-percentile level) smaller CRPS than the 

climatological distribution, on average over an area and for a large number of cases. 
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Figure 1. Schematic of a forecast of a probability density function (PDF) for the 500 hPa geopotential 
height at a point over the NH extra-tropics. Top panel: observed PDF [solid line, defined by a Gaussian 
distribution with mean 560 and standard deviation 0.5, N(560, 0.5)], forecast PDFs at three different 
lead times [grey dashed lines, defined by N(561,2), N(558,4) and N(555,6)] and climatological PDF 
[dashed black line, defined by N(550,8)]. Bottom panel: as top panel but for the corresponding 
cumulative distribution functions (CDFs). The CRPS is the mean squared error of the CDF. For the 
three forecast distributions, the CRPSs are, respectively, 0.3, 1.9 and 3.8, and the CRPS of the 
climatological distribution is 7.4.     

 

One should expect that the range of predictive skill is a function of what one is trying to predict. The 

idea of considering weekly and even longer time averages for lead times beyond 2 weeks was mentioned 

by Lorenz (1982). Previous studies have attempted to quantify how probabilistic forecast skill depends 

on the scales. Dalcher and Kalnay (1987) have investigated the sensitivity of error growth to wave 

number using 10-day single ECMWF forecasts, and concluded that the longer waves are more 

predictable, with predictability limits beyond 10 days in winter and close to 10 days in summer, while 

the shorter waves showed limits below 10 days. Shukla (1981) looked at monthly means in a perfect 
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model context. concluded that ‘the evolution of long waves remains sufficiently predictable at least up 

to one month’, and suggested that improvements in model resolution and physical parameterisations 

could extend the predictability of time averages beyond one month. Jung and Leutbecher (2008) studied 

how the probabilistic skill of the ECMWF ensemble depends on spatial scales. They used waveband 

filters to extract the signals in planetary, synoptic and sub-synoptic scales. The predictability clearly 

increased with spatial scale exceeding the 15-day forecast range for the planetary scales. The sensitivity 

to temporal scale was determined for instance by Weigel et al (2008) for ECMWF monthly forecasts of 

2-metre temperature.  

The outline of the paper is as follows. In Section 2 the methodology and data used in this study are 

described. Section 3 presents estimates of the forecast skill horizon obtained using 1-year of ECMWF 

ensemble forecasts and 20 years of reforecasts. Skill horizons of different spatial and temporal scales 

and variables and areas will be compared. Section 4 discusses these estimates, and links our results with 

other published results. Finally, conclusions follow in section 5. 

 

2 Data sets, accuracy metrics and methodology 

Two ensembles are going to be used to estimate the forecast skill horizon: a bias-corrected operational 

ensemble and a reference climatological ensemble based on past analyses. Section 2.1 reviews the main 

characteristics of these ensembles and introduces the data used to generate them. Section 2.2 summarises 

the configuration of the ECMWF medium-range/monthly ensemble forecasts used in this work. Section 

2.3 defines the probabilistic score used to measure forecast accuracy. Section 2.4 defines the two 

ensembles used in this work, and finally section 2.5 gives the details on how the forecast skill horizon 

has been computed.  

 

2.1 The ECMWF data-sets 

Four datasets have been used in this work: ECMWF operational analyses and re-analyses to initialize 

and verify the forecasts and to define the reference climatological ensemble, and medium-range/monthly 

ensemble (ENS) forecasts and reforecasts. Table 1 lists a few key characteristics of these datasets 

(period, resolution, membership and forecast range). 
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Dataset Period # Frequency Horizontal 

Resolution 

Vertical 

levels 

(TOA) 

 

Central 

ICs 

Number of 

32-day 

forecasts 

in the 

dataset 

Day  

0-10 

Day  

10-32 

AN July 2012 to 

July 2013 

1 Daily analyses TL1279  

(~16 km) 

91  

(0.1 hPa) 

N/A N/A 

ERA-I 1992 to 2011 1 Daily ERA-

Interim re-

analyses 

TL255  

(~80 km) 

60  

(0.1 hPa) 

N/A N/A 

ENS July 2012 to 

July 2013 

(107 cases) 

51 Twice weekly 

(00UTC Mondays 

& Thursdays) 

 

TL639 

(~32 km) 

 

TL319 

(~65 

km) 

 

62 

(5 hPa) 

AN 5457 

ENS-

refc 

1992-2011 5 Once a week (00 

UTC of 

Mondays) 

ERA-I 5200 

 

Table 1. Main characteristics of the four datasets used in this study: AN and ERA-Interim (analyses 
used as verification to compute the model biases), ENS forecasts (ENS) and reforecasts (ENS-refc), 
generated from the ECMWF operational medium-range/monthly ensemble.  

 

The first dataset, AN, includes the operational analyses: they define the unperturbed (central) initial 

conditions of the operational ENS. The second dataset, ERA-I, includes the ERA-Interim re-analyses 

(Dee et al 2011): they are used as central (unperturbed) initial-conditions of the ENS reforecasts and as 

verification to compute the ENS model bias for the past 20 years, and are used to verify the forecasts 

for the period 2 July 2012 to 8 July 2013. They are also used to construct the climatological, reference 

ensemble (see section 2.4). As the bias correction is estimated from verifying the reforecasts with ERA-

Interim, we decided to also verify the ENS forecasts with ERA-Interim to achieve consistency between 

training dataset and the actual forecast verification. The third and fourth data-sets are the operational 

ENS forecasts and reforecasts.  

 

2.2 The ECMWF medium-range/monthly ensemble (ENS): key characteristics 

The ECMWF ENS forecasts used in this work were generated between July 2012 and July 2013. At that 

time, ENS included 51 members, one unperturbed and 50 perturbed ones. Forecasts were run with a 

variable resolution (Buizza et al 2007): TL639L62 (spectral triangular truncation T639 with a linear 

grid, which corresponds to about 32 km grid spacing in physical space, and 62 vertical levels) during 

the first 10 days, and TL319L62 (i.e. about 65 km grid spacing) thereafter. ENS forecasts were run twice 

a day, with initial times at 00 and 12 UTC, up to 15 days. At 00 UTC on Mondays and Thursdays the 

forecasts were extended to forecast day 32 (Vitart et al 2008, 2014). ENS forecasts were coupled from 
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initial time to the WAM wave model (Janssen et al 2005, 2013) with 55 km resolution, 24 directions 

and 30 frequencies up to day 10, and 12 directions and 25 frequencies afterwards. From forecast day 10, 

the forecasts were also coupled to the NEMO (the Nucleus for European Ocean Modelling) ocean model, 

with the ORCA100z42 grid (1-degree horizontal resolution and 42 vertical layers). The reader is referred 

to Mogensen et al (2012a, b), and references therein, for a description of the ECMWF implementation 

of NEMO and NEMOVAR. 

