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How rare is the Draupner wave event?

Abstract

Cavaleri et al. (2015) have produced a simulation of the famous Draupner wave event (that occurred

on the 1rst of January 1995 at 15:20 at the Draupner platform) using a new, high-resolution version of

the ECMWF forecasting system. According to this simulation, which has a horizontal resolution of

about 10 km and 137 layers in the vertical, there are clear signs that around the time of the wave event

evidence of the presence of a polar low is found resulting in a sea state consisting of two systems,

namely a windsea and a swell. As suggested by a study of M. Onorato such two-component systems

might be more prone to Modulational Instability giving rise to higher probabilities of extreme events,

but the two systems need both to be narrow band.

After providing an overview of the theoretical probablistic approach that will be followed (which

includes new results on how to determine skewness and envelope kurtosis for general spectra), the

extreme statistics over the first 20 hours of the forecast at the Draupner platform are presented. It is

found that there is some evidence to suggest that at the time of the freak wave event the statistics in

terms of ’envelope’ skewness and kurtosis are exceptional. In addition, one might ask the question

how likely the occurrence of this freak wave event is. Then, for a domain of 10× 10 km2, which

corresponds to the spatial resolution of the wave model used in the simulation, it is found that the

probability that maximum wave height is equal or larger than the maximum Draupner wave height is

about 13%. This is a fairly large probability, but it should be noted that in order to achieve these large

probabilities, one needs to introduce a number of nonlinear effects, related to skewness and kurtosis,

in the probability distribution function (pdf) of wave height. Using Gaussian statistics, corresponding

to linear waves, the probability drops to only 0.5%, hence, according to linear theory, the Draupner

wave event is not very likely.

Finally, by comparing with results from the Tl 799 (about 25 km) version of the ERA-interim software

it is clear that for a realistic simulation of this extreme event spatial resolution matters. The new

version of the ECMWF model allows the simulation of a small-scale polar low which is absent in

the ERA-interim run. As a consequence, the sea state in the high-resolution run is much steeper and

contains longer waves so that near the Draupner location with depth of 69 m shallow water effects

are much more important, giving an enhancement of probabilities at the time the Draupner event

occurred. On the other hand, the ERA-interim simulation, which has shorter, less steep waves, does

not suggest that the sea state has extreme statistics.

1 Introduction.

In this note I report on my findings regarding how likely the occurrence of the Draupner freak wave event

is in the light of present day understanding of the dynamics of ocean waves.

In §2 a description of the method is given. Starting point for this is Janssen (2014) which describes

an analysis of time series based on the envelope ρ . The square of the envelope is a measure for the

potential energy of the waves, E. In fact, one has E = ρ2/2 and this is a popular measure to characterize

extreme events in fields such as nonlinear optics because only the envelope of the wave train can be

observed but not the wave train itself. I suggest to use the same measure in the field of ocean waves

as it is a measure that has physical relevance. For convenience, and to stay close to oceanographic

practice, I will also use the envelope wave height h which is defined to be twice the envelope height,

i.e. h = 2ρ . If the effects of nonlinearity are small, the pdf of envelope wave height may be obtained

by means of a Taylor expansion of the logarithm of its generating function. This basically gives an

expansion where the coefficients are the third-order (skewness) and fourth-order (kurtosis) cumulants of

the random envelope. Here, envelope skewness and kurtosis for the bound waves can in principle be

obtained from the wave spectrum following a procedure in Janssen (2009), who applied it to obtain the

surface elevation statistics, while the contribution from the free waves is obtained from Janssen (2003).

This approach seems to work well as follows from comparisons with pdf’s observed in the laboratory.
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Nevertheless, this statistical theory has a restricted range of validity. From a comparison with maximum

wave height data obtained in the field by Janssen and Bidlot (2009) (see their Fig. 8) it is evident that the

theoretical pdf starts to deviate from the observed one for extreme sea states with hmax/HS > 2.5. Since

for the Draupner wave event the envelope wave height is about three times the significant wave height it

follows that this event is clearly outside the domain of validity of the present theory and an extension of

the validity range is required.

Nowadays there is ample evidence that for very extreme (sea) states the pdf of envelope wave height has

an exponential tail, resulting, compared to the present theory, in much larger probabilities for extreme

events. Evidence for an exponential tail follows from numerical simulations (e.g. Janssen (2014) and

the Appendix), comparison with field data (Janssen and Bidlot, 2009), but the range over which the

exponential tail is found is fairly small. The reason for this fairly small range is related to the fact that in

oceanography we are dealing with a limited amount of extreme events. On the other hand, in nonlinear

optics and liquid crystals the amount of extreme events is much larger so that accurate estimates may be

given for even small probabilities, of the order of 10−6 and even smaller. As a consequence, the tail of

the pdf may be observed over a much wider range and the experimental evidence suggest that this tail

is exponential. It is therefore important to modify the present approach by adding an exponential tail.

For liquid crystals, S. Residori mentioned to me (Residori, private communication, 2015; Montina et al.,

2009) that the probability distribution function p(E), with E the power of the signal normalized with its

average, can be approximated by the following simple empirical form,

p(E) = Ne−
√

c1+c2E ,

where the normalization factor N and the coefficients c1 and c2 follow from a fit with the observations.

This is a very intriguing form as it describes a gradual transition from a Gaussian state to a state deter-

mined by an exponential distribution. Rather than fitting to observations, the relevant parameters will be

determined by matching with the approximate expression of the wave height probability at the edge of

its range of validity. Thus, the fitting parameters will implicitely depend on the value of skewness and

kurtosis obtained from the two-dimensional spectrum.

In §2 and §3 I will describe and discuss the application of this modified method to the Draupner case. I

will concentrate on the question how likely the Draupner freak wave event is in the context of the present

formalisme. I will do this using the maximum wave height distribution. It is remarked that normally one

determines the maximum wave height distribution for a time series of 20 min. length. Thus, one typically

deals with a few hundred events. Here I suggest a somewhat different approach, which is based on the

assumption that extreme events are caused by constructive interference, and since the waves are of finite

amplitude the sea state has finite skewness and kurtosis which will give rise to an additional amplification

of the extreme event. In addition, when the sea state is sufficiently coherent the Benjamin-Feir instability

(Benjamin and Feir, 1967) will give rise to an additional focussing of wave energy during the extreme

event. In other words, an extreme event is similar to the luck of the draw from the lottery, since we have

no detailed knowledge of the phases of the individual waves. For this reason a statistical approach seems

to be appropriate, but clearly this approach cannot be validated directly against exceptional, singular

events such as the Draupner case. At best one should be able to determine how likely such an event is

in the context of our model of ’reality’. I decided therefore to determine for a domain of the size of the

model grid box the probability that maximum wave height exceeds or is equal to the observed value at the

Draupner location. Evaluation of this exceedance probability relies, of course, on an accurate modelling

of the tail of the distribution, while it is also sensitive to the estimation of the number of events in a

spatial domain.
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Figure 1: Time series η of the Draupner freak wave (black). The envelope time series ρ is shown in red and it

clearly shows how extreme this event is. The corresponding local wave energy at the maximum is about 20 times

the average wave energy.

