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Progress in using ensembles with NEMOVAR

NEMOVAR covariance code completely rewritten to facilitate the use
of ensembles in defining the background-error covariance matrix (B).
Diffusion-based filtering algorithms have been revised to improve their
efficiency and scalability on MPP machines.
This development has important implications for the ensemble-based B
in the areas of:

I
correlation modelling

I
ensemble-covariance localization

I
filtering of ensemble-estimated parameters

This work (not presented here) is described in a recent publication
(Weaver, Tshimanga and Piacentini 2015, QJRMS).
This talk focuses on other aspects of the hybrid B that have been
developed for NEMOVAR.
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The NEMOVAR B formulation

The NEMOVAR B formulation is quite general:
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X are (transformed) ensemble
perturbations.
A large-scale EOF-based covariance matrix for assimilating sparse
observations (METO):

BEOF = P⇤PT
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Using ensemble perturbations to specify B

We have developed two ways of defining B from ensembles:
1

Estimate variances and correlation scales of the covariance model Bm:

=) work described at last year’s GA.

2
Through the (Schur product) localized sample covariance matrix

Be = L � eXeXT = L � eB ()
�
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=) new work described here.

We also consider the hybrid variant:
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employs climatological or modelled parameters.
How to estimate the localization matrix L and hybridization weights
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?
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Localization and hybridization
Localization by L + hybridization with B

m

to combat sampling error:

B = �2
e

L|{z}
Gain Lh

� eB + �2
m

B
m| {z }

Offset

Localization + hybridization = linear filtering of eB
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have to be optimized together

Optimal localization/hybridization minimizes (Ménétrier & Auligné 2015, MWR)
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eB is the target.

It can be shown that, with optimal parameters, whatever the static B
m

:
Localization + hybridization is better than localization alone
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Optimal hybridization weights

Practical expressions can be derived for the optimal weights (M & A 2015).
Example from NEMOVAR

As expected:
�2

e

increases with the ensemble size,

�2
m

decreases with the ensemble size.
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Optimal localization

Localization and hybridization are optimized simultaneously.

Example from NEMOVAR

Correlation (black) and localization (colors)
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Aspects of the practical computation
A spatial ergodicity assumption is required to estimate the statistical
expectations E

⇥
·
⇤

in the optimal formulae.

Estimation of correlation and localization (30 members, 5 m temperature)
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Homogeneity issue
Random points are drawn from the coordinates vector.

This sampling should take the grid structure into account.
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Hybrid correlations from NEMOVAR

Example of surface T-T correlations at a point in the North Atlantic

Fit the localization function to an Mth-order AR-function and model it with
a diffusion operator (L).

Optimized parameters: �2
e

= 0.55, �2
m

= 0.56, L
loc

= 260 km, M = 6.
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Summary and plans

More tuning and testing of the ensemble-estimation code within a
simplified framework (i.e., using an ensemble based on a randomized
B).
The code has been made available to ECMWF (via the Git source
code repository at CERFACS).
Integration of the code within an EDA framework - collaboration
ECMWF and Met Office.
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4D-Var in the ocean

The first goal of this task was to assess the feasibility and the added value of using
4D-Var in the ocean, compared to the current 3D-Var setting.
Feasibility was demonstrated last year...

Experiment with 1 year 3D-Var/4D-Var uncoupled 10-day window

Generally smaller increments from 4D-Var compared to 3D-Var (which is good).

Better fit to observations (which is good as well).

However the improvement is rather limited despite a significant increase in cost
(which is less good).
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4D-Var in the ocean

Vertical velocities are of importance for coupling with biogeochemical models.

Assimilation is known to create spurious vertical velocities.

With smaller increments one could hope that 4D-Var does a better job.

But in general, the improvement exists but is barely noticeable, except in the
equatorial band, where:

Mean analysed vertical velocities at the equator (No assimilation - 3D-Var - 4D-Var)

The strong and nasty signal is contained below 2000m (where there are no data) but it
has an impact on sea surface elevation.
Currently under investigation.
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4D-Var in the ocean

The second part of this task is to improve the 4D-Var e�ciency.

Plans

This can be achieve using multigrid techniques (multi-incremental or FAS).

However the definition of transfer operators (interpolation and simplification) is not
trivial in the ocean due to complex boundaries.

So far

A first version of the transfer operator is available

On an academic rectangular configuration, multigrid seems quite e�cient (4D-Var
for the cost of 3D-Var, with the same level of quality)
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Transfer operators

I cf may be defined through the general inverse of the interpolation I fc

I cf xf = Argmin
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I fc being the interpolation operator, and W the diagonal matrix of volume elements
A cheap and approximate solution may be
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T
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with Wc is the diagonal matrix of volume elements at low resolution

Full Simplification Operator

Figure: Original Orca1˚ background temperature field (left)

Full Simplification Operator

Figure: ... and the Full Simplification Operator

Full Simplification Operator

Figure: ... the simplified Orca2˚ field obtained with the Approx. S.O. ...ORCA 1� ORCA 2� full ORCA 2� approx
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Plans for the end of the project

Comparison 3D-Var / 4D-Var

Investigate the issue of spurious vertical velocities deep at the equator

Redo this comparison at higher resolution (1/4�) where 4D-Var may be more
beneficial

Multigrid

First experiments with Orca 1/4� grids show that the transfer operator (to/from
Orca 1�) itself is a bit too expensive. A second version is on its way.

Experiments on Orca1/4� / Orca1� and compare Orca1/4� alone

December 8, 2015 5 / 5