For both the ENS forecast and reforecast, each ensemble member is defined by the integration of the 

ECMWF model equations: 

Eq. (1)   

t

jjj dttPtPtAdetde
0

00 ')]'(')'()'([)0;();(  

where A0 and P0 represents the ‘unperturbed’ model dynamical and physical tendencies (i.e. there is 

only one dynamical core and one set of parameterisations called with the same parameters), P’j 

represents the model uncertainty simulated using two model error schemes, the SPPT (Buizza et al 1999; 

Palmer et al 2009) and SKEB (Berner et al 2008, Palmer et al 2009) schemes, and the lead time and start 

date are denoted by t and d, respectively. For the atmosphere, the initial conditions of the ensemble 

starting at day ‘d’ are defined by adding perturbations to the unperturbed analysis: 

Eq. (2)  )0,(')0,()0,( 0 dedede jj   

The unperturbed analysis is provided by the ECMWF high-resolution 4-dimensional variational 

assimilations (4DVAR), run at TL1279L91 resolution and with a 6-hour assimilation window. The 

analysis interpolated from the TL1279L91 resolution to the TL639L62 ensemble resolution. 

The perturbations were generated by a linear combination of SVs and perturbations defined by the 10 

members of the ECMWF Ensemble of Data Assimilations (EDA): 

Eq. (3)   ])6,6()6,6([)0,(' 10,1

8

1

)(

50

1

,  

 

 dfdfSVde m

a

jm

k

kkjj

a

aa
  

The reader is referred to Leutbecher and Palmer (2008) for a description of how the SVs computed for 

the different areas are combined, and to Buizza et al (2008) and Isaksen et al (2010) for a description of 

how EDA-based perturbations are combined.  

For the ocean component, the initial conditions were defined by the 5-member ensemble of ocean 

analysis, produced by NEMOVAR, the NEMO 3-dimensional variational assimilation system 

(Mogensen et al 2012a, b). Each ocean analysis was generated using all available in situ temperature 

and salinity data, an estimate of the surface forcing from ECMWF short range atmospheric forecasts, 

sea surface temperature analyses and satellite altimetry measurements. The 4 perturbed members were 

created using perturbed versions of the unperturbed wind forcing provided by the high-resolution 

4DVAR. 

Model uncertainties were simulated only in the atmosphere (i.e. not in the ocean or in the land), using 

two stochastic schemes (Palmer et al 2010). The stochastically perturbed parameterized tendency (SPPT, 

Buizza et al 1999) scheme simulates random model errors due to parameterized physical processes; the 
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current version uses 3 spatial and time level perturbations. The stochastic back-scatter (SKEB, Shutts 

2005) scheme simulates the upscale energy transfer induced by the unresolved scales on the resolved 

scales. Shutts et al (2011) summarize the configuration of the versions of the stochastic schemes that are 

used in the ensemble forecasts and reforecasts used in this study.  

Since March 2008, when the ECMWF medium-range and monthly ensembles were joined, a key 

component to the ECMWF ENS had been the reforecast suite (Vitart et al 2008; Hagedorn et al 2012). 

The suite included a 5-member ensemble run once a week with the operational configuration for the past 

20 years. These reforecast ensembles start from the ECMWF re-analysis (ERA-Interim) instead of the 

operational one, use singular vectors of the day but EDA-based perturbations computed for the current 

year since the EDA has been running only since 2010 [see Buizza et al (2008) and Isaksen et al (2010) 

for more details]. The reforecasts are used to estimate the model climate, and to produce some 

operational calibrated products. One example is the Extreme Forecast Index (Lalaurette 2003, Zsoter 

2006), which is defined for a range of variables (e.g. 2-meter temperature and precipitation) as a measure 

of the difference of forecast CDF and the model cimatological CDF. The forecast CDF is computed 

using the 51-member ENS forecasts, while the model climatological CDF is computed using 500 

reforecasts (i.e. the 5-member ENS run for the past 20 years, once a week for the 5 weeks centred on 

today’s week: thus 5*20*5=500). 

It is worth mentioning that the operational ENS configuration at the time of finalizing this work 

(February 2015) is different from the one used in this study. Since November 2013, when a new model 

cycle was introduced, ENS uses 91 (instead of 62) vertical levels with the top of the atmosphere at 0.01 

hPa (instead of 5 hPa), the number of EDA members has increased to 25 (from 10), and the ocean model 

is coupled from the initial time (instead of day 10). 

 

2.3 Accuracy metrics: the root-mean-square error and the continuous ranked 

probability score 

The accuracy metrics used in this work are the root-mean-square-error (RMSE) for single forecasts 

(ensemble control and ensemble-mean), and the continuous ranked probability score (CRPS, Brown 

1974, Hersbach 2000) for PDF forecasts. The CRPS is an extension of the Ranked Probability Score 

(Epstein 1969, Murphy 1971). Compared to the RPS, the CRPS has two advantages: it is sensitive to 

the entire range of the parameter of interest and it does not rely on predefined intervals (i.e. it is not 

restricted to fixed intervals as the RPS is). The CRPS is the limit of the RPS for an infinite number of 

intervals, and is one of the most commonly used metrics of probabilistic forecast accuracy.  

The CRPS has been computed as in Hersbach (2000). Consider a single grid point and a variable x (e.g. 

the 850 hPa temperature). Denote by p(x) the forecast PDF, defined by the ENS forecast members, and 

by xobs the observed value. The CRPS is defined as: 

Eq. (4)     




 dxxCDFxCDFCRPS obs

2
)()(  

where CDF and CDFobs are the cumulative distribution functions of the forecast and the observation: 
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Eq. (5.a)  
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Eq. (5.c)   
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being the Heaviside function.  

The CRPS is zero for a perfect forecast, when the forecast and observed CDFs are identical. 

In this work we consider annual- and area-average CRPS values, computed by averaging the CRPS 

considering all cases covering one year of forecasts (jc=1, NC where NC, the number of cases, is 107, 

to include all Mondays and Thursdays from 2 July 2012 to 8 July 2013) , and considering all grid points 

inside a specific area: 

Eq. (6)   
 


NC

jc

G

g

gjdgGND CRPSw
NDG

CRPS
1 1

,,

1
 

where the grid-point weights are proportional to the cosine of latitude. In principle, other metrics could 

have been considered as well. However, we think this a secondary aspect that can be left to future work.  

 

2.4 Definition of the bias-corrected ensemble and the climatological ensemble 

The operational ENS forecasts and reforecasts have been used to generate the bias-corrected ensemble 

(ENS-BC), and ERA-Interim re-analyses have been used to generate the reference, climatological 

ensemble (ENS-CLI), as explained hereafter. 