2 The method.

Following Janssen (2014) a time series analysis based on the envelope wave height will be used. In Fig.

1 I show the timeseries of surface elevation and envelope, where the envelope was obtained by Miguel

Onorato using the Hilbert transform. The figure clearly shows that extreme events are well characterized

by the envelope method. To make things more quantitative let us introduce the local energy E = 〈η2〉
and introduce the envelope ρ according to η = ρ cosθ . One finds

E =
1

2
ρ2, (1)

while the normalized local energy is given by E = E /σ2 with σ2 =m0 the variance of the sea surface and

m0 the zeroth moment of the spectrum. The value E = 1 then corresponds to a local wave energy which

equals the average wave energy in the domain of interest. The Draupner wave event has E ≃ 20 which

illustrates that at the focal point there has been a considerable amplication of wave energy, therefore

this is quite an extreme event. As an alternative measure I introduce the local wave height as twice the

envelope height ρ and the normalized envelope wave height h becomes

h =
2ρ

4σ
(2)

and the relation between normalized envelope wave height and local energy is E = 2h2 so that for the

Draupner event hmax = 3.1.

Technical Memorandum No. 775 3



How rare is the Draupner wave event?

Janssen (2014) has obtained the following envelope wave height distribution for a weakly nonlinear sea

state. It reads

p(h) = 4he−2h2 {

1+C4

(

2h4 −4h2 +1
)

+C2
3

(

4h6 −18h4 +18h2 −3
)}

. (3)

where the parameters C4 and C2
3 follow from knowledge of the two-dimensional wave spectrum and are

related to the kurtosis and skewness of the sea state. The envelope kurtosis κ4 is given by

κ4 = κ40 +2κ22 +κ04 (4)

so that

C4 =
κ4

8
, (5)

while

C2
3 =

κ2
3

72
, κ2

3 = 5(k2
30 +κ2

03)+9(κ2
21 +κ2

12)+6(κ30κ12 +κ03κ21) (6)

The κ’s refer to a number of cumulants of the joint distribution of the surface elevation η and its Hilbert

transform ζ . In addition, it is noted that both free and bound waves may contribute to the cumulants.

From the pdf for wave height, Eq. (3), one may then immediately obtain the pdf of wave energy, since

p(h)dh = p(E)dE with E = 2h2. The result is

p(E) = e−E
[

1+C4A(E)+C2
3B(E)

]

, (7)

where

A(E) =
1

2
E2 −2E +1, B(E) =

1

2
E3 − 9

2
E2 +9E −3. (8)

Finally, for the purpose of estimating the maximum wave height distribution the exceedance probability

P(E > Ec) is required. It follows from an integration of the pdf (7) from E to infinity, with the result

P(E) = e−E
[

1+C4A(E)+C2
3B(E)

]

, (9)

where

A(E) =
1

2
E(E −2), B(E) =

1

2
E(E2 −6E +6). (10)

2.1 Free waves.

The free wave case has been discussed extensively by Mori and Janssen (2006). For the free waves the

skewness vanishes while the kurtosis enjoys certain symmetry properties in such a way that κ04 = κ40

while κ22 = κ40/3 so that

C
f ree
4 =

1

3
κdyn

40 , (11)

where κdyn
40 is explicitely given by Janssen (2003) in terms of the directional angular frequency spectrum

E(ω ,θ), i.e.

κdyn
40 =

12g

m2
0

∫

dθ1,2,3dω1,2,3T1,2,3,4

√

ω4

ω1ω2ω3

×R(∆ω , t)E1E2E3. (12)

4 Technical Memorandum No. 775



How rare is the Draupner wave event?

0 5 10 15 20
sig_om^2 omega_p T

0

0.01

0.02

0.03

0.04

0.05
C

_4
^(

d
y

n
)

Figure 2: Evolution of dynamic kurtosis κ
dyn
40 /3 as function of the dimensionless time τ = σ2

ω ωpT , where σω is

the relative width of the frequency spectrum and ωp is the peak wavenumber.

Here, the time-dependent real part of the resonance function R(∆ω , t) = [1− cos(∆ωt)]/∆ω , the fre-

quency mismatch ∆ω = ω1 +ω2 −ω3 −ω4, while the fourth wave number follows from the resonance

condition in wave number space, i.e. k4 = k1 +k2 −k3. The frequency ω4 is obtained by evaluating the

dispersion relation at the fourth wavenumber. Eq. (12) gives the evolution in time of the dynamic part of

the kurtosis for given wave spectrum. In general no solution is known so a numerical evaluation of this

six-dimensional integral is required. I have written software to calculate κdyn
40 for arbitrary spectra and

arbitrary depth such that kpD > 0.7. The software has been validated for a number of special cases of

which the solution is known, namely for Gaussian spectra in the narrow-band approximation. It should

be realized that Eq. (12) is quite expensive to evaluate because it involves a six-dimensional integral.

With a resolution of 36 frequencies and directions we are looking at 366 = 2,18 Billion evaluations of

the transfer coefficient which is quite substantial. For this reason I inspected before hand the simulated

spectra of the Draupner case as provided by L. Bertotti. It turns out that a large part of the frequency-

direction space contained small values so that I filtered the evaluation of the integrals accordingly. This

filtering operation reduced the number of evaluations of the transfer coefficient to about 11 million. The

time evolution of the dynamic kurtosis of all the 21 spectra is shown in Fig. 2, where time is scaled

with the parameter σ2
ωωp with σω the relative frequency width and ωp the peak frequency. The time

scale τnl = 1/σ2
ωωp is the natural time scale that occurs when one assumes that the wave spectrum is

narrow-band so that the evolution of the waves is determined by the nonlinear Schrödinger equation. Fig.

2 shows a surprisingly universal behaviour of the time evolution of the kurtosis, having an overshoot fol-

lowed by a leveling off. The saturation occurs on a fairly long time scale of a few hundred wave periods

and for estimating the severeness of the sea state the mean value of kurtosis averaged over the second

half of the period will be used.
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2.2 Bound waves.

As shown in Janssen (2014) the properties of the statistics of the bound waves is different from that of

the free waves. Regarding the skewness I have now shown that for general spectra the following result is

found:

κ12 =
κ30

3
,κ21 = κ03 = 0, (13)

where κ30 follows from knowledge of the wave spectrum, i.e.

