



## Climate services for water and coastal management

Jaap Kwadijk

Copernicus Climate Projections Workshop | ECMWF Townhall, Reading April 20-21, 2015

#### What do water / coastal managers do

#### Deal with too much, too little, too dirty water

- Monitor their water system' inform people what they can expect on all kind of water issues + warn them for floods and droughts
- **Develop and maintain** an **infrastructure** that meet all the requirements (WFD, EU-FD, Marine Strategy Framework Directive, International agreements, design criteria of infrastructure)
- **Discuss with policymakers** the (interpretation / meaning / consequences) of changes in these requirements
- **Discuss with sectors** dependent on the possible options to adapt the system (Long term)

Generally very little mandate to influence the water using sectors; Some times lots of influence on spatial planning via the water related infrastructure



# Climate services for the long term and short term planning

- Climate services for the long term planning: typically for serving the preparation of a water/coastal management plan for a country / water management system (frequency 5-10 yrs (?))
- Climate services for the short term: typically for serving flood/drought warning (frequency daily-weekly)

 How this planning is organized (to what extend alien parties are involved) varies a lot over countries; coastal management somewhat easier than inland



## Long term: Typical questions of a water and

#### <u>coastal manager</u>

- 1. Does the current management strategy for the water system I manage meets the standards
- 2. Is there a risk that policy targets will not be achieved
- 3. Is there a risk that additional measures will be needed soon (extra money needed)
- 4. Is there a risk that too much measures are taken (too much money is spend)

#### Strategic questions

- 4. How long will the strategy be efficient after the time horizon (robustness).
- 5. How easy is it to change in time to an alternative strategy (flexibility/no regret).




### Typical questions in the water planning phase

- Are the **current standards** still **reasonable** or should they be • changed
- What deptation strategies do help to meet the standards ۲
- Is implementation of the strategies technically • possible/feasible?
- What are the cost and benefits of developing adaptation ٠ strategies?
- Can the strategies be implemented in the current political and ٠ environmental conditions
- What are the political consequences and institutional ۲ requirements for implementation of the strategies? remely important tores

Summarizing:

- Do measures do the job
- Is it technically possible to implement them, •
- Can we pay them •

### Sometimes very large investments needed



# And a very high detail

Zeeland Stroomrichting Time passed: 0h:30m









Hoogheemraadschap van Delfland



Waterkader Haaglanden



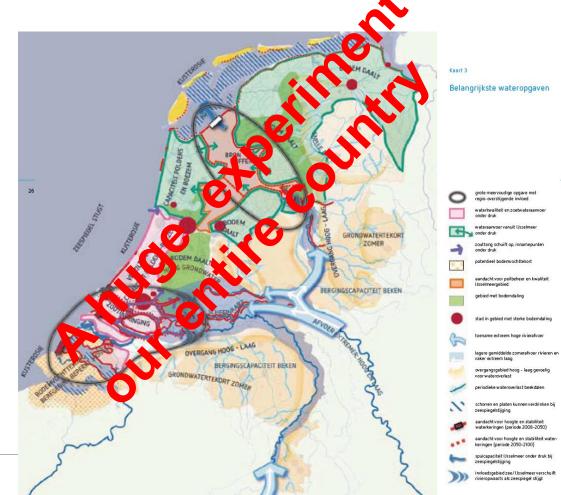




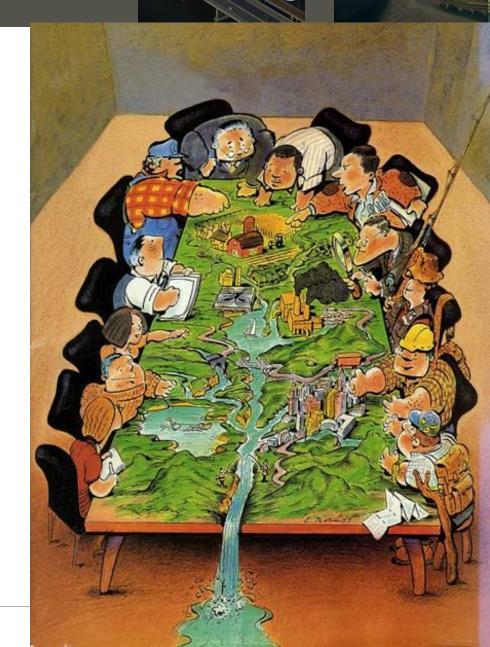
#### Coastal / water management planning is changing,