 

2.4.1 The bias-corrected ensemble (ENS-BC) 

For each forecast date between 2 July 2012 and 8 July 2013 for which the 32-day ensemble was produced 

(00 UTC of Mondays and Thursdays, i.e. 107 cases), the ENS-BC ensemble has been defined by the 51 

ENS members after removing the bias computed from the ENS-refc dataset. More precisely, (following 

the same approach used to generate the operational ENS-based Extreme Forecast Index product) the 

bias has been calculated considering the 500 ENS reforecast members [5-member (j=1,5) ENS forecasts 

with initial dates defined by the 5 weeks centred on the forecast date (d=1,5) and for the past 20 years 

(y=1992-2011 for forecasts starting in 2012, and y=1993-2012 for forecasts starting in 2013)]: 

 Eq. (7.a)   
 


y j d

jj tdyatdyebias
5

1

5

1

);(),;(
500

1
 

For each date, each member of the ENS-BC forecast is defined as: 
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Eq. (7.b)    biastdetde j

BC

j ),(),(  

Consider, e.g., 00UTC of 15 November 2012: 

 ENS includes 51 forecasts, up to 32 days, started at 00 UTC of 15 November, 2012; 

 The ENS reforecasts include 5-member forecasts starting at 00UTC of 1, 8, 15, 22 and 29 

November for the past 20 years (1992-2011); 

 The bias is computed using these 500 forecasts, verified against ERA-Interim analyses; 

 ENS-BC is defined by the 51 bias-corrected ENS forecasts. 

 

2.4.2 The climatological ensemble (ENS-CLI) 

The climatological ensemble includes 100 members, each defined by a 32-day chronological sequence 

of ERA-Interim re-analyses. More precisely, it consists of the re-analyses that verify the 500-member 

ENS reforecasts, which are used to compute the model bias. Consider, for example as in section 2.4.1, 

00UTC of 15 November 2012: this is how the 100-member ENS-CLI is defined. For the 20 reforecast 

years 1992-2011, and for the 5 dates for which the reforecasts have been run (1, 8, 15, 22 and 29 

November), we can construct a chronological sequence of analyses: 

 ENS-CLI(m=1)={AN(1991.11.01.00),AN(1991.11.01.12),…,AN(1991.12.01.12)}; 

 ENS-CLI(m=2)={AN(1991.11.08.00),AN(1991.11.08.12),…,AN(1991.12.09.12)}; 

 … ; 

 ENS-CLI(m=100)={AN(2011.11.29.00),AN(2011.11.29.12),…,AN(2011.12.31.12)}. 

This defines a 100-member ensemble used as a reference forecast to be compared with the operational 

ENS. The same procedure is used for each of the 107 initial conditions (00UTC of Mondays and 

Thursdays from 2 July 2012 to 8 July 2013). The ENS-CLI control is defined as a randomly selected 

member of ENS-CLI. 

 

2.5 Definition of the Forecast Skill Horizon 

As mentioned in the Introduction and illustrated schematically in Fig. 1, the forecast skill horizon is 

defined as the forecast time when the forecast PDF ceases to be distinguishable, in a statistical sense, 

from the climatological (reference) PDF. The forecast skill horizon is computed as the forecast time 

when the average CRPS of the bias-corrected ensemble ENS-BC ceases to be statistically significantly 

lower, at the 99th-percentile level, than the CRPS of the climatological ensemble ENS-CLI. More 

precisely, this is defined as the forecast lead time when at least 1% of the sample estimate of the 

distribution of the mean difference of the CRPS of the forecast distribution and the CRPS of the 

climatological distribution is positive. Mean score differences are assumed to be distributed by Student’s 

t-distribution. Serial correlation of score differences between start dates is accounted for. The CRPS of 

a perfectly reliable ensemble should converge to the CRPS of the climatological ensemble. However, 
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for the actual ECMWF ensemble it is possible that the CRPS reaches the value of the climatological 

ensemble at some lead time and after that exceeds it. For instance, this could happen if the ensemble is 

over, or under, dispersive. This will not limit our ability of determining the forecast skill horizon for the 

ECMWF ensemble. 

The forecast skill horizon has been estimated for seven variables and three different areas: 

 Variables: geopotential height at 500 hPa (Z500); temperature at 850 and 200 hPa (T850, T200); 

wind components at 850 and 200 hPa (U850, V850, U200 and V200); 

 Areas: northern hemisphere extra-tropics (20°N-90°N; NH); southern hemisphere extra-tropics 

(20°S-90°S; SH); tropics (20°S-20°N; TR). 

As motivated in the Introduction, the sensitivity of the forecast skill horizon to the temporal and spatial 

scale of weather events has been assessed by considering fields with increasingly longer spatial scale 

and lower frequency variability. This was obtained by applying spatial smoothing and time-averaging 

operators: 

 Spatial smoothness was obtained by spectrally truncating the fields from T120 (spectral 

triangular truncation with total wave number 120, corresponding to about 170 km) to T60 (~ 

330km), T30 (~670 km) and T15 (~1300km), T7 (3000km); 

 Temporal low-frequency variability was achieved by applying time averaging, thus considering 

not only instantaneous grid-point values, but also values averaged over 1, 2, 4, 8 and 16 days. 

The forecasts for time averages have been assigned a lead time equal to the mid-point of the 

averaging window. 

Figures 2 and 3 illustrate, for one case of December 2012, the impact of spatial truncation on 

instantaneous (i.e. H0) fields and the impact of time-averaging on local (i.e. T120) fields. Figure 2 shows 

that as more severe spectral filtering is applied, the small scales start disappearing and the local maxima 

and minima decrease in amplitude, with the impact being more detectable once truncations beyond T15 

are applied. Figure 3 shows the impact of time averaging on local (i.e. T120) fields. As for the case of 

spatial truncation, as the time averaging period lengthens the field becomes smoother, with local maxima 

and minima decreasing in amplitude, and the gradients becoming less pronounced. Note that, for this 

case, the effect of spatial or time averaging on the fields is similar apart for the strongest truncation.  

Once the analysis and forecast fields have been retrieved from the ECMWF archive, this is how the 

forecast skill horizon has been computed for a Txx spatial truncation and 2H-hour time-average for each 

variable and area considered: 

a) extract all the j-th members   spectral fields at the Txx truncation, and define them on a regular 

1.5°-degree latitude-longitude grid; 

b) apply a 2H-hour time averaging over the interval (t-H;t+H), e.g. for the j-th member; thus, for 

example, for the H12 averaging, the +144h field is defined, at each grid point, by the time 

average between +132h and the +156h; 

c) compute the bias from the ENS reforecasts, remove the bias from each member, and construct 

the ENS-BC forecasts; 
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d) construct the reference climatological ensemble ENS-CLI using truncated and time-average 

analyses; 

e) evaluate the performance of the two ensembles (ENS-BC and ENS-CLI) using RMSE and  

CRPS; 

f) define the forecast skill horizon as the forecast time when CRPS(ENS-BC), defined as in Eq. 

(6), is not significantly different from the CRPS(ENS-CLI), at the 99th-percent level. 