κ30 =
3

m
3/2

0

∫

dk1,2E1E2 (A1,2 +B1,2) , (14)

where the coupling coefficients are given in Janssen (2009). As a consequence one finds for the skewness

factor given in Eq. (6),

Cbound
3 =

κ30

3
. (15)

A similar analysis can be performed to obtain a general expression for the envelope kurtosis. This is a

very laborious task, however, and to make sure of the result I have taken the narrow-band limit which

is in perfect agreement with an expression for the envelope kurtosis for a single nonlinear wave train.

Finally, the single mode expression has been validated against numerical simulation of the Stokes wave

train. Some of the details are given in the Appendix. For general spectra one finds for the envelope

kurtosis κ4 the result

κ4 =
32

m2
0

∫

dk1,2,3E1E2E3

{

A1,2A2,3 +A1,2B2,3 +
1

2
C1+2−3,1,2,3H1+2−3

+B1,3B3,2 [H3−2H3−1 +H2−3H1−3]} (16)

where, again, the coupling coefficients are given in Janssen (2009). Then, the bound-wave part of the

kurtosis factor C4 follows from (5), hence,

Cbound
4 = κ4/8. (17)

The contributions by the bound waves to skewness and kurtosis have been evaluated as well, and in Fig.

3 are shown the contributions of both free and bound waves to the kurtosis factor C4 and the bound

waves contribution to C3 for all the 21 simulated spectra. There is an indication that around the time of

the freak wave event the sea state was more extreme, this is seen in particular for the skewness factor

which has a maximum at 16.00 hrs, and even more pronounced for the kurtosis factor. In order to try

to understand the increase in stats around the Draupner event, the Appendix shows for the single mode

result a plot of the depth dependence of the skewness C3 and kurtosis factor C4. For a dimensionless

depth x = k0 × h less then 2, the kurtosis factor is seen to increase quite rapidly. Therefore, because of

this sensitive dependence on depth, it is of vital importance to have a realistic simulation of the sea state,

in particular regarding aspects such as the steepness of the waves and their peak wavelength.

2.3 Adding an exponential tail.

Nowadays there is ample evidence that for very extreme (sea) states the pdf of envelope wave height has

an exponential tail, resulting, compared to the present theory, in much larger probabilities for extreme
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Figure 3: Evolution in time of simulated skewness and kurtosis factors C3 and C4 on the 1rst of January 1995 at

the Draupner platform.

events. Evidence for an exponential tail follows from numerical simulations (e.g. Montina et al. (2009),

Walczak et al. (2015), Janssen (2014), see also the Appendix), and comparison with field data (Janssen

and Bidlot, 2009). Also, in nonlinear optics and liquid crystals a considerable amount of experimental

evidence is available that suggests that this tail is exponential. It is therefore important to modify the

present approach by adding an exponential tail. For extreme waves in a nonlinear optical cavity Montina

et al. (2009) have noted that the observed probability distribution function for intensity E can be well

approximated by the following simple stretched exponential form

p(E) = Ne−
√

c1+c2E

where 1/c1 provides a measure for deviations from Gaussian statistics which gives an exponential dis-

tribution. This empirical form has still three unknowns, namely a normalization factor N and the co-

efficients c1 and c2. After some trial and error it was realized that by using a stretched exponential to

approximate the cumulative distribution function (CDF) only two fitting coefficients were needed.1 I

therefore decided to match the form

P(E) =
∫ ∞

E
dx p(x) = e−z, z =−α +

√

α2 +βE, (18)

to the theoretical CDF (10) for normalized wave energy E. In order to do so one only needs to determine

the parameters α and β .

1One could equally well fit the stretched exponential form (18) to the theoretical pdf. I have performed this exercize, but it

was found that the relative rms error of the fit was typically twice as large compared to fitting the stretched exponential to the

CDF, i.e. 11% versus 4.5%.
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This simple form has some interesting properties. First of all, the condition P(E) = 0 is automatically

satisfied so that the underlying pdf p(E) is normalized to 1. Second, for small E Taylor expansion of z

gives z = βE/(2α) hence

lim
E→0

P(E) = e−
β

2α E , (19)

while for large E one finds

lim
E→∞

P(E) = e−
√

βE . (20)

Realizing that E = 2h2 this means that according to (19) for small E we have a Gaussian distribution

while according to (20) for large E there is an exponential distribution.

By differentiation of the CDF (18) it is straightforward to obtain the pdf p(E). By definition

p(E) =−∂P/∂E

so that

p(E) =
β

2(z+α)
e−z, z =−α +

√

α2 +βE. (21)

The moments of the probability distribution function are defined as

In = 〈En〉=
∫

dEEn p(E), n = 1,2,3, .... (22)

Partial integration and utilizing that the CDF has a simple exponential form the moments may be written

as an integral over the CDF P, or

In =
∫

dzEnP(z), n = 1,2,3, ..., (23)

and E can be expressed in terms of z, E = (z2 +2αz)/β . It is then possible to obtain expressions for the

moments. The first few are

I0 = 1, (24)

hence the pdf is properly normalized, while

I1 = 〈E〉= 2

β
(1+α). (25)

Now, realizing that the energy variable E is normalized with the variance of the signal one would expect

that the average value of E should be equal to 1. This then gives the following relation between α and

β , i.e.

β = 2(1+α). (26)

Another relation between α and β is obtained by matching the empirical CDF (18) with the theoretical

one, given in Eq. (9), which is denoted by Pth. The fitting constant α then follows from the condition

that at the edge of the range of validity, taken as Eb = 10 (corresponding to h = 2.2), the empirical CDF

equals the theoretical one, i.e. P(Eb) = Pth(Eb). This gives for α , eliminating β using (26),

α =
f 2
b −2Eb

2(Eb + fb)
, fb = logPth(Eb). (27)
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Figure 4: Pdf of envelope wave height for the Draupner freak wave event at 16:00 hrs. The black line corresponds

to the empirical approach where α and β have been matched using (26) and (27). The red line corresponds to the

theoretical pdf, while the green line corresponds to linear theory.

where fb is the logarithm of the theoretical CDF at the boundary given by E = Eb. In this manner

a connection between skewness and kurtosis of the sea state, via fb, and the fitting parameters of the

empirical CDF has been established. For relatively small values of C4 and C3 this matching procedure

seems to be working well. As an illustration, I show in Fig. 4 the result of the matching procedure

applied to the most extreme stats of the Draupner case at 16:00 hrs. The empirical form shows a gradual

transition from a Gaussian pdf to an exponential pdf. When the results are plotted on a linear scale

(not shown), it is seen that the empirical pdf (18) gives a perfect match with the theoretical result in

the range of h-values from 0 to 2. Clearly, nonlinear effects are only relevant for extreme values of the

dimensionless envelope wave height. In addition, I inspected for this case what is the main contributor

to the deviations from the Gaussian distribution, effects of skewness or kurtosis. In this case it turns out

that both skewness and kurtosis contribute but the impact of kurtosis on the deviations from Normality

is slightly larger.