#### trend 2 bottom-up

#### TOP->DOWN (no question: do we want them?!)


Delta works 1960-1980

Dikes and barriers




#### BOTTOM->UP (all is about commitment)

Delta programme 2010-> Re-design of the water management in the Netherlands



### Do we want them: needs a lot of talking



### Role of climate services in this



#### Three levels of services

- 1. Answering the questions: is the climate changing in my country and does it affect my water system (needed to monitor the effectiveness of strategies)
- 2. Answering the questions: What could be the changes in my water system (needed to decide if investments might be needed)
- Answering the questions: is my management system up to date and (when/how) do I need to change my strategy (=> where/when2invest)



Needs: **Archives** for determining trends in atmospheric parameters and water related parameters: Focus on those parameters that are difficult to collect by water managers

- Climate: Precipitation, Temperature, Potential/Actual Evaporation, Wind
- Hydrology: soil moisture, groundwater, snow water equivalent, water temperature, may be extended with Nutrients, Dissolved Oxygen, area flooded)
- Coastal: Trends in local sea level rise, local subsidence, coastal erosion, wave amplitude and frequency; (extreme) surge heights, salt water intrusion in open estuaries, eventually extended with ecosystem info (shifts in algal species, more frequent (harmful) algal blooms, jellyfish 'blooms')

## Level 2 Q: What could be the changes in my water system (to decide if investments might be needed)

Needs: **Transient scenario's** for changes in atmospheric parameters and water related parameters

- Climate: Precipitation, Temperature, Potential/Actual Evaporation, Wind
- Hydrology: soil moisture, groundwater, snow water equivalent, runoff, water temperature
- Coastal: Local sea level rise, wave amplitude and frequency; (extreme) surge heights, salt water intrusion in open estuaries, acidification, water temperature,

Extreme events due to :

- Inland runoff and precipitation-induced flooding, coincide with storm surges
- Dry spells (low flows) and local sea level rise meaning that salt water intrusion enters much deeper into the estuaries

Needs integration between events at sea and on land => data archives/scenario's should allow for that.

### Level 3 Q: is my management system up to date and do I need to change my strategy

Needs: Level 1+ 2 + **Tools that allow for evaluation** of different measures, strategies under changed conditions. Needed input and required output strongly tailor made. Differs from country to country and often even within countries

#### Making available the data in Levels 1 and 2 would be of great support for making informed evaluations

But: decisions will be simply based upon the climatic / hydro information that is available

During a 2008 panel for the IPCC's launch of a report on water and climate, a hydrologist and an engineer called for additional monitoring and research to understand the effects of climate change. The third member of the panel, a frustrated World Bank infrastructure lender, declared in response,

"I can't wait thirty years for precise science to tell me how much global warming contributed to a particular drought or flood... I need to make investment decisions now."

Slide borrowed from Nidhi Kalra (Rand)

Focus on 10d - Seasonal forecasts for the slowly responding stores:

- Groundwater, reservoirs, snow water equivalent, soil water
- A game changer would be water levels in near real time for all open water bodies.



## Parameters and resolutions A proposal



| Parameter    | spatial (m) | temporal | maxima  |
|--------------|-------------|----------|---------|
| Ρ            | 10^3        | hr       | 1-100yr |
| т            | 10^3        | 6-hrly   |         |
| PE/AE        | 10^3        | daily    |         |
| Wind (speed, | 10-3        | ually    |         |
| direction)   | 10^3        | hourly   | 1-100yr |

These should be considered as an estimate Guide lines to downscale to these values could be an alternative

## Proposal for the temporal and spatial resolutions, Hydrology

| Parameter     | spatial    | temporal |
|---------------|------------|----------|
| soil moisture | km         | daily    |
| ground water  | km         | decadal  |
| Runoff        | km         | daily    |
| Snow (SWE)    | km         | daily    |
| Water temp    | Open water | daily    |

These should be considered as an estimate Guide lines to downscale to these values could be an alternative Deltares

## Proposal for the temporal and spatial resolutions. Coastal

| Parameter           | spatial | temporal            | maxima |
|---------------------|---------|---------------------|--------|
| SLR                 | local   | annual rate         |        |
| Subsidence          | km      | annual rate         |        |
| coastal erosion     | km      | annual rate         |        |
|                     |         |                     |        |
| surge heights       | local   |                     | 1-1000 |
| wave amplitude/     |         |                     |        |
| frequencies         |         | during storm events |        |
| Salt concentrations |         | daily               |        |

These should be considered as an estimate Guide lines to downscale to these values could be an alternative Deltares



- Less the number of parameters and the resolution
- Accessibility + ease to combine different data sets
- => community that can provide tailor made level 3 services will be much bigger
- A structure such as Google X Earth Engine would be great