 

 

Figure 2. Impact of spectral truncation on an instantaneous (H0) 500 hPa geopotential height field. 
Top-left panel: original T120 field valid for 12UTC of the 10th of December 2012; top-right panel: T30 
truncation; bottom-left panel: T15 truncation; bottom-right panel: T7 truncation. The contour 
interval is 80m.     
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Figure 3. Impact of time-averaging on local (T120) 500 hPa geopotential height field. Top-left panel: 
instantaneous field valid for 12UTC of 10th of December 2012; top-right panel: 1-day (H12) time-
average field centred on 12UTC of the 12th (defined by averaging the fields from 12UTC of the 9th to 
the 12 UTC of the 11th of December); bottom-left panel: 4-day (H48) time average field centred on 
12UTC of the 12th; bottom-right panel: 16-day (H192) time average field centred on 12UTC of the 
12th. The contour interval is 80m.    

 

It should be noted that, since we have been using 32-day forecasts, for some fields we might only be 

able to indicate that the forecast skill horizon is beyond the available forecast length. It should also be 

taken into account that the available forecast length depend on the time-averaging: it is 32 days for 

instantaneous (H0) fields, 31.5 days for 24-hour average (H12) fields, …, 28 days for 8-day average 

(H96) fields and 24 days for 16-day (H192) average fields. When the forecast skill horizon is estimated 

to be beyond the available forecast length, it will be preceded by the symbol ‘>’ (e.g., for H96, it will 

be indicated as ‘> 26.0’).  
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3 Estimates of the forecast skill horizon for the ECMWF ensemble 

In the first part of this section we are going to discuss results based on instantaneous, grid-point fields 

(i.e. without any spectral filtering and/or time averaging), both for the single control forecast and the 

full ensemble forecast. Secondly, we will discuss the sensitivity of the forecast skill horizon to the spatial 

and temporal scale of the forecast fields. Thirdly, we will discuss the impact of the bias-correction. 

Finally, we will discuss the seasonal variation of the forecast skill horizon. 

 

3.1 Forecast skill horizon for instantaneous, grid-point forecasts 

Initially, consider instantaneous, grid-point fields given by the control forecast, so that we can compare 

our results with earlier estimates mentioned in Section 1.2 such as the one of Lorenz (1969a). Figure 4 

shows the annual average (for the 107 cases considered in this work; see section 2.1) RMSE of the ENS-

BC control forecast and the ENS-CLI reference, for the 500 hPa geopotential height (Z500) over the 

Northern and the Southern Hemispheres (NH, SH). It also shows the difference of the RMSEs of 

ensemble forecast and the climatological ensemble with the confidence intervals (1st to 99th percentile 

of the estimated distribution of score differences). Results indicate that the confidence bars touch the 

zero line at forecast day 17 for Z500 over NH, and at day 21.5 for Z500 over the SH. Fortuitously, the 

NH forecast skill horizon agrees with Lorenz (1969a)’s estimate of 16.8 days. 
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Figure 4. Top-left panel: NH annual-average (107 cases) root-mean-square-error (RMSE) of the ENS-
BC control forecast (solid line) and the ENS-CLI control forecast (dashed line), for instantaneous 500 
hPa geopotential fields truncated at T120 (H0-T120). Bottom-left: difference between the RMSE of 
the ENS-CLI and the ENS-BC control forecasts (dashed line) with 98th percentile confidence intervals 
(bars) for NH. Right panels: as left panels but for SH. The forecast skill horizon (see text for definition) 
is 17 days for Z500 over NH and 21.5 days for Z500 over SH. Units in all panels are m2/s2. 
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Figure 5. Top-left panel: NH annual-average (107 cases) CRPS of ENS-BC (solid line) and ENS-CLI 
(dashed line), for instantaneous 500 hPa geopotential height fields truncated at T120 (H0-T120). 
Bottom-left: difference between the CRPS of ENS-CLI and ENS-BC (dashed line) with 98th percentile 
confidence intervals (bars) for NH. Right panels: as left panels but for SH. The forecast skill horizon 
(see text for definition) is 22 days for Z500 over NH and 19 days for Z500 over SH. Units in all panels 
are m2/s2. 

 

Figure 5 shows the corresponding annual average CRPS and the difference of the climatological and 

forecast CRPS scores for instantaneous, grid-point ensemble forecasts of Z500 over NH and SH. The 

overall shape of the curves is similar to the RMSE curves, but the confidence intervals have shorter 

lengths for the CRPS, thus suggesting that there is less variability in the CRPS than the RMSE difference 

between ENS-BC and ENS-CLI. The confidence intervals hit the zero line at forecast day 22 for the 

probabilistic prediction of Z500 over NH, and at day 19 for the probabilistic prediction of Z500 over 

SH. Figure 6 shows the annual average RMSE (left panels) and the CRPS (right panels) for 

instantaneous, grid-point 850 hPa temperature forecasts, computed over the NH, the SH and the tropics. 

It shows that the confidence intervals hit the zero line at between forecast day 16.5 (for T850 CRPS over 

SH) and day 23 (for T850 CRPS over NH).  
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Figure 6. Left panels: differences between the RMSE of the ENS-BC and the ENS-CLI control forecasts, 
computed over NH (top-left panel), SH (middle-left panel) and the tropics (bottom-left panel), for 
instantaneous 850 hPa temperature fields truncated at T120 (H0-T120). Right panels: as left panels 
but for the CRPS. In all panels, solid lines show the annual (107 cases) averages, and the bars the 98th 
percentile confidence interval of the difference. The forecast skill horizon(see text for definition) for 
the single control forecasts are 19.5 days for T850 over NH, 21.5 days for T850 over SH and the 
tropics; the forecast skill horizon for the probabilistic predictions is 23 days for T850 over NH, 16.5 
days for T850 over SH and 22 days for T850 over the tropics. Units in all panels are K. 
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Figure 7. As Fig. 6 but for Z500 over NH for spatially/temporally filtered fields. Top-left panel: 
instantaneous fields truncated at T120 (H0-T120: 21d forecast skill horizon). Middle-left panel: 48-
hour averaged fields truncated at T120 (H24-T120: 22d forecast skill horizon). Bottom-left panel: 
192-hour averaged fields truncated at T120 (H96-T120: 26d forecast skill horizon). Top-right panel: 
instantaneous fields truncated at T7 (H0-T7: 23d forecast skill horizon). Middle-right panel: 48-hour 
averaged fields truncated at T7 (H24-T7: 24d forecast skill horizon). Bottom right panel: 192-hour 
averaged fields truncated at T7 (H96-T30: >28d forecast skill horizon). Units in all panels are m2/s2. 

 



The Forecast Skill Horizon   

 

  

Technical Memorandum No.754 21 

 

Thus the first conclusion that we can draw from these results is that Lorenz (1969a)’s estimates for 

instantaneous, grid-point forecasts of Z500 and T850 fields, were not too different from our latest 

estimates, which indicate slightly longer values of about 17-22 days. The second one is that the precise 

value depends on the variable and the area. The third one is that different forecast skill horizons (of up 

to 3 days) are obtained if one considers probabilistic versus single forecasts. For the reasons discussed 

in the introduction, hereafter we will base our analysis and considerations on ensemble-based estimates. 