3 How rare is the Draupner wave event?

We have now developed all the necessary ingredients to be able to do the next step, that is try to assess

how likely the Draupner freak wave event is. The present approach is based on a statistical representation

of the sea state in terms of the wave spectrum. Therefore, it is assumed that the wave spectrum gives an

Technical Memorandum No. 775 9
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average description of the sea state in a domain of the size of Lx ×Ly km2 surrounding the grid point of

interest, where Lx and Ly are the distance between two gridpoints in the x- and y direction, respectively.

For the present simulation of the waves the spatial resolution is 10 km, therefore Lx = Ly = 10 km.

Making use of the spectrum we are then able to obtain the ensemble averaged probability distribution

function for envelope wave height and linear wave energy. The question then is how likely will the

Draupner freak wave event be considering a domain size of 10× 10 km2. To be more specific we are

going to determine the probability that in the domain in question maximum envelope wave height is equal

or larger than the observed value at the Draupner platform. In order to achieve this we need to obtain the

maximum wave height pdf and we need an estimate of the number of events in a spatial domain of given

size.

Goda (2000) obtained the maximum wave height distribution from a (time) series of N wave events.

Here we use Goda’s (2000) approach but now applied to a spatial series of the envelope wave height.

Introducing the function

G (h) =−NP(h),

which, apart from a minus sign, equals to the product of the number of events N and the cumulative

distribution

P =
∫ ∞

h
dh p(h),

we have for the maximum envelope wave height distribution

pmax(h = hmax) =
dG

dh
exp(G ). (28)

Close inspection of this result shows that this distribution is a double exponential function in general,

but for large maximum envelope wave heights (typically of the order of 2 or larger) the pdf simplifies

considerable because it becomes

pmax(h) = N p(h).

Now the probability that maximum envelope wave height equals or exceeds a given observed value,

denoted by hobs
max, is given by

Pex(h
obs
max) =

∫ ∞

hobs
max

dh pmax(h) = 1− exp(−NP(hobs
max)) (29)

and the main task is how to choose the number of events. Janssen (2015) has studied this issue extensively

for time series. To that end one needs to define what an event is. It is customary to define an event with

respect to a reference level hc, therefore an event starts where the envelope has an upcrossing and finishes

at the next downcrossing. The frequency of events is then determined by the upcrossing frequency, and

N then equals the product of the upcrossing frequency and the length TL of the timeseries. However, the

frequency of events depends on the chosen reference level, and, therefore it may be more appropriate

to introduce an average frequency. Janssen (2015) took as measure the average of the rate of change

of h with time, ḣ, normalized with h itself. The averaging is done using the joint pdf of h and ḣ which

for a Gaussian sea state can be easily obtained from the joint pdf of envelope ρ and phase θ and its

time derivatives (see e.g. Janssen, 2014). Performing the averaging one finds for the average upcrossing

frequency

〈 fup〉= 〈ḣ/h〉= νω̄, (30)

where ω̄ is the mean angular frequency, determined by the ratio of the first and zeroth moment of the

spectrum, ω̄ = m1/m0, while ν is the spectral width parameter defined as ν = (m0m2/m2
1 −1)1/2. When
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analyzing timeseries in terms of the envelope, the frequency scale νω̄ , which corresponds to the inverse

of the timescale of the wave groups, is introduced in a natural way. The number of envelope events N is

therefore, as expected, related to the number of wave groups, thus

N = νω̄ TL, (31)

and for this choice of the number of events good agreement between the maximum wave height pdf

and Monte Carlo simulations of a Gaussian sea state was reported. In particular, it was shown that the

expected maximum envelope wave height scales with N while it does not scale with the number of waves

Nw = TL/TP (with TP the peak period) in the time series.

One would expect that the analysis of the number of events in a spatial domain can be done following

a similar approach.2 It would therefore be most natural to estimate N by determining the average up-

crossing wavenumber using 〈hx/h〉. Formally this can be done and a similar result will be found as the

one in (29), but the width of the wavenumber spectrum µ = (m0m2/m2
1 −1)1/2 involves moments of the

wavenumber spectrum. Unfortunately, the second moment m2 is in this case not well-defined because the

high-wavenumber tail of the spectrum scales like k−3 and therefore the second moment has a logarithmic

singularity.

I therefore decided to estimate the number of events in a slightly different fashion. Consider a wave

spectrum and rotate it in such a way that the mean wave direction is in the x-direction. The wavenumbers

kx and ky are then given by

kx = k cosθ , ky = k sinθ .

and the width in the x-direction and y-direction is obtained by a Taylor expansion of the wavenumbers

around the vector k = (kx,0). Hence,

δkx = δk, δky = kδθ .

where δθ is basically the directional width of the spectrum σθ , while the width in the wavenumber

spectrum follows from the relation δk = ∂k/∂ω × δω . Thus for deep water the relative width of the

wave number spectrum becomes σk = δk/k = 2δω/ω = 2σω , or, since the group velocity vg = ∂ω/∂k

is half the phase speed c = ω/k, the width in wavenumber space is twice the width in frequency space.

All in all, the number of events on the two-dimensional surface becomes

N2D = 2σθ/σω ×N2. (32)

where N is given in (31) and I have chosen the duration in such a way that it matches the domain size,

i.e. TL = Lx/vg. Using the above expression for the number of events it should be noted that in a domain

of 10×10 km2 the number of events is quite large, for the Draupner event I typically find N = 350,000.

Note that for the Draupner cases considered the directional width σθ is typically 2-3 times larger then

the width σω in the frequency direction. Assuming that the ECWAM wave model is properly modelling

the directional width, it is therefore unlikely that for the Draupner case nonlinear focussing caused by

the Benjamin-Feir instability plays a dominant role. In addition, it should be noted that the Draupner

2 That is, if one estimates the number of ’independent’ events in the x-direction by Nx and in the y-direction by Ny the total

number of events is N2D = Nx ×Ny, and the probability of the ’extreme’ event is proportional to N2D. However, an argument

from the field of Topology (for an accesible reference see Worsley, 1996) suggests that the chance on an extreme event in

2D is considerable larger. Probabilities for extreme events in 2D in this work are therefore underestimated. This theorem

from Topology is based on an Gaussian sea surface and work to extend this into the nonlinear regime still needs to be done.

