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Progress in using ensembles with NEMOVAR & CERFACS

o NEMOVAR covariance code completely rewritten to facilitate the use
of ensembles in defining the background-error covariance matrix (B).

o Diffusion-based filtering algorithms have been revised to improve their
efficiency and scalability on MPP machines.
@ This development has important implications for the ensemble-based B
in the areas of:
» correlation modelling
» ensemble-covariance localization
» filtering of ensemble-estimated parameters
@ This work (not presented here) is described in a recent publication
(Weaver, Tshimanga and Piacentini 2015, QJRMS).
@ This talk focuses on other aspects of the hybrid B that have been
developed for NEMOVAR.
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The NEMOVAR B formulation = CERFACS

e The NEMOVAR B formulation is quite general:
B = B5 (Buwy +Bu, +...) +57Be + 52 Byoy

'
B m

wnere 32, 32 and ﬁ; are constant weights or switches.
e Multiple covariance models for representing different “scales” (METO):
1/2 1/2
B, = K,D?Cp, DK
@ A localized ensemble-based correlation matrix:
B. = K, D2 (LORXT) D/2KT
where the columns of X = Dgl/z
perturbations.

Kgl X are (transformed) ensemble

@ A large-scale EOF-based covariance matrix for assimilating sparse
observations (METO):

Bpor = PAPT
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Using ensemble perturbations to specify B = CERFACS

@ We have developed two ways of defining B from ensembles:

@ Estimate variances and correlation scales of the covariance model B,,:
— work described at last year's GA.
© Through the (Schur product) localized sample covariance matrix

B.=LoXX"=LoB <« (B),=L;B;

— new work described here.

@ We also consider the hybrid variant:
B = 2B+ 3, B

where B, employs climatological or modelled parameters.

@ How to estimate the localization matrix L and hybridization weights

Bm and Bc?
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Localization and hybridization = CERFACS

Localization by L + hybridization with B, to combat sampling error:

2 Qo n2

— B2L 0B+ By
—— ——
Gain Lb Offset

Localization + hybridization = linear filtering of B

L" and 2, have to be optimized together

m

Optimal localization/hybridization minimizes (Ménétrier & Auligné 2015, MWR)

et —E[|[L" 0B + 2 By — §*||§]

m

where B* = lim B is the target.

Ne—00

It can be shown that, with optimal parameters, whatever the static Byy:
Localization + hybridization is better than localization alone
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Optimal hybridization weights

Z CERFACS

Practical expressions can be derived for the optimal weights (M & A 2015).

As expected:

Hybridization coefficients

Example from NEMOVAR
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o /32 increases with the ensemble size,

o (32, decreases with the ensemble size.
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Localization
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Optimal localization

Z CERFACS

Localization and hybridization are optimized simultaneously.

Example from NEMOVAR
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Aspects of the practical computation & CERFACS

A spatial ergodicity assumption is required to estimate the statistical
expectations E| - | in the optimal formulae.
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Homogeneity issue Z CERFACS

Random points are drawn from the coordinates vector.

This sampling should take the grid structure into account.

Cell size (km?) Basic random sampling Adapted random sampling

0 3000 6000 9000
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Hybrid correlations from NEMOVAR Z= CERFACS

Example of surface T-T correlations at a point in the North Atlantic

Truth Model Ensemble (N=10) Hybrid
[ [ I N N N

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fit the localization function to an Mth-order AR-function and model it with
a diffusion operator (L).

Optimized parameters: 32 = 0.55, 82, = 0.56, Ljoc = 260 km, M = 6.
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Summary and plans Z CERFACS

More tuning and testing of the ensemble-estimation code within a
simplified framework (i.e., using an ensemble based on a randomized
B).

The code has been made available to ECMWEF (via the Git source
code repository at CERFACS).

Integration of the code within an EDA framework - collaboration
ECMWEF and Met Office.
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4D-Var in the ocean

The first goal of this task was to assess the feasibility and the added value of using
4D-Var in the ocean, compared to the current 3D-Var setting.
Feasibility was demonstrated last year...

Experiment with 1 year 3D-Var/4D-Var uncoupled 10-day window
o Generally smaller increments from 4D-Var compared to 3D-Var (which is good).

o Better fit to observations (which is good as well).

o However the improvement is rather limited despite a significant increase in cost
(which is less good).

first outer interation non-linear cost
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4D-Var in the ocean

Vertical velocities are of importance for coupling with biogeochemical models.

@ Assimilation is known to create spurious vertical velocities.
@ With smaller increments one could hope that 4D-Var does a better job.

@ But in general, the improvement exists but is barely noticeable, except in the
equatorial band, where:

3DFgat Vertical Velocity
—

Mean analysed vertical velocities at the equator (No assimilation - 3D-Var - 4D-Var)

The strong and nasty signal is contained below 2000m (where there are no data) but it
has an impact on sea surface elevation. .
Currently under investigation. V%77 3
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4D-Var in the ocean

The second part of this task is to improve the 4D-Var efficiency.

Plans

o This can be achieve using multigrid techniques (multi-incremental or FAS).

o However the definition of transfer operators (interpolation and simplification) is not
trivial in the ocean due to complex boundaries.

So far
@ A first version of the transfer operator is available

@ On an academic rectangular configuration, multigrid seems quite efficient (4D-Var
for the cost of 3D-Var, with the same level of quality)

/577 3N
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Transfer operators

If may be defined through the general inverse of the interpolation If

If x¢ Argmin <%[Icfxc — x|/ W [Iixc — Xf])
= ()" W TN Wik

If being the interpolation operator, and W the diagonal matrix of volume elements
A cheap and approximate solution may be

xe ~ W (IHTwx

with W_ is the diagonal matrix of volume elements at low resolution

ORCA 1° ORCA 2° full ORCA 2° approx Lrezia—
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..,
Plans for the end of the project

Comparison 3D-Var / 4D-Var
o Investigate the issue of spurious vertical velocities deep at the equator

@ Redo this comparison at higher resolution (1/4°) where 4D-Var may be more
beneficial

Multigrid

o First experiments with Orca 1/4° grids show that the transfer operator (to/from
Orca 1°) itself is a bit too expensive. A second version is on its way.

@ Experiments on Orcal/4° / Orcal® and compare Orcal/4° alone

/577 3N
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