 

3.2 Sensitivity of the forecast skill horizon to spatial and temporal scales 

Figure 7 shows the sensitivity of CRPS differences between ENS-BC and ENS-CLI for Z500 over NH 

to spatial filtering and time averaging. For reason of space, results are shown only for six of the 36 

configurations that have been considered: 

 H0 T120: instantaneous values, extracted at T120 spectral truncation (equivalent to about 180 

km resolution, which is about 6 times the ENS grid spacing, which is 32 km); 

 H0 T7: instantaneous values, truncated at T7 spectral resolution (about 660 km); 

 H24, T120 and T7: as above but for 48-hour time averaged values (for each time step t, fields 

have been averaged from t-12 hours to t+12 hours); 

 H96, T120 and T7: as above but for 192-hour time averaged values (for each time step t, fields 

have been averaged from t-96 hours to t+96 hours). 

 

Z500 H0 H24 H96 

NH SH NH SH NH SH 

T120 21.0 19.0 22.0 20.5 26.0 21.5 

T30 22.0 19.0 22.0 20.5 26.0 21.5 

T7 23.0 21.0 24.0 21.0 > 28.0 22.5 

 

Table 2. Forecast skill horizons for the probabilistic prediction of the 500 hPa geopotential height 

(Z500) over NH and SH, for fields with increasingly smother spatial scales (T120, T30 and  T7 spectral 

triangular truncation) and longer time average [instantaneous (H0), 2d (H24) and 8d (H96)].The arrow 

symbol (>) indicates that the forecast skill horizon was beyond the last time step that could have been 

verified (i.e. 32d for H0, 31 for H24 and 28d for H96). 

 

Table 2 lists the forecast skill horizons for the 6 configurations, computed for Z500 over NH and SH. 

Results indicate that as the spectral filtering makes the fields smoother and the fields are time-averaged, 

the forecast skill horizon becomes longer. The sensitivity to time averaging is stronger than the 
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sensitivity to spatial filtering. Results depend on the area: for Z500 over NH, the forecast skill horizon 

for instantaneous (H0) high-resolution (T120) fields is 21 days, while it is more than 28 days for 8d-

averaged (H96) lower-resolution (T7) fields. For Z500 over SH, the impact of smoothing and averaging 

is less evident, with forecast skill horizon differences of only 3.5 days (from 19 to 22.5 days). If one 

compares the forecast skill horizon for the instantaneous, grid point values (H0-T120) with the spatially 

filtered and 8-day averaged (H96-T7) ones, results indicate that the low-frequency, larger-scale 

phenomena are between 3.5 and 7 days more predictable. 

 

 

T850 H0 H24 H96 

NH SH TR NH SH TR NH SH TR 

T120 23.0 16.5 22.0 25.0 18.0 26.0 > 28.0 25.0 > 28.0 

T30 24.0 17.0 23.0 25.0 18.0 27.0 > 28.0 25.5 > 28.0 

T7 > 32.0 23.0 26.5 > 31.0 23.5 28.0 > 28.0 > 28.0 > 28.0 

 

Table 3a. Forecast skill horizons for the probabilistic prediction of the 850 hPa temperature (T850) 
over NH, SH and the tropics (TR), for fields with increasingly smother spatial scales (T120, T30 and  
T7 spectral triangular truncation) and longer time average [instantaneous (H0), 2d (H24) and 8d 
(H96)].The arrow symbol (>) indicates that the forecast skill horizon is larger than the last time step 
that could have been verified (i.e. 32d for H0, 31 for H24 and 28d for H96). 

 

U850 H0 H24 H96 

NH SH TR NH SH TR NH SH TR 

T120 17.0 15.5 21.5 19.0 18.0 23.0 23.0 20.0 26.0 

T30 18.0 15.5 22.5 20.0 18.5 24.0   24.0 20.0 26.0 

T7 27.5 19.5 25.0 28.0 20.5 25.5 > 28.0 21.5 28.0 

 

Table 3b. As Table 3.a but for the probabilistic prediction of the 850 hPa zonal wind (U850). 

 

Tables 3 and 4, which show forecast skill horizons for the temperature and wind at 850 hPa and at 200 

hPa, computed over three areas (NH, SH and the tropics), confirm the Z500 results. For NH and SH, the 

forecast skill horizons for T850 are 1-2 days longer than the Z500 forecast skill horizons. Overall, for 
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temperature and wind at these two pressure levels the tropics have forecast skill horizons similar to the 

extra-tropics. As for Z500, the low-frequency, larger-scale phenomena (H96-T7) have forecast skill 

horizons about one week longer than the instantaneous, grid point values (H0-T120). 

 

T200 H0 H24 H96 

NH SH TR NH SH TR NH SH TR 

T120 28.0 19.0 19.5 30.5 20.0 20.0 > 28.0 22.5 20.5 

T30 28.0 19.0 19.5 30.5 20.0 20.0 > 28.0 22.5 20.5 

T7 31.5 24.5 19.5 > 31.0 25.0 20.5 > 28.0 26.0 20.5 

 

Table 4a. As Table 3a but for the probabilistic prediction of the 200 hPa temperature (T200). 

 

U200 H0 H24 H96 

NH SH TR NH SH TR NH SH TR 

T120 23.5 21.0 25.5 25.5 23.0 26.5 > 28.0 27.0 28.0 

T30 24.0 21.5 26.0 26.0 23.0 26.5 > 28.0 27.0 28.0 

T7 32.0 23.0 26.5 > 31.0 23.5 27.0 > 28.0 25.0 27.5 

 

Table 4b. As Table 3a but for the probabilistic prediction of the 200 hPa zonal wind (U200). 

 

The results discussed above for the bias-corrected ensemble (ENS-BC) can be summarized by 

comparing ‘grand-averages’ of the forecast skill horizons, computed by averaging the values for 

different variables, areas and scales. 

To highlight the sensitivity to the time averaging, the top panel of Fig. 8 shows, for six temporal scales 

(H0, H12, H24, H48, H96 and H192), the range of the 36 annual average forecast skill horizons 

computed for three spatial scales (T120, T30 and T7), four fields (Z500, T850, U850, V850) and three 

areas (NH, SH and TR). For example, the ‘0 day’ bar shows the average plus and minus the standard 

deviation, of the 36 forecast skill horizons computed for the instantaneous, local fields (H0). A simple 

linear regression of the average forecast skill horizons with the averaging period (99% correlation 

coefficient) confirms that there is a strong sensitivity to the time averaging. Average forecast skill 
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horizons range between 16-24 days for instantaneous (H0) fields, while they range between 23 days and 

the maximum available forecast length (32 days) for 16-day average fields (H192). The slope of the 

linear fit indicates a predictability gain of about 0.5 days per day of averaging. 