Nevertheless, a number of researchers (see e.g. Baxevani and Richlik, 2004; Fedele, 2012; Benetazzo et al., 2015) have applied

this approach to obtain the recurrence probability of extreme events.
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location has a water depth D of 69 m and at the time the freak wave event happened the wave spectrum

had quite low frequencies in such a way that kpD = 1.45 which is close to the value of the dimensionless

wavenumber, i.e. kpD = 1.363, where according to Janssen and Onorato (2007) the nonlinear transfer

coefficient T1,2,3,4 of Eq. (8) vanishes.
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Figure 5: Evolution in time of simulated exceedance probability Pex(h
obs
max) for hobs

max = 3.1. Location is the Draup-

ner platform on the 1rst of January 1995.

Combining everything together I show in Fig 5 the time series of the exceedance probability given in

Eq. (29), where I have chosen for observed dimensionless maximum wave height hobs
max = 3.1. Three case

are shown, probabilities using linear theory (green), nonlinear theory (red) and nonlinear theory with an

exponential tail (black). It is seen, according to nonlinear theory with exponential tail added, that for

the given domain it is fairly likely that the freak wave event could have occurred in the Draupner area.

According to linear theory, on the other hand, this seems not very likely.

Compared to standard nonlinear theory, the addition of the exponential tail has increased probabilities by

a factor of 3-4. I think this is quite substantial, but it will only happen when the event is really extreme,

such as the Draupner event. Furthermore, with some optimism in mind, it could be argued that there

is some evidence that the freak wave event should have most likely occurred around 15:00-16:00 hrs

in the afternoon simply because the exceedance probability is maximum at that time. This is probably

not a very scientific statement. However, note that from 10:00 and onwards the exceedance probability

is gradually increasing towards its maximum. Because of the sudden drop from 9:00 to 10:00 I have

tried to understand why the shape of the 10:00 spectrum is so special, but so far I have not succeeded to

understand this. The time evolution of the expectation value of maximum wave height, as shown in Fig.
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Figure 6: Evolution in time of simulated expectation value of maximum envelope wave height at the Draupner

platform on the 1rst of January 1995. The observed maximum is about 37 m

6, suggests, however, that this might be related to a sudden strengthening of the wind at that time.

Finally, it is important to realize that a realistic simulation of an extreme event such as discussed in this

note is only possible using a high-resolution forecasting system. In order to illustrate this point I show

in Fig. 7 a comparison of exceedance probabilities obtained from the new high-res system (with spatial

resolution of 9 km) with results from a low-resolution (25 km) version of the ERA-interim analysis and

forecasting system. It is clear that from the low-resolution system there is virtually no indication that

there is an extreme event around 15:00 hours in the afternoon, while results from the high-resolution

system seem to give some indication. I suspect that this is connected to the ability of the high-resolution

system to generate a small-scale polar low that resulted in quite strong winds when the Draupner event

occurred (cf. Fig. 8). Comparing the sea state from the two simulations it turns out that in the high-

resolution system wave height was considerable higher (11.24 m vs. 9.43 m), while waves were con-

siderably longer and steeper (an increase in steepness of 10%) and therefore shallow water effects were

much more important (kpD = 1.45 versus 1.7). Although, as already remarked, the dynamical part of

the kurtosis tends to get reduced in shallow waters, the opposite is the case for the bound-wave part of

the envelope kurtosis. Combined with the larger steepness in the high-resolution simulation one finds a

substantial increase in kurtosis around 15:00 hours as shown in Fig. 3, while there is hardly any increase

in envelope kurtosis in the low-resolution simulation. Therefore, for extreme events spatial resolution

matters.

Technical Memorandum No. 775 13



How rare is the Draupner wave event?

0 5 10 15 20
Time (Hrs)

0

0.05

0.1

p
(h

>3
.1

) 
fo

r 
1
0
x
1
0
 k

m
 a

re
a

New High-Res.: delx = 9 km

ERA-Interim (TL 799): delx = 25 km

Figure 7: Evolution in time of simulated exceedance probability Pex(h
obs
max) for hobs

max = 3.1. Location is the Draup-

ner platform on the 1rst of January 1995.

4 Conclusions.

ECMWF is developing a new higher resolution weather and wave forecasting system and this experi-

mental version has been applied to the simulation of the Draupner freak wave event. This simulation was

quite succesful since it picked up a small scale polar low which played an important role in the sea state

generation at the time the freak wave event occurred in the Draupner platform area. Nevertheless, sim-

ulated significant wave height at the time of the incident was somewhat smaller than observed, namely

11.24 versus 12 m.

Ocean wave forecasting is about forecasting of the ensemble mean state as characterized by the predicted

wave spectrum. In this note I have adopted the interpretation that the wave spectrum represents the mean

sea state in a domain surrounding the location of interest with a size given by the spatial resolution of

the wave forecasting system. Deviations from the mean state are given by the probability distribution

function of, for example, the envelope wave height. Deviations from Normality are determined from the

mean sea state and therefore the pdf represents the statistics of the same domain. On the other hand, freak

waves are a singular event. They are caused by a combination of constructive interference augmented

by a number of nonlinear effects (for example effects related to skewness and kurtosis and related to

nonlinear focussing by the Benjamin-Feir instability) and by the presence of currents. However, their

starting point is constructive interference (which was already extensively discussed by Janssen (2003))

and therefore we are clearly dealing with the luck of the draw in the lottery as there is no a priory
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Figure 8: Forecast surface pressure and wind for the Draupner event. Start date of the forecast is at midnight

of the 1rst of January 1995. The location of the Draupner platform is shown by the dot. At 15:00 hours the small

scale polar low squeezes the isobars to produce considerably strong winds at Draupner, generating, according to

the wave model a mean sea state with significant wave height of 11.24 m.

knowledge of the phases of the waves. In the context of an ensemble wave prediction system it is

therefore not possible to validate its results against individual singular events such as freak waves are. At

best one may try to answer the question how likely the observed event is given the simulated probability

distribution function. In other words, what is the exceedance probability that the observed event occurs

in the domain matching the resolution of the wave prediction system. In this note I have tried to answer

this question and it is found that if one assumes linear theory than it is very unlikely that the Draupner

wave event could have happened. In sharp contrast to this, when nonlinear effects such as skewness and

kurtosis are included (augmented with an exponential tail) then the Draupner freak wave event seems to

be quite likely. Note that both skewness and kurtosis effects are contributing to a better explanation of

this event.

It is emphasized that still work needs to be done to extend the development to estimate the occurrence

probability of extreme events in 2D+Time. This work was started by J. Adler (1981) who used insights

from Topology to provide an upper estimate of this probability for a Gaussian surface evolving in time.

