

ERA-CLIM2

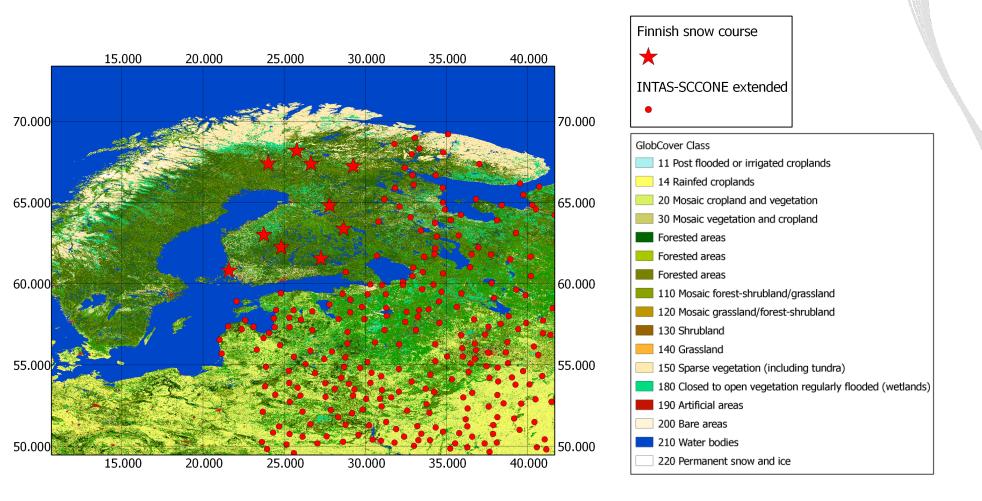
European Reanalysis of the Global Climate System

Contribution of FMI to WP3, Earth system observations
J. Pulliainen, M. Salminen

Task 3.3: Boundary constraints and external forcing

- Global estimates of snow extent and snow water equivalent (SWE) based on GlobSnow
- Development of a consolidated quality-controlled data base of in-situ snow observations in collaboration with NSIDC and RIHMI

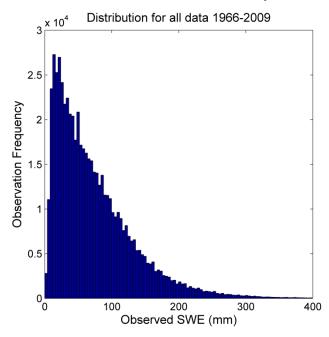
Deliverables

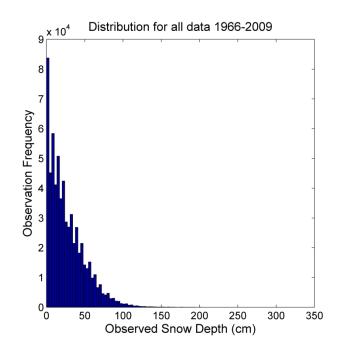

- 3.18 Prototype snow data product (GlobSnow development product) for reanalysis, with documentation (FMI, months 7 to 36)
- 3.19 Quality controlled version of snow data base (in situ) and snow data product (D3.18), with documentation (FMI, with RIHMI, months 25 to 48)

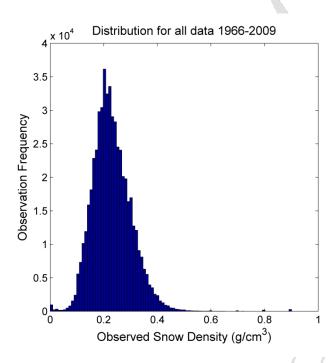
FMI contribution

- Compilation of long-term in situ snow observations from different sources (up to ~100 years if possible and where possible)
 - Distributed snow course observations from Eurasia and North America on Snow Water Equivalent (SWE)
 - Point-wise weather station observations on Snow Depth (SD)
 - Prototype product is planned to be released by the end of 2015 (combining Russian, Canadian and Finnish data on SWE from snow courses)
- Development of optimized spatio-temporal snow cover information starting from 1980 based on combined use of satellite data (passive microwaves and optical) and in situ data
 - GlobSnow-type variational data assimilation (method for SWE product)
 - Product neglecting in situ data is also provided

Snow course observation spatial coverage


 Example: Distributed snow course observations from Finland and North-West Russia on Snow Water Equivalent (SWE)





Prototype SWE dataset: Distribution for all data 1966-2009

- Total number of WMO weather stations over 1300
- Time period 1966-2009 (10 stations in Finland until 2014)
- Total number of observations over 700 000
- Variables
 - Snow Water Equivalent (SWE)
 - Snow Dept (SD)
 - Snow Density