To highlight the sensitivity to the spatial filtering, the bottom panels shows, for three spatial scales 

(T120, T30 and T7), the range of the 72 annual average forecast skill horizons computed for the six 

temporal scales (H0, H12, H24, H48, H96 and H192), four fields (Z500, T850, U850, V850) and three 

areas (NH, SH and TR). Also in this case the average results confirm a linear relationship (83% 

correlation coefficient), with spatially-filtered fields being more predictable than local fields. In this 

case, a linear regression of the average forecast skill horizons with the spatial filtering indicates a weaker 

sensitivity to spatial filtering, with a gain of about 0.1 day for each extra 10-wave spectral filtering. 

Figure 8 highlights in few key numbers, our estimates of the length of the forecast skill horizon 

computed using one year of ECMWF bias-corrected, monthly ensemble forecasts, to be contrasted with 

the early estimates of about 2 weeks. Values depend on the scales, the variable and the area considered. 

As already mentioned, please note that for some filter settings the skill horizon exceeds the forecast 

length up to which we had data, and thus we can only say that the skill horizon is longer than the 

maximum available forecast step (this is indicated by the symbol ‘>’ in front of the forecast length). The 

forecast skill horizon ranges between 16 and 24 days for instantaneous fields, with the longest lengths 

obtained if one spatially filters the field. This range includes, in the lower end, Lorenz (1969a, b)’s 

estimates of about 2 weeks obtained for the 500 hPa geopotential field over the NH. It also clearly shows 

that the estimates are much longer, between 23 and the maximum available forecast length (i.e. 32 days 

for H0, 31.5 days for H12, ..) for time-average fields. 

It is worth to point out that the increase in predictability due to time-averaging is not entirely a result of 

assigning the forecast to the middle of the time period, so that the earlier and more accurate forecasts 

are included. We compared the skill of the time-average forecast with the skill based on time-averages 

of the score of the instantaneous forecast, assigning the average skill measure to the middle of the time 

window. Results indicate that the skill of the time-average fields is statistically significantly higher than 

the skill of time averaged scores. 
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Figure 8. Forecast skill horizon sensitivity to time-averaging (top panel) and to spectral filtering 

(bottom panel). Each panel shows the ‘grand-average’ (see section 3.4 for details) forecast skill horizon 

computed considering four variables (Z500, T850, U950, V850) and three regions (NH, SH, TR).   

 

 



  The Forecast Skill Horizon 

 

 

26 Technical Memorandum No.754 

 

 

Figure 9. Sensitivity to bias correction of annual-average (107 cases) CRPS for the 850 hPa temperature 

over NH (top panels), SH (middle panels) and tropics (bottom panels) for instantaneous fields truncated 

at T120 (H0-T120, left panels) and for 192-hour averaged fields truncated at T120 (H96-T120: right 

panels). Solid lines refer to bias-corrected ENS-BC and dashed lines to ENS without bias-correction. 

Units in all panels are K.   
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3.3 Sensitivity of the forecast skill horizon to bias correction 

Since all the ensemble forecasts have been bias-corrected, a relevant question to ask is what the impact 

of bias-correction is. To assess it, two configurations have been scored also without bias-correction: 

instantaneous (H0) and 8-day average (H96) fields, with a T120 truncation.  

Figure 9 shows the CRPS for ENS (i.e. without bias-correction; dashed lines) and ENS-BC (solid lines), 

for the 850 hPa temperature over NH, SH and TR for instantaneous (H0) and 8-day average fields (H96). 

Table 5 lists the forecast skill horizons for two fields over three areas. Results indicate that the bias-

correction has a clear impact, especially over the tropics for temperature. Over the extra-tropics, bias-

correction increases the forecast skill horizon for instantaneous fields by about 3 days, while over the 

tropics it extends it by about 3 weeks.  

 

 H0 H96 

NH SH TR NH SH TR 

Z500 - ENS-BC 22.0 19.0 n/a > 28.0 21.5 n/a 

Z500 - ENS 19.0 16.5 n/a 20.5 18.5  n/a 

T850 - ENS-BC 23.0 16.5 22.0 > 28.0 25.0 > 28.0 

T850 - ENS 19.5 16.5 12.5 21.5 18.5  6.5 

 

Table 5. Sensitivity to bias-correction. Forecast skill horizon for the probabilistic prediction of the 
500 hPa geopotential height (Z500) and the 850 hPa temperature (T850) over NH, SH and the tropics 
(TR), for instantaneous (H0) and 8-day average (H96) fields, truncated at T120. The arrow symbol 
(>) indicates that the forecast skill horizon was beyond the last time step that could have been 
verified (i.e. 32d for H0 and 28d for H96). 

 

3.4 Seasonal variations of the forecast skill horizon 

Figure 10 shows that the forecast skill horizon depends on the season. The figures shows the average 

CRPS of ENS-BC and of ENS-CLI, computed selecting 28 cases in JJA, DJF and the whole year, for 

the 500 hPa geopotential height truncated at T120. The CRPS of both ENS-BC and ENS-CLI vary, with 

the cold season showing the largest asymptotic values CRPS(ENS-CLI) and also the longest forecast 

skill horizon. The variation can be detected both if one considers instantaneous fields or time-averaged 

ones. Considering the NH, the forecast skill limit for instantaneous fields (top-left panel) are about 2 

days longer for the cold season (DJF)  (Table 6), with annual average values (considering only 28 cases) 

being somewhere in between the DJF and the JJA values. By contrast, over the SH values are about 5 

days longer for the warm season (DJF) than the cold one (JJA). Thus these results confirm an inter-

annual variation of the forecast skill horizon, and indicate that in the NH (SH) the cold (warm) season, 
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at least for the period considered in this work, is more predictable. However, care should be taken in 

generalizing these results, since the seasonal averages include only 28 cases spanning one specific year.  

 

 

Figure 10. CRPS for Z500 averaged considering 28 cases in JJA (dotted lines), DJF (dashed lines) and 
the whole year (solid lines), for ENS-BC (lines growing with forecast time) and for the reference ENS-
CLI (quasi-horizontal lines). Top-left panel: average CRPS for instantaneous fields truncated at T120 
(H0-T120) over NH. Top-right panel: as left panel but for SH. Bottom panels: as top panels but for 
192-hour average fields truncated at T120 (H96-T120). Units in all panels are m2/s2. 
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Z500 H0 H96 

NH SH NH SH 

DJF 18.5 19.5 20.0 26.0 

JJA 16.0 14.0 18.0 15.0 

YEAR 18.5 16.5 19.5 20.0 

 

Table 6. Forecast skill horizons for the probabilistic prediction of the 500 hPa temperature (T850) 
over NH and SH, averaged considering only 28 cases in DJF, JJA or spanning the whole year, for H0-
T120 and H96-T120 fields.  