Clearly, these insights need to be applied to the envelope signal, including nonlinear effects. For exam-

ple, referring to Baxevani and Rychlik (2006), the recurrence probability should depend in general on
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moments of the wavenumber-frequency spectrum, which reduces to moments of the usual frequency-

direction spectrum when it is assumed that there are only free waves present. In the presence of bound

waves these moments become evidently more involved (cf. Janssen, 2009)

Finally, the Draupner freak wave event occured during a fairly rapid generation of wind sea while the

winds were getting stronger. Wind seas normally are short crested which means that they are broader in

direction than in frequency. This short crestness of the sea state tends to reduce the effectiveness of the

nonlinear focussing by the Benjamin-Feir instability, so most likely this mechanism was not so effective.

However, according to the simulation results shown in Fig. 2 the excess kurtosis 〈η4〉/〈η2〉2−3 was still

of the order of 0.1 and gave a significant contribution to the tail of the pdf. Nevertheless, this nonlinear

focussing is expected to be more effective in cases of strong swells that may become long crested in the

course of time.
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Appendices.

A Skewness and Envelope kurtosis.

In this Appendix I will sketch the derivation of all relevant statistical moments, namely the variance, the

skewnes and the envelope kurtosis. For the Stokes wave train the results have been validated against

Monte Carlo simulations of the envelope wave height distribution. These simulations also show that for

extreme events the pdf is indeed exponential. Residori’s function seems to fit the simulated data very

well.

We need to evaluate the variance of the surface elevation η and its Hilbert transform ζ and we also need

to evaluate a number of skewness terms and the envelope kurtosis. Recall that

η =
1

2
(Z +Z∗), and ζ =

1

2i
(Z −Z∗),

Following Janssen (2014) the complex function Z is obtained from the canonical transformation by

collecting together terms of similar time-asymptotic behaviour, i.e. Z contains all the terms that vanish

for ℑ(t)→−∞. The canonical transformation is only known as an expansion in steepness ε so we write

Z = εZ1 + ε2Z2 + ε3Z3 with

Z1 = 2

∫ ∞

−∞
dk1 f1a1 eiθ1 , (A1)

where f1 = (ω1/2g)1/2, θ1 = k1 ·x, and

Z2 = 2

∫ ∞

−∞
dk1,2,3 f2 f3 eiθ1 {A2,3a2a3δ1−2−3 +2B2,3a∗2a3H3−2δ1+2−3} , (A2)

while

Z3 = 2

∫

dk1,2,3,4 f2 f3 f4eiθ1 {D1,2,3,4a2a3a4δ1−2−3−4 +C1,2,3,4a2a3a∗4δ1−2−3+4H2+3−4

+C−1,2,3,4a∗2a∗3a4δ1+2+3−4H4−3−2} . (A3)

The interaction coefficients A ,B,C , and D are defined in Janssen (2009). The Heaviside function

H(x) is defined in such a way that H(0) = 1/2 and in the above formulae the argument of the Heaviside

function is a sum of angular frequencies, e.g. H3−2 = H(ω3 −ω2).

As noted in Janssen (2009) the quadratic part of the canonical transformation and therefore also of Z

generates a mean sea level. In other words, while 〈Z1〉 and 〈Z3〉 vanish this is not the case for 〈Z2〉. In

fact one finds

〈Z2〉=
∫ ∞

−∞
dk1B1,1E1,

and the ensemble mean average sea level will be substracted from the the surface elevation signal η so

that the corrected signal has no bias. Note that the Hilbert transform ζ of the signal has by construc-

tion always a vanishing mean, in agreement with the property that the Hilbert transform of a constant

vanishes.

Finally, at this point I would also like to record the corresponding results for the case of a single wave

train. It turns out that, in practice, the narrow-band limit serves as a reasonable approximation to the case

of general spectra, so that these simplified results may be used in the operational implementation of the
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pdf of extreme events. The wave train is given by the Stokes wave solution up to third order in amplitude

that is consistent with the narrow-band approximation for the general case of arbitrary spectra.

The narrow-band limit follows in a straightforward fashion from the complex function Z by using a

wavenumber spectrum with a Dirac delta function, i.e. E(k) = m0δ (k−k0) where m0 is the variance of

the sea surface, and k0 is the peak wave number. In effect, all the interaction coefficients are replaced by

their value at the peak wave number. Writing

A0,0 = 2α ,B0,0 = 2∆,C0,0,0,0 = 4γ , and D0,0,0,0 = 4β , (A4)

the complex function Z becomes

Z = m0D+m
1/2

0 Aeiθ +m0Be2iθ +m
3/2

0 Ce3iθ , (A5)

with D = ∆(a2 −〈a2〉), A = a(1+ γε2a),B = αa2,C = βa3, and θ = k0x−ω0t +φ , with ω0 the angular

peak frequency and φ an arbitrary phase. The coefficients α ,β ,γ and ∆ are known functions of peak

wavenumber and depth h and they read

∆ =−k0

4

c2
S

c2
S − v2

g

[

2(1−T 2
0 )

T0

+
1

x

]

, α =
k0

4T 3
0

(

3−T 2
0

)

,

β =
3k2

0

64T 6
0

[

8+
(

1−T 2
0

)3
]

, γ =−1

2
α2, (A6)

where x = k0h, T0 = tanhx, c2
S = gh, vg = ∂ω/∂k, and ω0 = (gk0T0)

1/2. I have used the form (A5) to

calculate explicitely all the relevant statistical moments following the method in Janssen (2009, Appendix

A.3), and I have found complete agreement with the narrow-band limit of the results for general spectra.

Note that in these calculations I have assumed a certain ordering of the contributions to the surface

elevation. Introducing the significant steepness ε = k0m
1/2

0 , with typical magnitude in the range 0.01-

0.05, one finds that the constant term in (A5) is of order ε2 while the first, second and third harmonic

are of order ε , ε2 and ε3 respectively. Calculations of the statistical moments will be performed up to

lowest significant order, which means that I continue the calculation up to the first nontrivial contribution

of nonlinearity.

A.1 Variance.

It is straightforward to express the variances 〈η2〉 and 〈ζ 2〉 in terms of the complex envelope function Z.

The result becomes

〈η2〉= 1

2

(

〈|Z|2〉+ 〈Z2〉
)

, 〈ζ 2〉= 1

2

(

〈|Z|2〉−〈Z2〉
)

. (A7)

For a homogeneous, Gaussian sea state the variances become to lowest significant order

〈η2〉=
∫

dk1 E1 +
∫

dk1,2E1E2

{

A
2

1,2 +B
2
1,2 +2C1,1,2,2

}

,

〈ζ 2〉=
∫

dk1 E1 +
∫

dk1,2E1E2

{

A
2

1,2 +B
2
1,2(H1,2 −H2,1)

2 +2C1,1,2,2

}

. (A8)

The expression for the variance 〈η2〉 agrees with an earlier result obtained in Janssen (2009, Eq. (50)).