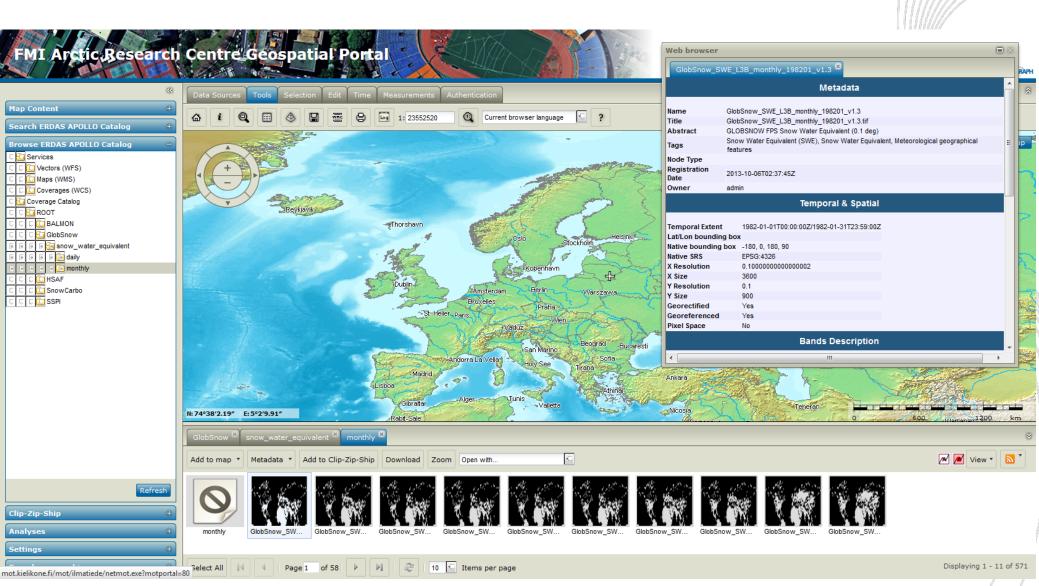
Distributed snow courses

Course	LAT	LON	DOY	SWE	RHO	SD	Year

- Code -99 for missing data
- Separate metadata file
- DOY and Julian day included
- WGS-84 latitude and longitude in decimal degrees

Development of snow data product (satellite and in situ data)

GlobSnow development product: combined SE & SWE

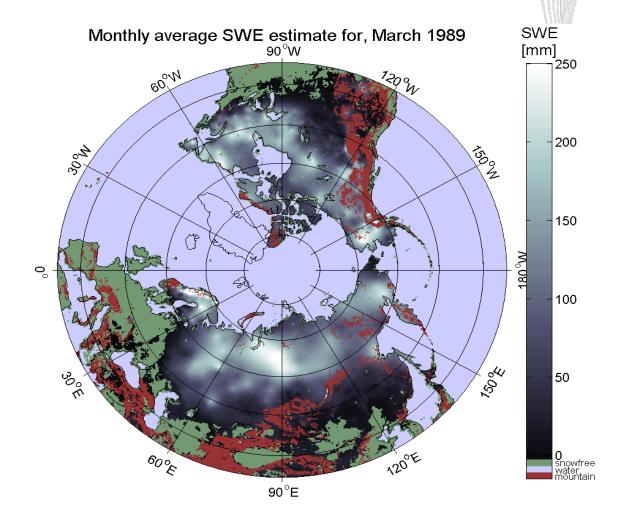

- Starting from 1980 based on combined use of passive microwave GlobSnow SWE CDR reprocessed product and optical NOAA Snow CDR and in situ data
 - GlobSnow-type variational data assimilation (method for SWE product)
 - Product neglecting in situ data can be provided as well i.e. GS data with no weather station data as input

Distribution channels available at FMI

- Sodankylä archive (LITDB)
- FTP site: http://litdb.fmi.fi/ (ARC database)
 - Erdas Apollo http://erdas-apollo.fmi.fi/apollo-portal/
 - EOxServer
 - Application and framework for presenting Earth Observation (EO) data and metadata via different Web Services
 - Open source software written in Python (specified by the Open Geospatial Consortium (OGC))
- The prototype snow dataset for ERA-CLIM2
 - Will consist of 2 files (distributed snow courses and point-wise SD)
 - Total size only ~20 MB

Erdas Apollo geospatial portal (FMI)

FMI Arctic Reserch FTP Database


Development of snow data product (satellite and in situ data)

- GlobSnow development product: combined SE & SWE
- Starting from 1980 based on combined use of passive microwave GlobSnow SWE CDR reprocessed product and optical NOAA Snow CDR and in situ data
 - GlobSnow-type variational data assimilation (method for SWE product)
 - Product neglecting in situ data can be provided as well i.e. GS data with no weather station data as input

SWE map product

- Spatial resolution of 25 km
- Combining satellite and in situ data (passive microwaves and SWE from snow courses as main data sources)