 

4 Discussion 

Section 3 showed that our average forecast skill horizon estimates are sensitive to the spatial and 

temporal scale of the event of interest, consistent with other published results that there are large-scale, 

low-frequency phenomena that can be predicted weeks ahead. Our new contributions to previous results 

are twofold: firstly, the range of predictability has been quantified for the first time in a ‘consistent and 

integrated (seamless) way’, applying the same methodology (i.e. considering forecasts generated from 

the same ensemble, looking at the same fields, using the same metric and applying the same definition 

of forecast skill limit) to phenomena with different scales. Secondly, these new estimates are based on 

the ECMWF state-of-the-art medium-range/monthly ensemble forecasts for a whole year (107 cases), 

bias-corrected using bias estimates computed with 20-years of ensemble reforecasts. In other words, 

these updated estimates are based on one of (and perhaps) the best available (Buizza 2014) medium-

range/monthly ensembles. Results have indicated that the forecast skill horizon ranges from about 2 

weeks for smaller-scale, higher-frequency fields, to 4 weeks, and even beyond, for larger-scale, lower-

frequency fields.  

 

4.1 How can we reconcile the results with Lorenz (1969) estimate?  

A number of factors need to be taken into account to explain why these recent estimates extend the range 

of predictive skill into several weeks while early estimates by Lorenz (1969a) suggested that perhaps 

there is a finite time of predictability of about 2 weeks regardless how small the initial uncertainty is in 

the atmosphere. The mechanisms at work in a fluid of many scales of motion that explains this finite 

predictability time scale is the upscale growth of errors and the fact that the time scale of error growth 

decreases with the scale of motion. Our work does not dispute the presence of this mechanism. In fact, 

later work by Rotunno and Snyder (2008) and Durran and Gingrich (2014) confirmed Lorenz’s (1969a) 

work that we should expect a finite predictability time scale regardless of the amplitude of initial error. 



  The Forecast Skill Horizon 

 

 

30 Technical Memorandum No.754 

 

This is linked to the fact that in the meso-scales the kinetic energy spectrum is shallow and depends on 

horizontal wavenumber as K−5/3. On the other hand, in the synoptic and planetary scales the energy 

spectrum in the atmosphere is known to be steeper, close to K−3. Furthermore, Lorenz (1969a) used a 

very simple assumption to represent the saturation of errors while Durran and Gingrich (2014) 

introduced a more refined slowed growth as the errors near saturation. While the latter work clearly 

explains that butterflies or sea-gulls do not matter in practical terms in present-day numerical weather 

prediction, no attempt had been made to refine the estimate of the finite time scale of atmospheric 

predictability. It may be a worthwhile exercise to attempt this with the refined error saturation model of 

Durran and Gingrich (2014) and using the mixed K−3 and K−5/3 kinetic energy spectrum observed in 

the atmosphere. It would be of interest whether this exercise would yield predictability time scales more 

consistent with Kleeman’s (2008) estimate of 45 days for the mid-latitude atmosphere.  

We should also expect that details of the range of predictive skill should depend on the processes 

represented by the numerical model. Some of the more idealized work starting with that of Lorenz 

(1969a) is based on two-dimensional dynamics only. Most of the previous studies based on more 

complete global circulation models did not have a convection scheme that could simulate realistically 

the small-scale variability (Bechtold et al 2004) and the diurnal cycle (Bechtold et al 2013). The 

inclusion of moist processes is crucial for the predictability in the tropical atmosphere. Phenomena such 

as blocking and the MJO cannot be simulated by dry dynamics. In the case of the MJO, Vitart et al 

(2014) showed that improvements in the prediction of the propagation of organized convection in the 

tropics led to improvements in the skill over Europe. They also concluded that ‘.. Based on the ability 

of the IFS to simulate the impact of the MJO on tropical cyclone activities and the skill of the model to 

predict MJO events, sub-seasonal forecasts of tropical cyclone activity over weekly periods .. are reliable 

up to week 4 over some basins.’ (see their discussion in section 3.1.3).  

This result implies that predictive skill estimated using forecasts based on a model that can describe the 

MJO propagation and its links with the extra-tropics and smaller scale waves, are going to be longer 

than estimates based on a model that cannot describe them. Convection is just an example and the 

representation of other processes also plays their role. The simplified predictability studies are useful 

for understanding particular aspects of the error growth but they cannot provide a complete picture as 

they lack a state-of-the-art representation of radiation (Morcrette et al 2007), the land-surface and its 

interaction with the free atmosphere (Balsamo et al 2014), and they are also not coupled to a dynamical 

ocean and ocean wave model (Vitart et al 2007, 2014; Janssen et al 2013). Similarly, a model that can 

predict regime transitions, e.g. the onset, evolution and decay of low-frequency events such as Euro-

Atlantic blocking events, will have higher predictive skill (Pelly and Hoskins, 2003). 

Even though errors will completely saturate in the atmospheric flow over some time scale τ regardless 

how small the initial error is, there is the possibility that the distribution of weather is still modulated in 

a predictable manner beyond this time-scale τ by those components of the climate system that have a 

slower error growth. The components of the earth system that are believed to have a slower growth of 

errors include the land-surface, sea-ice and the ocean. Recent numerical weather and climate prediction 

models either include these components or are likely to include these components in the coming years. 

There is quite a range of predictability studies of the coupled atmosphere-ocean system ranging from 

highly idealized low-order systems (Vannitsem 2014) to intermediate-complexity systems (Goswami 

and Shukla 1991; Kleemann and Power 1994) and finally to full atmosphere-ocean global circulation 
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models (e.g. Collins 2002). While there is no generally established theoretical predictability horizon for 

coupled atmosphere-ocean system, there is sufficient evidence that the modulation of the atmospheric 

PDF of weather by the slower ocean extends to months and seasons. Furthermore, recent results indicate 

that sea-ice prediction may induce predictable signals up to a lead time of three years (Tietsche et al 

2014). In those regions and seasons with a sufficiently strong coupling between land surface and 

atmosphere, the land surface can also carry predictable signals (e.g. Guo et al 2012). 

 

4.2 Why should ensembles be used to estimate predictability? 

For this work, the forecast skill horizon has been estimated using an ensemble rather than single 

forecasts, since they provide a more complete estimate of the future forecast states (Palmer et al 2007, 

Buizza 2008). We selected a simple metric for measuring the quality of forecasts of scalars, CRPS. The 

CRPS is a reasonable choice as it does not require a discretisation of the state space and can be computed 

easily with the available ensemble sizes. However, we cannot exclude that it leads to an underestimation 

of the actual range of predictive skill that one might be able to establish in theoretical work with much 

larger ensembles and information theory based approaches such as relative entropy. Further evidence of 

the concept of the propagation of a ‘predictive signal’ from the large to the small scales, that counteracts 

the upscale error propagation, comes from recent work at ECMWF. Vitart et al (2014) reviewed the link 

between the MJO and Euro-Atlantic predictability, and showed that improvements in the prediction of 

the propagation of organized convection in the tropics led to improvements in the skill over Europe. 

This result implies that predictive skill estimated using forecasts based on a model that can describe the 

MJO propagation and its links with the extra-tropics and smaller scale waves, are going to be longer 

than estimates based on a model that cannot describe them.  