Note that formally the variance of ζ may differ from the variance of η , because of the presence of the
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additional factor F1,2 = (H1,2−H2,1)
2. The function F1,2 equals 1 everywhere except when its arguments

are equal. In that event F1,1 vanishes. However, if the remainder of the integrand is continuous then

removing a point from an integral should not affect the result. Hence, for continuous spectra the variance

of η and ζ are the same. The exception is when the remainder of the integrand is singular at the point that

is being removed. An example of this is the case of a single wave which has a delta function spectrum.

As a consequence, for the single wave case the variances of η and ζ are different. In fact, taking the

narrow-band limit of (A8) one finds using Eq. (A4)

〈η2〉= m0 +4m2
0

(

2γ +α2 +∆2
)

, 〈ζ 2〉= m0 +4m2
0

(

2γ +α2
)

, (A9)

and the variances differ by the amount 4m2
0∆2. Expression (A9) is in agreement with the single mode

results using Eq. (A5). Note that from the expression of the single mode complex envelope function it is

immediately clear that the variance of ζ cannot depend on the parameter ∆, since the Hilbert transform

of a constant vanishes.

A.2 Skewness.

We need to evaluate skewness terms for the surface elevation η and its Hilbert transform ζ . In terms of

the complex function Z one finds

〈η3〉= 1

8

(

{〈Z3〉+3〈|Z|2Z〉
}

+ c.c., 〈η2ζ 〉= 1

8i

{

〈Z3〉+ 〈|Z|2Z〉− c.c.
}

,

while

〈ηζ 2〉= 1

8

{

〈|Z|2Z〉−〈Z3〉
}

+ c.c., 〈ζ 3〉= i

8

{

〈Z3〉−3〈|Z|2Z〉− c.c.
}

.

so we only have to evaluate the moments 〈Z3〉 and 〈|Z|2Z〉. To lowest significant order in ε we only

need the first two terms of the complex function Z, i.e. (A1)-(A2), Then, by invoking the random phase

approximation it is straightforward to establish that

〈Z3〉= 0+O(ε5), 〈|Z|2Z〉= 4

∫

dk1,2 (A1,2 +B1,2)E1E2 +O(ε5), (A10)

where A1,2 and B1,2 are given in Janssen (2009). Hence, the Z-moments either vanish or are real.

The direct consequence is that the surface elevation moments involving odd powers of ζ vanish, i.e.

〈η2ζ 〉= 〈ζ 3〉= 0. The remaining moments become

〈η3〉= 3

∫

dk1,2E1E2 (A1,2 +B1,2) , 〈ηζ 2〉= 1

3
〈η3〉. (A11)

The eventual result is

κ30 =
3

m
3/2

0

∫

dk1,2E1E2 (A1,2 +B1,2) , κ12 =
κ30

3
, (A12)

while κ21 and κ03 vanish. Hence, the skewness terms for general spectra share the same properties as the

skewness terms for a single wave train in deep water (Janssen, 2014). Note that in the narrow-band limit

the skewness term κ30 assumes the simple form

κ30 = 6m
1/2

0 (α +∆) , (A13)

a result which is in agreement with Janssen (2009).
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Finally, in the envelope wave height pdf we have introduced a skewness factor C3 according to Eq. (6).

Making use of the properties of the skewness terms one finds eventually

C3 =
κ30

3
, (A14)

and this expression for C3 has been used to determine the skewness factor in the wave height pdf from

the simulated spectra.
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Figure 9: Dependence of skewness factor C3 and kurtosis factor C4 on dimensionless depth x according to the

single mode results.

A.3 Kurtosis.

The procedure to obtain the fourth cumulants of surface elevation η and its Hilbert transform ζ , i.e.

κ40 =
〈η4〉
〈η2〉2

−3, κ22 =
〈η2ζ 2〉
〈η2〉〈ζ 2〉 −1, κ04 =

〈ζ 4〉
〈ζ 2〉2

−3, (A15)

is formally the same as the one used to obtain the third cumulants such as the skewness of the surface

elevation. Again, one introduces the complex function Z but it is now more involved because of third-

order nonlinearity, i.e. Z = εZ1 + ε2Z2 + ε3Z3, where Z1, Z2 and Z3 are given by (A1), (A2) and (A3)

respectively.

The main purpose is to calculate the envelope kurtosis κ4. It is defined as

κ4 = κ40 +2κ22 +κ04, (A16)

where the surface elevation kurtosis terms are given by Eq. (A15). This means we have to evaluate

〈η4〉,〈η2ζ 2〉, and 〈ζ 4〉.

20 Technical Memorandum No. 775



How rare is the Draupner wave event?

In passing, I would like to explain why κ4 is called the envelope kurtosis. This is most easily illustrated

for the case that η and ζ have the same variance, which is true for continuous spectra. From the definition

(A16), while using the definitions of κ40,κ22, and κ04 it is then straightforward to show that the envelope

kurtosis κ4 is just given, as expected, by the normalized fourth moment of the envelope ρ =
√

η2 +ζ 2,

i.e.

κ4 =
〈ρ4〉
〈η2〉2

−8, (A17)

In terms of the complex function Z we therefore have

κ4 =
〈|Z|4〉
〈η2〉2

−8, (A18)

hence, in order to obtain the envelope kurtosis one only needs to determine the fourth moment 〈|Z|4〉.
However, for the single mode case η and ζ do not have the same variance and therefore the expression

(A18) might not always be valid. For completeness, therefore, I will evaluate all the relevant surface

elevation moments given in (A15). Then, in terms of Z the fourth moments become

〈η4〉 =
1

16

(

〈Z4〉+4〈Z3Z∗〉+3〈|Z|4〉+ c.c.
)

,

〈η2ζ 2〉 =
1

16

(

〈|Z|4〉−〈Z4〉+ c.c.
)

,

and

〈ζ 4〉 =
1

16

(

〈Z4〉−4〈Z3Z∗〉+3〈|Z|4〉+ c.c.
)

, (A19)

hence these moments depend on combinations of 〈Z4〉,〈Z3Z∗〉 and 〈|Z|4〉. For equal variance it is clear

from the above expressions that by adding the first and the last term and by adding twice the second term

the envelope kurtosis only involves the moment 〈|Z|4〉, which confirms the result (A18).

It is now a straightforward but very laborious task to evaluate the above Z-moments for a homogeneous,

Gaussian sea state. The eventual result is

〈|Z|4〉= 8

∫

dk1,2E1E2 +32

∫

dk1,2,3E1E2E3

{

C1,1,2,2 +
1

2
C1+2−3,1,2,3H1+2−3 +A1,2A2,3

+A2,1B1,3 +
1

2
A

2
2,3 +

1

2
B

2
2,3(H

2
2−3 +H2

3−2)+B1,3B3,2 [H3−2H3−1 +H2−3H1−3]

}

〈Z3Z∗〉= 12

∫

dk1,2,3E1E2E3 {D1+2+3,1,2,3 +C1+2−3,1,2,3H3−2−1 +2A2,3B3,1

+4B3,1B1,2H1−3H2−1 +2B
2
1,2H1−2H2−1

}

while 〈Z4〉 vanishes. We now substitute the Z-moments into the expressions (A19) and using the vari-

ances (A9) one finds to lowest significant order the following expressions for the fourth-order cumulants

κ40 =
12

m2
0

∫

dk1,2,3E1E2E3

{

(A1,3 +B1,3)(A2,3 +B2,3)+
1

2
C1+2−3,1,2,3 +

1

2
D1+2+3,1,2,3

}

(A20)

κ22 =
4

m2
0

∫

dk1,2,3E1E2E3

{

A1,2A2,3 +A1,2B2,3 +
1

2
C1+2−3,1,2,3H1+2−3

+B1,3B3,2 [H3−2H3−1 +H2−3H1−3]} (A21)
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and

κ04 =
12

m2
0

∫

dk1,2,3E1E2E3 {A1,2A2,3 +B1,3B3,2 [H3−2H3−1 +H2−3H1−3 −2H3−1H2−3]

+
1

2
C1+2−3,1,2,3(H1+2−3 −H3−2−1)−

1

2
D1+2+3,1,2,3

}

(A22)

As a consequence, the envelope kurtosis becomes

κ4 =
32

m2
0

∫

dk1,2,3E1E2E3

{

A1,2A2,3 +A1,2B2,3 +
1

2
C1+2−3,1,2,3H1+2−3

+B1,3B3,2 [H3−2H3−1 +H2−3H1−3]} (A23)

Inspecting the expression for the envelope kurtosis it is seen that κ4 does not depend on the matrix D

which represents the contribution of third harmonics while both κ40 and κ04 do depend on D but with

opposite sign so that the envelope kurtosis κ40 +2κ22 +κ04 becomes independent of the third harmonic.

For equal variance of η and ζ one may give an even more general argument why the envelope kurtosis is

independent of the third harmonics. This is related to Eq. (A18) which shows that the envelope kurtosis

depends on 〈|Z|4〉 only and it is straightforward to prove that to lowest significant order third harmonics

cannot contribute to this fourth moment of Z.

I finally checked the general results for the kurtosis by taking the limit of a narrow-band wave train.

Using (A4) one finds

κ40 = 24m0

(

γ +β +2(α +∆)2
)

,

κ22 = 8m0

(

γ +α2 +(α +∆)2
)

,

κ04 = 24m0

(

γ −β +2α2
)

, (A24)

so that the envelope kurtosis assumes the form

κ4 = 64m0

(

γ +α2 +(α +∆)2
)

, (A25)

and exactly the same results for the kurtosis parameters are found when one starts from the single mode

representation (A5) following the method in Janssen (2009).

The single mode results give a reasonable approximation to the statistics of the case of a wind sea

spectrum. We use these results to illustrate for a significant steepness of ε = k0m
1/2

0 = 0.1 the dependence

of the skewness factor C3 and the kurtosis factor C4 = κ4/8 on dimensionless depth k0h. This is shown

in Fig. 9. Note the sensitive dependence of these statistical factors for a dimensionless depth in the range

of 1-2.

A.4 Nonlinear simulations and the exponential distribution.

It is important to validate a number of results obtained in this note by means of a Monte Carlo simulation.

Since the interest is in extreme events with probabilities of the order 10−6 the number of ensemble mem-

bers Nens needs to be quite large. By trial and error, I have taken Nens = 50,000,000, in order to obtain

smooth results for the pdf. A numerical simulation using the complex envelope function given in (A1)-

(A3) would therefore be very expensive because it involves 8-dimensional integrations in wavenumber

space. However, assuming that the envelope waveheight pdf is determined by the skewness factor C3 and

the kurtosis factor C4 only, one may use any nonlinear system in the numerical simulation as long as it

22 Technical Memorandum No. 775



How rare is the Draupner wave event?

has the same statistical parameters. For this reason a Monte Carlo simulation is therefore performed with

a single wave train given by Eq. (A5), where the amplitude a is drawn from a Rayleigh distribution while

the random phase is drawn from a uniform distribution. Up to a significant steepness of 0.1 (which is

very extreme) the formula for the envelope kurtosis (A25) and the skewness (A13) agree in a satisfactory

manner with the results from the numerical simulations. We have also studied the properties of the en-

velope waveheight of this nonlinear system. The envelope waveheight pdf, as obtained from the Monte

Carlo Simulation, is shown in Fig. 10. In this example the parameters α ,β ,γ ,and ∆ have been chosen in

0 0.5 1 1.5 2 2.5 3 3.5 4
h

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

p
(h

)

Monte Carlo
Linear Theory

Nonlinear Theory

Nonlinear with exp. tail

Figure 10: Probability distribution function of envelope wave height for a significant steepness of 0.06 and

a dimensionless depth of 1.45, mimicking the Draupner wave event. The Monte Carlo simulation shows clear

evidence that the tail of the distribution is exponential. Nonlinear theory combined with the stretched exponential

of Residori is in good agreement with the simulation.

such a way that they match the statistical parameters found from the numerical simulation of the sea state

when the Draupner wave event occurred. In particular given the skewness factors C3 = 0.0678 and the

kurtosis factor C4 = 0.0425 as found during the Draupner event, the parameters α and ∆ are determined

from (A14) and (A25) with the result

α2 = (C4 −2C2
3)/4m0, ∆ =C3/2m

1/2

0 −α ,

while γ =−α2/2 and β is unspecified because the skewness and envelope kurtosis do not depend on the

amplitude of third-order harmonics in lowest significant order. I have tried several values for β and as

long as the third-harmonic amplitude has a value of order ε3 the resulting envelope wave height pdf is

very similar indeed.

Over a wide range of values, between 10−6 and 10−2, the pdf behaves as a straight line, hence the

pdf follows an exponential law. For comparison, also shown are results according to linear theory, and

it is clear that this gives a large underestimation of the frequency of extreme events. The nonlinear

theory discussed by Janssen (2014) shows good agreement with the simulation up to a waveheight of
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h = 2.5, but the probability of extreme events such as the Draupner case with h = 3.1 are considerably

underestimated. The approach that adds, using the method detailed in §2.3, a stretched exponential is

found to agree very well with the numerical simulation.
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