With ensembles, the predictable signal in the modulation of the distribution of weather can be extracted 

better than with single forecasts as the RMS error of a single forecast will exceed that of the RMS error 

of the climatological mean long before errors are completely saturated. Ensembles should be able in 

principle to extract even small modulations in the probability distribution of weather induced by some 

predictable component of the earth system. In addition, time and space averaging is a basic way to focus 

on the more predictable components and to filter the less predictable components. The fact that larger-

scale/lower-frequency phenomena are more predictable than smaller-scale/higher-frequency 

phenomena can help us understanding why the forecast skill horizon is now longer than the two weeks 

estimated in the 1970s-1980s. Shukla (1998) talked about ‘predictability in the midst of chaos’ to explain 

how skilful long-range predictions of phenomena like El Nino were possible despite fast error-growth 

rates from small to large scales. Hoskins (2013) talked about ‘discriminating between the music and the 

noise’, and introduced the concept of a predictability chain, whereby, for example, ’a large anomaly in 

the winter stratospheric vortex gives some predictive power for the troposphere in the following 

months’. 
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4.3 What are the main limitations of our CRPS-based definition of skill? 

The definition of the forecast skill horizon as done in this work via the CRPS of the bias corrected 

ensemble (ENS-BC) and a sample from the climatological distribution (ENS-CLI) imply certain 

limitations that we would like to discuss now.  

We measure the forecast skill horizon by using a statistical significance test that determines when the 

CRPS of ENS-BC is not smaller any more than the CRPS of ENS-CLI. The distribution of CRPS 

differences in the sample of O(100) cases determines the width of the confidence intervals together with 

the probability threshold of 0.99 that the actual CRPS difference falls within the confidence interval. 

The length of the confidence intervals derived from the significance test will depend on the sample size. 

For a larger (smaller) sample the confidence intervals will shrink (expand). In consequence, the forecast 

skill horizon might increase if a larger sample were available. Ideally, one would like to have an estimate 

of the skill in the limit of very large sample sizes. However, there is no obvious way in which this can 

be achieved. 

The skill horizon also depends on the quality of the climatological distribution. In theoretical 

predictability studies such as that of Kleeman (2008), one can generate very large samples from the 

model climatology. This permits us to accurately estimate the distribution in principle. Here we are 

limited by 20 years of re-analysis and the fact that we require chronological sequences while at the same 

time we need to preserve the annual cycle. This resulted in a climatological ensemble with Mc =100 

members. We assume that the sensitivity to our definition of the climatological ensemble is small. For 

theoretical work using a perfect model context, one could actually imagine situations with infinite 

forecast skill horizon simply due to the fact that the size of the forecast ensemble Mf is larger than the 

size Mc of the climatological ensemble. In principle, this systematic bias of the CRPS due to the finite 

ensemble size can be corrected for (Ferro et al, 2008). 

In addition to the finite size of the climatological ensemble, the non-stationarity of the current climate 

implies that in principle one might detect much larger forecast skill horizons if the signal due to 

anthropogenic climate forcing is correctly predicted and the reference for the estimation of the forecast 

skill horizon is based on a climatological distribution from the past 20 years. If one uses a large set of 

reforecasts to estimate skill, it should be possible to distinguish the skill arising from the ability to predict 

the average climate change signal from the skill that is due to predicting sub-seasonal to interannual 

variability. This could be achieved by defining a climate distribution based on data centred on the year 

of interest (but excluding it of course). 

Here, we use a bias correction, which is a very basic ensemble calibration technique. More detailed 

statistical corrections of the raw model output may be able to further extend the forecast skill horizon, 

consider e.g. the multivariate regression forecast proposed by DelSole (2005). The degree to which this 

is possible will be limited obviously by the size of the available training data and their consistency with 

the real-time forecasts. In the context of a changing climate and a changing observing system there will 

be ultimately limitations on what can be achieved with more elaborate calibration techniques. Weigel et 

al (2008) make the point that the skill increase due to time averaging is partly due to the simple fact that 

longer time windows will include more accurate shorter lead time forecasts in the average. One could 

accurately quantify the skill increase that is due to this aspect. Our results are consistent with this 

statement but show that some increase in skill is due to time-averaging the fields (see Sec. 3.2).  
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We evaluate the average predictability over one year. This has two implications. Firstly, inter-annual 

variations in predictability could lead to some uncertainty in estimating the multi-year average forecast 

skill horizon. Secondly, users may also be interested in flow-dependent variations in predictability. It 

would be of interest to quantify the variations of the forecast skill horizons with flow regimes. 

Establishing these variations is a significant task beyond the scope of this work. The challenge is that 

conditioning on particular flow regimes will reduce the sample size and make it harder again to reliably 

estimate the forecast skill horizon. 

Finally, we consider ensemble forecasts skilful if their CRPS is statistically different from the CRPS of 

the reference forecast, even if the skill level is, in absolute terms, very small. Although this definition 

has the limitation that the number of users who could exploit this very low level of skill might be very 

limited, it is an objective way to quantify predictability, usually followed to estimate predictability by 

comparing the accuracy of a forecast to the one of a well-defined reference.  

 

5 Conclusions 

Numerical weather prediction has seen, in the past 25 years, a shift from a ‘deterministic’ approach, 

based on single numerical integrations, to a probabilistic one, with ensembles of numerical integrations 

used to estimate the probability distribution function of forecast states. This shift made it meaningful to 

extend the forecast length beyond 10 days, and to establish ensemble seasonal forecasting. Our work, 

which has shown that the probabilistic forecast skill horizon extends beyond two weeks, complements 

and refines the results of the 1970s-1980s that suggested that errors of instantaneous local forecasts will 

saturate on a time-scale of about 2 weeks. The assessment of the predictive skill of ECMWF monthly 

ensembles has indeed indicated that the forecast skill horizon is sensitive to the spatial and temporal 

scale of the predicted phenomena.  

This work has shown that by applying the same methodology (in our case a CRPS-based metric) to 

measure ensemble skill of forecasts with different spatial and temporal scales, it is possible to make 

‘seamless’ quantitative considerations on what scales can be predicted at different forecast ranges.  

Our results, obtained applying the same methodology and skill metric to ECMWF ensemble forecasts 

with increasingly coarser spatial and temporal scales, indicate that while instantaneous, grid-point fields 

have forecast skill horizons of between 16-23 days, large-scale, low-frequency filtered fields have 

forecast skill horizons of beyond 23 days. The forecast skill horizon depends not only of the field’s 

spatial-temporal scale, but also on the variable and area, and on the season. It is worth stressing the fact 

that, since our work is based on forecasts with a maximum forecast length of 32 days, in some cases we 

could only state that the skill horizon was beyond the longest available forecast length (which is also a 

function of the time-averaging period).  

Forecast skill horizons beyond 2 weeks are now achievable thanks to major advances in numerical 

weather prediction. More specifically, they are made possible by the synergies of better and more 

complete models, which include more accurate simulation of relevant physical processes (e.g. the 

coupling to a dynamical ocean and ocean waves), improved data-assimilation methods that allowed a 

more accurate estimation of the initial conditions, and advances in ensemble techniques. 
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